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Abstract—As the number of low cost computing devices at
the edge of network increases, there are greater opportunities to
enable novel, innovative capabilities, especially in decentralized
cyber-physical systems. For example, in an urban setting, a set
of networked, collaborating processors at the edge can be used
to dynamically detect traffic densities via image processing and
then use those densities to control the traffic flow by coordinating
traffic light sequences, in a decentralized architecture. In this
paper we describe a testbed and an application framework for
such applications.

I. INTRODUCTION

The demand for Internet throughput can only increase as
the number of Internet enabled devices continues to grow
and this trend, according to [1] and other similar studies will
continue. Currently many of these new devices are acting as
dumb portals to a scalable cloud back-end but as the number of
devices increases and the bandwidth available for each device
diminishes we may reach a point where connecting to the
cloud is no longer feasible. One way this could occur is if the
data to be processed exceeds available bandwidth; for example
an autonomous car may generate up to 1GB of data per second
[2] but currently LTE can only handle a max speed of about
50MB/s in a 10MHz channel. The cloud is also not feasible
for applications with stringent latency requirements, like the
smart grid and many other industrial control systems [3]. The
only options to resolve these problems are to increase the
bandwidth to the cloud or to improve bandwidth utilization.
Fog computing is one way to improve bandwidth utilization;
by using devices that have local processing capability to handle
some work, the amount of data sent to the cloud can be
reduced. Since the devices are geographically distributed and
thus only interfere with devices in their vicinity the system is
more scalable.

Obviously fog computing doesn’t solve the whole problem,
there are still limits to the bandwidth available in a region.
It also introduces a number of other challenges, including
traditional distributed computing like synchronization, and
application deployment and management(software updates)[4],
as well as fog specific challenges. Some of these fog specific
challenges include device discovery, determining application
placement or workload distribution despite resource con-
straints, reduced reliability compared to cloud services (due to
device failures, unknown availability, device mobility, etc), and
device heterogeneity. Additionally it is well known that design
errors become more costly to fix as the design progresses [5]

and this is even more true for fog applications, due to the
number of devices, particularly if a person needs to interact
with them singly.

Recognizing the growing need for fog applications as well
as the challenges, we are interested in developing a framework
to aid in the development and testing of distributed fog
applications. To handle distributed system problems, resource
discovery, as well as app deployment and management we
leverage our prior work RIAPS, a middleware developed for
distributed smart grid applications but which can be used for
any fog application. We discuss RIAPS in section II

RIAPS is useful in developing the application and deploying
but we need additional tools to determine if an application is
correct. To assist in this we focus on three additional areas.
The first is network analysis. Since there will be congestion
in the network we need to know how much congestion the
application under development can sustain and still meet its
performance specifications. There are many ways in which
this could be accomplished, in this work we explore utilizing
PRISM for this purpose which is in section III-A. Next we
notice that the fog resources may not be sufficient to host
an application, or handle all of the processing locally and so
some work must be deployed to a cloud service, which incurs
a cost. To determine this distribution of application workload
we present a dataflow simulation which takes a workload as
input and determines how to distribute it on a collection of
fog and cloud resources. This is in section III-B. The final
area presents our hard-ware-in-the-loop (HIL) testbed which
lead us to recognize the need for the previous tools. This
testbed is important in determining the network load of an
application, which in turn is used to determine congestion
limits and workload placement. Then the workload placement
can be validated again on the HIL testbed. For the testbed
we use single board computers hosting a distributed traffic
monitoring and control application which collects traffic data
from a city simulation and actuates the traffic lights. This is
in sections IV and IV-A

Frameworks for traffic applications have been presented
in other recent works [6] that address issues dealing with
communication delay between autonomous cars and a traffic
light. Their work is simulation based and they do not address
how their protocol might be implemented. Their work also
does not extend into the space of Fog applications; they do
not address issues associated with distributed traffic control
and intercommunication between intersections. In our work



we include both hardware in the loop simulations as well as
communication between traffic controllers.

The remainder of the paper is as follows, Section II dis-
cusses the platform for design and deployment of applications.
Section III discusses simulation and network analysis, section
IV presents our hardware testbed, section IV-A presents the
case study and is followed by the conclusion in section V.

II. INFORMATION ARCHITECTURE PLATFORM

The resilient information architecture for smart systems
(RIAPS) is a decentralized middleware platform comprising
a set of communication, application deployment and platform
management services. These services include time synchro-
nization, distributed coordination, and a discovery service. An
application in RIAPS is a collection of actors (processes)
that are deployed on computing nodes of a network. The
actors manage components that provide the functionality of the
application. An actor provides an interface to RIAPS services
for the hosted components. The components interact with one
another using well-defined interaction semantics alluded to in
Figure 1. Furthermore, the component architecture, an exten-
sion of our prior work [7], ensures that the applications are
free from a number of concurrency issues such as deadlocks
and race conditions. All these features are designed with the
intention of reducing the overall management costs, which we
expect to be higher given that the devices are going to be
distributed in the physical environment and will often require
physical travel to the device location for maintenance.

