
International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

91

A Study of Software Architecture and Comparative Performance
Analysis for an EJB-Based Flexible Enterprise Application

Framework

Yonghwan Lee
1

Department of Electronic Engineering and Computer Science, School of Engineering
Vanderbilt University, Nashville, TN 37232 USA

ylee@isis.vanderbilt.edu

Dugki Min
School of Computer Science and Engineering, Konkuk University, Hwayang-dong,

Kwangjin-gu, Seoul, 133-701, Korea
dkmin@konkuk.ac.kr

Junaid Ahsenali Chaudhry, Seungkyu Park
Graduate School of Information and Communication, Ajou University,

Woncheon-dong, Paldal-gu, Suwon, 443-749, Korea
{Junaid, sparky} @ajou.ac.kr

Abstract

We observe that the e-business systems development frameworks tradeoff performance at

the expense of flexibility. In this paper, we present a performance comparison of JavaBeans

application framework with a well-known framework, Struts. JavaBeans is a flexible and

extensible CBD application framework. However the flexibility and extensibility are

conflicting software qualities against the performance. Our experiment results show the

significance of JavaBeans application framework over contemporary CBD application

frameworks and how much its performance is affected by changing schemes of the framework

for achieving flexibility and extensibility.

1. Introduction

The World Wide Web (WWW) contents are being updated extensively everyday. One of

the major goals of complex and changeable e-business projects is to develop e-business

applications fast and effectively, which not only satisfy given functional requirements, but

also handle frequent changes of their requirements [1, 2]. In this fast changing environment,

the most desired characteristics among e-business applications are less complexity and highly

flexibility. For this purpose, many e-business development projects employ very flexible and

extensible application frameworks that produce high development productivity with high

software qualities such as a performance [15, 16].

An application framework is a semi-application [3, 4] of which some parts may be changed

or reused. There are four popular web application frameworks, Velocity [9], Struts [10],

Spring [11], and Hibernate [12]. The Velocity is a framework for rendering data in the

1
 This research was funded in part by the Team for Research in Ubiquitous Secure Technologies (TRUST) NSF

CCF-0424422, and NSF S&T Center

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

92

presentation tier. The Struts is an extensible web application framework designed in the MVC

architecture pattern [13, 14]. It is also a presentation-tier framework, but does not cover the

business logic tier. The Spring is mainly responsible for managing objects in business logic

tier. It uses a layered architecture pattern and is good for test-based projects. The Spring

provides infrastructure services required in application development. The Hibernate is a

framework for mapping an object with its relation table. It provides association, composition,

inheritance, and polymorphism relationships. In addition, it provides powerful query

described by the Hibernate query language. However these four frameworks intend to a

specific target tier and also do not provide systematic integration through all of the tiers.

Moreover in order to cope with frequent changes of the functional and quality requirements,

semi-application frameworks need to solve some of design issues, such as flexibility,

extensibility, dynamic reconfiguration and management of various resources [5, 6, 7]. To

address those problems, we have proposed a flexible and extensible CBD application

framework, called JBean [8]. JBean has been used a number of large Korean e-business

projects with its high productivity and maintainability.

In this paper, we present the performance comparison of JBean application framework

with a well-known framework, Struts. Flexibility and performance are two software qualities

that general CBD application frameworks intend to achieve, but in trade-off. In other words,

if we try to put emphasis on a flexible software quality without considering a performance

software quality, the software can be dynamically changed but it can’t be used since it has too

low performance. So when we develop an EJB-based flexible distributed system, we have to

consider how to achieve the balance of two conflicting software qualities such as a flexibility

and performance. In this paper, we show two kinds of performance experiment results. First is

the significance of JBean framework over contemporary CBD application framework. Second

is how much its performance is affected by changing schemes of the framework for

achieving flexibility and extensibility.

The remainder of this paper is organized as follows. In section 2, we present the overall

architecture of JBean framework. Section 3 explains the flexibility aspects of the framework

and section 4 shows the experimental results of analyzing performance of the JBean

framework with the Struts. In section 5 conclude the paper.