A. Actor and Component Model

Component-based design of complex software has several
advantages that have been recognized by the industry and
various large-scale systems. Components encapsulate func-
tionality in a reusable unit that can be composed with other
such units to form an application. This architectural principle
is used in many applications today, including the Android
platform [8] for smart phones and the AUTOSAR standard
[9] for Embedded Control Units (ECUs) in cars. The com-
ponent model defines what a component is, how it can be
customized, deployed, executed, and how it interacts with
other components to form applications. A component model
also defines a component framework: a middleware software
layer that implements common services needed by application
components. Although component-based software engineering
has traditionally been used to develop enterprise applications,
a number of prior efforts [10], [11], [12], [13] have also used
it for real-time and embedded applications. These component
models for real-time and embedded applications focus on
assuring one or more of the non-functional properties (e.g.,
timeliness, reliability, and security), satisfying resource limi-
tations, and handling uncertainties in operating environments.

The RIAPS platform supports component-based applica-
tions to obtain these advantages. While a number of com-
ponent models exist, they are either too complex or have too
much management overhead to be used in Fog environments.

Fig. 1: RIAPS Component Model

For this purpose, we have defined a minimal, yet expressive,
component model for RIAPS. A RIAPS component is a
reusable unit that has a set of operations that manipulate the
component’s state and that can interact with other components
of the application via ports. As shown in Figure 1, a RIAPS
component supports several port types: sender, receiver,
client, server. Sender is unique because it is used to only
send messages outside of a component. The receiver port is
exclusively used to bring messages into the component. Both
client and server are special ports in that they can be used
to send messages and receive messages. This is required to
implement the common pattern of request/response, where the
“client” can send a request message via a client port, which
is then received by the server port of some other component,
which then sends a “response” back to the component that
originated the request. Client, server, and receiver ports are
individually buffered, i.e. the messages are guaranteed to be
held in the port until a component operation has consumed
the message or unless the port’s buffer is full. An additional
construct is timer: it can be armed and used to produce
messages that record the time of timer expiry and that trigger
the invocation of a component operaion. The computation
aspect of a component is single threaded and is managed by
a trigger method provided by the component developer. The
trigger method can evaluate arbitrary conditions (e.g. the state
of the component) and events related to the ports and use the
result to select an operation that executes the core business
logic of the component. The trigger fires (1) when the state
of ports of the components change, (2) when a timer expires,
or (3) when an operation is completed.

Logically, multiple components are grouped together to
create applications. Assuming that the components for these
applications have dependencies (e.g. hardware, location, etc)
that cannot be satisfied on a single RIAPS node, the compo-
nents of the application are distributed among the available
nodes.

An actor acts as a container for components and it allows
the component to interact with other services that the system
provides including time synchronization, resource discovery
and distributed coordination. The actor also provides a stan-
dard interface for remote management of the components that
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it hosts. This is required to ensure that all the components of
an application can be installed and configured correctly. The
actor also provides process abstraction and resource containers
for the components. This makes it possible to limit hardware
resources available to individual components, as well as limits
the resources used by a group of components within an actor.

B. Isolating the Physical System Interaction

Fog applications are primarily cyber-physical in nature.
That means the applications must be able to interact with
physical sensors and actuators. This is challenging because
the devices are heterogeneous and do not share the same
interfaces. In order to address this RIAPS includes a device
interface service whose goal is to encapsulate specific I/O
devices so that application components can (a) access them
using a unified interface and (b) precisely time interactions
with devices and other components. To achieve these goals, the
service must contain the necessary drivers, resource arbitration
methods, and a real-time scheduler. This is one of the most
comprehensive platform services and it is tightly integrated
with the Time Synchronization Service for executing device
interactions on a globally synchronized timescale.

III. NETWORK ANALYSIS AND SIMULATION

A. Network Analysis Framework

The purpose of a network analysis tool in our framework is
to determine the congestion levels that the developed applica-
tion can tolerate given its own message size and communica-
tion rate and still meet its requirements. We elected to model
the 802.11a protocol in PRISM a probabilistic model checker
intended for formally modeling and verifying systems that
have probabilistic, or nondeterministic behavior. The formal
specifications can be expressed in the PRISM [14] property
specification language, which can express statements from
PCTL, CSL, LTL and PCTL*.

In our first application of this tool we check how long
we should expect to wait for a station to be successfully
send a message if there is random interference. This kind of
interference can result from sources that do not implement
the 802.11a protocol or if there are hidden nodes. For fog
applications this interference can be modified to model the
background congestion.