2. Software Architecture of JBean Framework

Figure 1 shows the overall architecture of JBean framework, proposed in [8]. The

framework architecture is composed of three major subsystems: Presentation Tier, Business

Tier, and Admin Console. The Presentation Tier accepts requests through client browsers,

processes session management, security, and data translation, and transfers the requests to

EJB-module that contains business logics. The Business Tier contains business logics to

process the requests from the Presentation Tier with the help of EJB-module. The Admin

Console has the development tool and management tool.

In the Presentation Tier, the FrontServlet keeps a number of servlets, and proceeds client

requests according to the requesting URL pattern, such as *.page, *.do, *.admin, *.login, etc.

As for a *.do URL pattern, the FrontServlet makes the EJB Servlet process a business logic.

As for a *.page URL pattern, it makes the PageServlet process a UI task according to the page

construction information, which is organized by the Admin Console. The Action Processor is

in charge of processing action objects plugged into the framework. The action object is

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

93

generated from the framework after a developer develops an action class according to the

hook method defined by the framework for processing business logic of the presentation tier.

In the Business Tier, the EJBDelegator communicates with EJBs for clients’ sake. The

transmitted communication information and invocation information are set in the Admin

Console, because the Admin Console contains all the information and parameters classified.

The FaçadeDelegator is the entry point for the requests from the presentation tier. Its major

responsibility is to call the façade bean for invoking an EJB component containing

appropriate business logic. The FaçadeDelegator also performs general-purpose tasks, such as

exception handling and logging, which is independent of a specific subsystem. The

FaçadeBean provides interface that can be used outside of the Business Tier to invoke the

JobBean that has the actual business logic. The CMP/DAO processes the relational database

tasks.

Figure 1. the Overall Software Architecture of JBean Framework

The Admin Console is a subsystem that is in charge of managing source codes and various

parameters according to the concerned task unit. When a client request arrives into the

Presentation Tier, the FrontSevlet in the Presentation Tier parses the client request and makes

the Admin Console process the client request according to the client URL patterns. The client

URL has a category information classified by the Admin Console and a URL pattern. For

example, when a client requests http://localhost/aaa.bbb.do , which is a *.do URL pattern, the

Admin Console develops the bbb node under the aaa node in a tree form and provides the

related source code to perform the task in that node. In other word, the Admin Console

categories tasks in a tree form, provides the related source code (DTO, Action, EJB code,

etc.) to the task, edits them, compiles them, packages them, distributes them, and tests them

via a tool. The Admin Console also manages setting information that is necessary for each

task.

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

94

3. Achieving the Flexibility

Among a number of software architectural qualities, our framework provides a good

flexibility in many aspects. In this section, we explain the flexibility aspect of our framework.

3.1 Flexible Control

The overall software architecture follows the MVC pattern in all of the Business Tier, the

Presentation Tier, and the Admin Console. Figure 2 shows the control flow among MVC’s

model, view, and controller by using the Admin Console. The EJB Bean acts as a MVC’s

model role by containing business logics. The FrontServlet is in charge of flow control for the

PageServlet to assemble JSP pages according to the Composite Pattern. The Admin Console

has all the setting values for this flow control and page decision in the hierarchical form of

task nodes and the next URL properties. If the next URL pattern is in *.page form, the control

moves to WebPage Servlet after processing the business logic. If the next URL pattern is in

*.do form, the control moves to the EJB Servlet with a different URL by means of

redirection. Since the Admin Console has the setting values and parameters to control the

flow, it gives a flexible control flow via a MVC’s model and view.

Figure 2. Flexible Control of MVC’s Flow by Using the Admin Console

3.2 Flexible Maintenance

In order to maintain the framework, it is necessary to update, compile, package, distribute,

and test source codes and setting parameters without stopping the server. Figure 3 shows the

structure of flexible maintenance by choosing the related components in the framework. The

user can update the setting parameters and source codes through the Admin Console. If there

are any changes in setting of the Admin Console, the information in the XML Repository is

changed accordingly by the Configuration Manager and the information in memory is

changed by the XML Controller. These changes dynamically affect the processing because

the Front Servlet, Action Processor, and EJB Delegator retrieve the related information from

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

95

the Configuration Manager. Thus, without stopping the server, we are able to test the source

codes that are added by developer during operation, which are generally the codes for action,

DTO, EJBs, etc. Those kinds of codes are compiled and added into the Object Pool with the

help of the Pool Manager.

Figure 3. Flexible Maintenance of Source Codes and Configuration by using

Configuration Manager and Admin Console

3.3 Decoupling between GUIs and Business Logics

There might be always changes in the GUI level. By decoupling between the GUIs of the

Presentation Tier and business logics of the Business Tier, the changes of the GUI level do

not affect the EJBs of business logics. In order to minimize the affection, we separate a

Custom DTO from a Domain DTO. The Custom DTO generally contains data to transfer to

Presentation Tier and the Domain DTO has EJB business logics. This separation can

minimize the affection of GUI changes and it can yield the high flexibility of EJB-based

enterprise application framework.

3.4 Separate Development of the Presentation and the Business Logics

Our framework is designed to have minimized coupling between the Presentation Tier and

the Business Tier so that the development of business logics can be fully separated from the

presentation parts. As shown in Figure 4, the Presentation Tier is dependent on the Business

Tier only by message invocations from the EJBDelegator to the Façade Delegator. By hiding

all EJBs and providing only the interfaces of Façade Delegator, those two tiers are minimally

related. When transmitting data to the FaçadeDelegator, the Event Object is used to carry

data. In the Event Object, there are a number of contents. The request DTO is the data

required when business logics in EJB are processed. The response DTO is returned after

processing business logics in EJB. The common DTO has the data that is repeatedly needed

in every request. The EJB Identifier is a unique string. The Façade Delegator uses the string

in order to find the interface’s public method of the Façade Bean. We can separately develop

and test both the Presentation Tier and the Business Logic Tier by using the Event Object.

Moreover, when you want to use a commercial product instead of the proposed JBean

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

96

framework for the Presentation Tier, all that we have to do is just adding the EJB Delegator in

order to invoke the Façade Delegator. That is one of the strong points of our framework.

Figure 4. Decrease Dependency between the Presentation and the Business Tier
by using an Event Object

3.5 Flexible Changes of Business Logic Interfaces

The interface of business logic in the Job Bean is hidden to outside of the Business Tier, so

that the effect of any change can be minimized. We use the Façade Pattern, and have the

interface of the Façade Bean be the multi-grained interface as shown in Figure 1. Thus, any

changes in the interface of Job Bean do not affect client levels that invoke.

4. Comparative Performance Analysis

In Figure 5, we show the experimental environment for performance analysis. We use the

Microsoft 2003 server for operating system, WebLogic 6.1 with SP 7 for web application

server, Oracle 9i for relational database. For load generation, WebBench 5.0 tool is employed.

Each job has no business logic code in order to measure the maximum throughput. TPS

(Transactions per Seconds) and execution time are used for the metric of performance

analysis.

Figure 5. Experimental Environment for Performance Analysis

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

97

Table.1 shows the workload configuration for performance comparison. The performance

experiment basically uses the workload template which Web-Bench 5.0 has used for testing

CGI applications for e-commerce. We analyze transactional log files at the real banking sites

and assign the weight of DB-related CRUD (Create, Read, Update, Delete) to 3 applications

(except for the application ‘log-in’). By analyzing transactional log files, we give the Read-

based Application much more weight. Each Customer Action in presentation tier and Job in

the business tier have no business logic code in order to measure the maximum throughput of

the JBean Framework itself. The performance experiment also uses the emp table which is

provided by Oracle 9i.

Table 1. Workload for Performance Comparison

Index
Application

Name
URL Weight

1 Log-In GET /login.do 3%

2 Emp List
GET

/emp.list.do
70%

3 Emp Insert
GET

/emp.insert.do
10%

4 Emp Update
GET

/emp.update.do
17%

In Figure 6, we show the request execution processes of four target architectures. The first

two of them are variant architectures of the JBean, the third is of the Struts framework, and

the last is a plain web server without using an application framework (i.e., a normal JSP). The

first two JBean frameworks are different in the key components whether the PS exists or not.