We see the result of this experiment in Figure 2. The x
axis is the probability that there will be interference at a given
time step, where that probability is x

1000 . The y axis is the
expected time to wait in µs. We see that with 2% random
utilization on average it should take 0.1s for the station to be
able to send a message. However, the trend is exponential:
as the probability that the medium is randomly accessed by
uncontrolled stations grows linearly the expected time for a
station following the 802.11a protocol to be able to send a
message grows exponentially. This trend is likely because the
interruptions are a Poisson process. This experiment does show
us that PRISM may be used to determine how congestion
impacts message delivery. By including a minimum message
transmission time in the application specification we can

Fig. 2: The expected time to send a message vs. the probability of interruption
by uncontrolled external sources

Fig. 3: Diagram of the Workload Simulation Model

monitor when the controller is no longer able to perform is
function.

B. Dataflow Simulation

One of the key difficulties when creating a Fog application
is determining the optimal placement of workloads across edge
devices and the cloud. This placement will depend on the
needs of the application, including latency demands, availabil-
ity of edge resources, and economic constraints. Rather than
determing the distribution of the workloads via trial and error
on an actual deployment, which would be costly, a simulation
of the system can be used to optimize their placement as shown
in our prior work [15]. However, due to the nature of Fog
computing we need to consider a multi-tier resource approach,
where the resource sharing across tiers incur different costs,
including network latency and direct financial costs. Rather
than being strictly defined, tiers are associated with different
resources.

The simulation used in this framework uses the MATLAB
SimEvents tool: a discrete-event simulation engine that in-
cludes a component library for analyzing event-driven system
models [16]. Workloads are represented using the built-in
‘entity’ objects, with each entity representing an individual
task to complete. The model used in the framework consists
of the following components shown in Figure 3, explained
below.
• Workload Generation: Entities are generated at some

rate λ, have a size that impacts network utilization, and a
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complexity that impacts computation time. Each of these
properties can be constant or sampled from a distribution.
After being generated the entities are sent to the Broker.

• Broker: The Broker determines which computational de-
vice to send each entity as it is generated and then directs
it to the appropriate network connection. It stochastically
averages the workload across these devices based on both
the devices’ computation speed and the characteristics of
the networks connecting them. It accomplishes this by
optimizing the rate at which it sends to each device via
the DIRECT algorithm below.

• Network: Each network is represented as an
M/M/1(processor sharing) queue [17], which models
entities being transfered as processes to be computed. The
shared processing (ps) property allows multiple entities
to be processed at a time, which simulates the ability to
send multiple files over a network simultaneously. The
time required to transfer an entity depends on its size.

• Computation Devices: The edge devices and the cloud
are represented as M/M/1 and M/M/N queues respectively
[18]. The M/M/N queue represents the ability of the cloud
to scale indefinitely, while edge devices are limited to
their local resources. Each entity is processed one at a
time on each device, after which it reports the amount of
time it took to be processed and exits the model. Currently
the simulation does not support resending computation
from the edge to the cloud: once the computational device
is chosen, the entity must be processed there.

This framework is flexible enough to support any dataflow
application where data does not need to travel between tiers. It
can also support many optimization parameters. For example,
the average latency can be determined by examining how long
it takes entities to travel through the system, and monetary
costs can be associated with the computational resources
(to simulate cloud computation costs, for instance). After
exposing the constraints for the application, the parameters can
be optimized using the DIRECT algorithm, described next.

1) DIRECT Optimization: The DIRECT algorithm [19] is
a modification to the Lipschitzian optimization algorithm [20].
It solves the optimization problems using sampling, which is
useful when the objective function is opaque. It is guaranteed
to converge to the optimal solution, although it might come at
the cost of an exhaustive search in the worst case.

A function is Lipschitz continuous on R1 if the following
holds: Let M ⊂ R1 and f: M ⇒ R. The function f is called
Lipschitz continuous on M with Lipschitz constant α if

|f(x)− f(x′)| ≤ α|x− x′|∀x, x′ ∈M (1)

Shubert’s algorithm uses this property to find the minimum
of an objective function f(x) with Lipschitz constant α. It
divides the domain into regions and estimates each region’s
minimum f value using the Lipschitz constant: the slope of the
function will never be greater than α. It then narrows its search
where the estimated function value is lowest and continues
until the actual minimum value is found [19].

Fig. 4: Diagram of Simulation Example

Unfortunately this has a few drawbacks, both of which
are addressed by the DIRECT algorithm. The first is that
the endpoints of the regions discussed do not generalize well
into higher dimensional space. DIRECT instead samples the
midpoints of search regions, which do generalize to higher
dimensions. The second issue is that it is not guaranteed
that these problems are Lipschitz continuous. Even if they
are, a poor choice of the Lipschitz constant can lead to
poor optimization time. DIRECT addresses this by ‘using all
possible values to determine if a region of the domain should
be broken into sub-regions during the current iteration’ [19],
which does not require Lipschitz continuity. While it implies
using more values, it can cut down on the number of iterations
to complete.