The variant of JBean is WebPageServlet, called PS. The PS is employed to generate the

returning page easily and efficiently. Thus, in this paper, four target architectures are cases of

‘No framework’, ‘Struts’, ‘JBean with PS’ and, ‘No PS in JBean’ respectively. As the Struts

framework does not provide WebPageServlet, the fourth experimental target is considered for

fairness.

Figure 6. Four Possible Target Architectures for Performance Comparison with the
Struts Framework

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

98

In Figure 7 (a), we show performance comparison of four target architectures and load

analysis of main components of the framework. The first target architecture, called ‘No

Framework’ shows 315 TPS in maximum. The second one of ‘Strut’s Action+ EJB’ shows

280 TPS in maximum. The third one of ‘JBean’ shows 221 TPS in maximum. The fourth one

of ‘No JBean’s PS’ shows 253 TPS in maximum. The performance difference between the

second and the third is 59 TPS, but difference between the second and the fourth is 32 TPS.

Load analysis of main component in Figure 7 (b) explains the reason of performance

difference between the JBean and the Struts frameworks. The JBean framework has

additional processing steps as shown in Figure 3, which the Struts framework does not have.

As shown in Figure 7 (b), they take additional time. Among them, WebPageServlet and

object serialization for FD Invocation require more execution time.

Figure 7. Four Target Architecture’s Performance Comparison and Load Analysis
with the Struts Framework

The Struts has just only presentation-based framework and has no business logic

framework. However, JBean framework has both presentation and business logic framework.

For fairness performance experiment, we must compare two frameworks in only presentation

tier. So, In Figure 8, we show the performance comparison of JBean and Struts in

presentation tier only, without EJB business logic tier.

Figure 8. Performance Comparisons of JBean and Struts in Web Tier

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

99

The Struts framework can process more transactions than the JBean framework with PS.

However, the JBean framework without PS can process 18 more transactions per seconds

than the Struts framework. The JBean framework spends much time for processing

WebPageServlet, while the Struts framework spends time in locale processing for multi-

languages.

In JBean framework, when the Façade Delegator receives the request message from the

presentation tier, it needs to select one of multiple Façade Beans of each subsystem and

invokes it. Because there is 1: M relation between the Façade Delegator and the Façade Bean,

the Façade Delegator can use one of four schemes of Figure 9 (a) to invoke the Façade Bean.

Figure 9. Four Schemes for Invoking the Façade Bean and Performance
Comparison of Four Schemes

The first scheme is that the FaçadeDelegator uses the EJBMetaData and a reflection

scheme without caching the reference of the EJBObject. The second scheme seems to be

similar to the first. However, it is different from the first in that it uses the cashed reference of

the EJBObject. The third scheme uses a callback method. The FaçadeDelegator refers the

caller object with the callback method and calls the method. The callback method uses the

EJBMetaData and a reflection scheme without using the cached reference of the EJBObject.

The fourth scheme seems to be similar to the third. However, it does not use the cached

reference of EJBObject. In Figure 9 (b), we show the performance comparison of four

schemes.

In view of performance, the second and the fourth can process the more transaction per

second than the first and the third. The reason is that they use the cached reference of the

EJBObject. However, whenever the Façade Bean is newly created and updated, the second

and the third need to restart the application server to refresh the cached reference. So, in view

of flexibility, the first and third have much more flexibility than the second and the fourth.

Although both schemes use the cached reference of the EJBObject, the callback scheme can

process slight more transactions than the reflection. However, the callback scheme needs the

additional code of development of the caller object and that of deployment to the object pool.

In JBean framework, the quality manager can configure one of four schemes in the Admin

Console per each task. As the first and the third has the higher flexibility than the second and

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

100

the fourth, the first and third can generally be used during the development of EJB

components and the second and the fourth can be used for high performance during service.

JBean framework uses the mechanism of object pool for improving performance and

flexibility. The Action, DTO, EJB Delegator and Caller object are developed in the Admin

Console and deployed to the object pool. Although they are frequently updated, application

server does not need to be restarted for refreshing them. In Figure 10 (a), we show the

performance comparison of existence and non-existence of object pool. The object pool

scheme for the Action and DTO object can process 139 transactions per seconds than no

object pool scheme. In Figure 10 (b), we show load comparison of the main module with and

without object pool. Because the Action Processor is responsible for creating the Action and

DTO, it has the heavier load than any other main module of the framework.

Figure 10. Performance Comparison of Existence and Nonexistence of Object
Pool and Load Analysis of Object Pooling

The JBean framework provides presentation tier framework and additional business tier

framework in comparison with Struts framework. So, component-based development projects

can easily build applications without complexly mixing up application frameworks per each

tier. Moreover, JBean framework has the additional the WebPageServlet that process each UI

task according to the page construction information, which is organized by the Admin

Console. Even if the JBean framework has additional processing steps, such as the

WebPageServlet in presentation tier, the difference of performance between JBean and Struts

framework is slight. The JBean framework without the WebPageServlet can process 18 more

transactions per seconds than the Struts framework. In analyzing the performance of the

JBean framework, we show how much its performance is affected by changing schemes (i.e.,

object pooling and EJB invocation method) of the framework for achieving flexibility.

Moreover, because JBean framework categories tasks in a tree form in the Admin Console,

the framework can change dynamically the schemes that must be considered when handling

conflicting qualities, such as performance and flexibility.

5. Conclusion

Many e-business development projects employ very flexible and extensible application

frameworks that produce high development productivity with high software quality. In this

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

101

purpose, we have proposed an flexible and extensible CBD application framework, called

JBean. To balance flexibility and performance qualities, which are in trade-off, many CBD

application projects need to analyze the performance of the employed CBD application

framework. In this paper, we show the performance comparison of JBean framework with a

well-known framework, Struts. JBean framework provides presentation tier framework and

additional business tier framework in comparison with Struts framework. So, component-

based development projects can easily build applications without complexly mixing up

application frameworks per each tier. The JBean framework without PS can process 18 more

transactions per seconds than the Struts framework. The JBean framework spends much time

for processing WebPageServlet, while the Struts framework spends time in locale processing

for multi-languages. When the Façade Delegator invokes the Façade Bean, there are four

schemes in JBean framework. The callback scheme is slight better than the reflection scheme.

In analyzing the performance of JBean framework, we show how much its performance is

affected by changing schemes (i.e., object pooling and EJB invocation method) of the

framework for achieving flexibility. Although flexibility and performance is qualities in

trade-off, the object pool scheme has many advantages for both flexibility and performance.

Moreover, because JBean framework categories tasks in a tree form in the Admin Console,

the framework has the dynamic changeability of the schemes that must be considered in view

of conflicting qualities, such as performance and flexibility.

References
[1] D. Schwabe and G. Rossi, “An Object-Oriented Approach to Web-Based Application Design,” Theory and
Practice of Object Systems (TAPOS), special issue on the Internet, vol. 4, no. 4, 1998, pp. 207-225.

[2] Sencan Sengul, James W, Gish, James F. Tremlett, Building a Service Provisioning System Using The
Enterprise Java Bean Framework, IEEE, 2000.

[3] D.C. Luckham, J. Vera and S. Meldal, Key Concepts in Architecture Definition Language, in Foundations of
Component-Based System, Ed. Gary T, Leavens and Murali Sitaraman, Cambridge University Press 2000.

[4] M. Fayad, D, Schemidt, and R. Johnson, eds., Building Application Framework, Wiley & Sons, New York,
1999.

[5] J. Kramer and J. Magee, Analyzing dynamic change in distributed software architectures, IEE Proceedings-
Software, 145(5), Oct. 1998.