The DIRECT algorithm is implemented in MATLAB and
can interface directly with the system model described in
section III-B1. All the user needs to do is to construct the
appropriate constraints and an optimization function. Once
run on the model, the algorithm outputs the optimal workload
distribution across the edge devices and the cloud. This step
can be done before implementing the application in RIAPS to
a) ensure that the application will work well with the given
resources, and b) find the optimal workflow distribution across
RIAPS resources before implementation.

We created an example network to test the simulation frame-
work, shown in Figure 4. A new Entity is created every other
discrete step. Each of the networks have identical transmission
speeds of 0.2 entities per step in a shared processing queue.
Each network transmits entities to either the scalable cloud
or one of two edge devices. Edge 1 has a processing time
of 1 entity per step while Edge 2 processes 0.5 entities per
step. The Direct optimization algorithm found that a minimum
average processing time of 5.0 steps per entity was obtained
when α1 = 0.5, α2 = 0.3889, and α3 = 0.1111.

IV. HARDWARE IN THE LOOP SIMULATION

In order to test our applications we constructed a hardware
in the loop test bed seen in Figure 5. The testbed is com-
posed of a cluster of Beagle Bone Black(BBB) single board
computers that are networked via routers which allow us to
define a control plane to creating a virtual network. A high
performance computer is also connected that is responsible for
running the simulations.

A. Example: Adaptive Traffic Controller

An adaptive traffic controller considers the current and
predicted traffic density in connected blocks of a neighborhood
and maximizes the net traffic flow. This application requires
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Fig. 5: Hardware Test Bed

streams of raw data from sensors associated with street seg-
ments in real-time, which is then used to estimate traffic
density and make control decisions. Clearly, this application
requires coordination, time synchronization and low-latency
computation among traffic controllers associated with different
intersections.

We developed this example on 4 beagle bone blacks, where
each traffic controller (per intesection) was deployed on a
BBB, which acts as a RIAPS node. The traffic dynamics and
physics were simulated by a game called Cities Skylines [21].

The BBB interfaces with the simulation via UDP messages.
Our hardware testbed allows creation of virtual connections
between nodes. Since the controllers are mapped to intersec-
tions in the simulator we can set the network topology to
restrict communication to neighboring intersections.

We deploy three traffic controller variants. One where the
light switched on a timer, one where switching depends on the
timer and sensed traffic density, and one where the controllers
publish the their sensed density to neighboring intersections.
The algorithms are cumulative. The first switched after some
time period, the second added switching after crossing a
threshold, and the third modified that density value, adding a
portion of neighboring density in anticipation of future traffic.

This test bed allowed us to compare the effectiveness of
the the three variants. Figure 6 compares the densities at each
intersection using each of the controllers. The coordinated con-
troller has a 28% reduction in overall traffic density compared
against the simple traffic timer. This shows that we can indeed
quickly prototype and test alternate control mechanisms in the
framework.

Another useful metric of this test is the time it takes for the
controller to obtain state information from the simulation and
send a command to change the state. Our controller samples
traffic density every 10ms and took on average 6.5ms to query
the game, while the controller runs every second. In the case
where the controller needs to actuate the lights it takes on
average 9ms to send a signal to the game and receive a re-
sponse that the change has occurred. The total time necessary
to respond to a change in the simulated environment in this

Fig. 6: Compare densities at each intersection using the various controllers

Fig. 7: End to end latency for receiving density data from Cities: Skylines,
taking control action and actuating the traffic light.

test bed then is approximately 15.5ms, which is adequate for
controlling traffic.

These tests brought to our attention the need for additional
tools. The hardware-in-the-loop simulation demonstrated that,
indeed traffic performance improves when the lights can
coordinate, but there is a cost in increased message traffic.
How much background wireless congestion will cause this
performance to degrade? This testbed will allow us to deploy
applications and determine the message size and rate needed
for the application to be effective. But it does not allow us
to evaluate the effect of congestion. This is the reason for
working on the network analysis aspect of the framework in
III-A. Additionally in this simulation the traffic data used for
the control logic was provided by the city simulator. In a real
deployment, this information may only be available through
processing of images. Since the BBBs are resource limited
devices this may not be possible on board and the workload
may need to offloaded to other local devices or the cloud. This
is the justification for the workload placement aspect of the
framework in section III-B.

V. CONCLUSIONS

In this work we have presented a framework for the develop-
ment, deployment and testing of Fog applications. It includes
simulation, network analysis and a HIL testbed, all of which
are supported by the RIAPS platform. As the applications
are further developed the framework will continue to provide
feedback on the correctness of the applications designed with
it.
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