[6] D.M. Heimbigner and A.L. Wolf. Post-Deployment Configuration Management. In Proceedings of the Sixth
International Workshop on Software Configuration Management, number 1167 in Lecture Notes in Computer
Science, pages 272–276. Springer-Verlag, 1996.

[7] Fumihiko Kitayama, Shin-ichi Hirose, Goh Kondoh, Design of a Framework for dynamic Content Adaptation
to Web-Enabled Terminals and Enterprise Applications, IEEE, 1999.

[8] Yonghwan Lee, Eunmi Choi, Dugki Min, A CBD Application Integration Framework for high Productivity
and Maintainability, ICCSA 2005, pp. 858-867, 2005.

[9] Velocity, Velocity Framework, http://jakarta.apache.org/velocity/.

[10] Apache, Struts Framework, http://jakarta.apache.org/struts/index.html.

[11] Spring Framework, http://www.springframework.org/.

[12] HiberNate Framework, http://www.hibernate.org.

[13] D. Le Metayer, Describing Software Architecture Styles Using Graph Grammars, IEEE Transactions on
Software Engineering, 24(7):521-533, July 1998.

[14] E. Gamma, R. Helm, R Johnson, J. Vlissides, “Design Patterns: Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1995.

[15] Romi S. Wahono, Jingde Cheng: Extensible Requirements Patterns of Web Application for Efficient Web
Application Development. CW 2002: 412-418

[16]Oktay Altunergil, “ Easing Web Application Development with CVS” , O’ Reilly Network, 2002.

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

102

Authors

Name: Yonghwan Lee

Address: Department of Electronic Engineering and Computer Science,

School of Engineering Vanderbilt University, Nashville, TN 37232 USA

Education & Work experience: Yonghwan Lee a Research Scientist in

Department of Electronic Engineering and Computer Science, School of

Engineering Vanderbilt University in USA. His current research

interests include Model Integrated Computing, Component-Base

Development, Software Architecture Design, Application Frameworks,

and Web Service Middleware. He received the degree in public

administration from Konkuk University, Korea in 1997. He received the

Master and Ph.D. degrees in computer science from Konkuk University,

Korea in 1999 and 2006.

Name: Dugki Min

Address: School of Computer Science and Engineering, Konkuk

University, Hwayang-dong, Kwangjin-gu, Seoul, 133-701, Korea

Education & Work experience: Dugki Min was born in Seoul, Korea, in

1964. He received the degree in industrial engineering from Korea

University, Korea in 1986. He received the Master and Ph.D. degrees in

computer science from Michigan State University, U.S.A., in 1991 and

1995. He is currently an Associative Professor in the School of Computer

Science and Engineering at Konkuk University, Korea, where he has been

since 1995. His current research interests include internet distributed

systems, ubiquitous and web service computing, software architecture

modeling. He is the chair of technical committee in Korean Software

Component Forum, and the vice-president of Korean Modeling

Technology Forum.

Name: Junaid Ahsenali Chaudhry

Address: Graduate School of Information and Communication, Ajou

University, Woncheon-dong, Paldal-gu, Suwon, 443-749, Korea

Education & Work experience: Junaid Ahsenali Chaudhry did his masters

and PhD from Ajou University, Korea and currently based in University

of Trento, Italy as a post doctoral student. His areas of interests include

Autonomic Ubiquitous System Testing, Autonomic Self Healing Engine

(ASHE) Development, Autonomic Service Composition vs.

connectionless handover in pervasive environments, Performance

Improvement in Component-Based Systems and distributed computing.

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

103

Name: Seungkyu Park

Address: Graduate School of Information and Communication, Ajou

University, Woncheon-dong, Paldal-gu, Suwon, 443-749, Korea

Education & Work experience: Professor Park Seoungkyu heads the

Multimedia and Computer Architecutre (CeMulti) Lab in the department

of information and communication of Ajou University. His area of

interest include Testing Embedded Systems, VOD media streams, Large

Scale Network Simulations for Cyber Attacks, Advanced Computer

Architectures.

International Journal of Software Engineering and Its Application

Vol. 2, No. 1, January, 2008

104

