Towards A QoS Modeling and Modularization Framework for
Component-based Systems

Sumant Tambe, Akshay Dabholkar, Aniruddha Gokhale, Amogh Kavimandan
Department of EECS, Vanderbilt University, Nashville, TN, USA
{sutambe, aky, gokhale, amoghk } @dre.vanderbilt.edu

Abstract

Current domain-specific modeling (DSM) frameworks
for designing component-based systems provide modeling
support for system’s structural as well as non-functional
or quality of service (QoS) concerns. However, the focus
of such frameworks on system’s non-functional concerns is
an after-thought and their support is at best adhoc. Fur-
ther, such frameworks lack strong decoupling between the
modeling of the system’s structural composition and their
QoS requirements. This lack of QoS modularization limits
(1) reusability of such frameworks, (2) ease of their mainte-
nance when new non-functional characteristics are added,
and (3) independent evolution of the modeling frameworks
along both the structural and non-functional dimensions.

This paper describes Component QoS Modeling Lan-
guage (CQOML), which is a reusable, extensible, and
platform-independent QoS modeling language that pro-
vides strong separation between the structural and non-
functional dimensions. COML supports independent evolu-
tion of structural metamodel of composition modeling lan-
guages as well as QoS metamodel. To evaluate, we superim-
pose COML on a purely structural modeling language and
automatically generate, configure, and deploy component-
based fault-monitoring infrastructure using aspect-oriented
modeling (AOM) techniques.

1 Introduction

Recent advances in domain-specific modeling
(DSM) [14] have resulted in DSM tool suites for de-
signing large, component-based software systems with
multiple quality of service (QoS) requirements, such as
predictable latencies, fault-tolerance and security. Re-
cent successes with DSM tools in this area include the
Embedded Systems Modeling Language (ESML) [9] for
avionics mission computing, SysWeaver [5] for embedded
systems, and our earlier work on the Platform Independent
Component Modeling Language (PICML) [2] for a range
of distributed, real-time systems. These DSM tools pro-

vide support for component-based software engineering
(CBSE) [3] wherein systems can be modeled by compos-
ing multiple different components, each encapsulating a
reusable unit of functionality.

Despite the number of benefits of these DSM tools and
techniques, however, designing operational QoS-intensive
systems remains a significantly hard problem due to mul-
tiple crosscutting non-functional characteristics (i.e., the
secondary concerns) that must be satisfied simultaneously
along with system’s functional composition (i.e., primary)
concern.

As an example of a non-functional requirement that af-
fects system’s structural dimension consider fault-tolerance
requirements, such as various replication styles (active, pas-
sive). Such fault-tolerance requirements may be speci-
fied at several different levels of granularity, such as per-
component basis, across a group of components, and across
nested component groups. Replication is the most widely
used pattern for developing highly available systems, inher-
ently requires additional copies of components that must
be composed with original business components. More-
over, for detecting failures of distributed components live-
ness monitoring infrastructure must be composed parallel
to the business components that are monitored. This illus-
trates the scattering of the fault-tolerance concern across the
system functional composition dimension.

Scattering (crosscutting) of fault-tolerance concerns is
not only observed along the system’s structural concern but
also along other non-functional concerns, such as deploy-
ment. The impact of the fault-tolerance concerns on the de-
ployment concern is also non trivial since the deployment
must now account for the placement of the replicated busi-
ness components, proxy components as well as the place-
ment of the monitoring components to enable timely detec-
tion of failures of business components.

To assist in designing systems where non-functional con-
cerns crosscut with structural concerns, DSM tools must
provide strong decoupling between system’s structural con-
cerns, deployment concerns, and non-functional concerns
and combine them when the final system is realized. Such

decoupling should not only provide different views for dif-
ferent concern models but should also enable evolution of
the modeling capabilities of each view independently. Evo-
lution of the modeling capabilities of a concern view often
requires enhancements to the meta-model of the view. Sup-
porting independent evolution of meta-models of each con-
cern view shortens the development lifecycle by allowing
parallel enhancements to the modeling capabilities (i.e., the
meta-model) and models pertaining to the view.

Moreover, platform-independent notion of QoS require-
ments is largely independent of the structural capabilities
of the chosen implementation platform. For example, the
CORBA Component Model [12] (CCM) is considered to
be a richer component model compared to Enterprise Java
Beans (EJB) as the former borrows several concepts from
the latter and adds its own, such as a wider variety of
component types, a notion of assembly, required and pro-
vided interfaces using ports, and event-based communica-
tion. This structural variability is clearly visible in plat-
form specific modeling tools. However, such variability in
the structural capabilities of the contemporary component
platforms need not prevent their corresponding DSM tools
from having a platform-independent modeling support for
QoS such as fault-tolerance, timeliness, authentication and
authorization and network level QoS. All of which have lit-
tle or no bearing on the structural capabilities of the plat-
form. However, contemporary DSM tools are based on ad-
hoc designs of meta-models for modeling QoS, which cou-
ple them tightly with structural capabilities, prevent their
reuse in other component platforms and limits extensibility.
Moreover, QoS and structural modeling capabilities (meta-
models) are hard to evolve independently of each other.

This paper describes our solution to address these limita-
tions of DSM design tools for CBSE. We describe Compo-
nent QoS Modeling Language (CQML), which is a reusable
and platform-independent framework developed using the
Generic Modeling Environment (GME) [10]. CQML is de-
signed to superimpose on a wide range of system structural
composition modeling languages as long as they conform
to a small set of invariant properties defined by CQML.

CQML has an extensible QoS modeling framework that
allows declarative QoS requirements to be associated with
structural component models. In this paper we demonstrate
how QoS modeling capabilities can be superimposed on a
purely structural modeling language. Moreover, we show
how CQMVL’s fault-tolerance modeling capabilities can be
used to automatically generate runtime fault monitoring in-
frastructure using the structural modeling capabilities of the
underlying language.

The remainder of this paper is organized as follows: Sec-
tion 2 describes extensible QoS modeling capabilities of
CQML; Section 3 evaluates the capabilities of CQML; Sec-
tion 4 describes related research; and Section 5 concludes

the paper.

2 Solution: Extensible QoS Modeling Using
CQML

In this section we describe the design of the Com-
ponent QoS Modeling Language (CQML), which is a
platform-independent, QoS modeling framework that al-
lows component-based system developers and designers
to express QoS design intent at different levels of gran-
ularity using intuitive visual representations. CQML has
been developed using the Generic Modeling Environment
(GME) [10] toolkit. CQML is capable of separating sys-
tem’s QoS concerns from the primary concern: structural
composition. It also supports QoS modeling for a mul-
titude of component-based platforms because CQML de-
pends only on the commonalities present across them. Fig-
ure 1 shows the process of using CQML. We now describe
how CQML uses this process to resolve the challenges de-
scribed in the previous section.

System Modeling &
QoS Annotation

Base Language
Language

Composition

,_C‘l 4—»’_02

56]

—
Declarative (B}

Aspects
Components

Meta
Interpretation

I
|

Meta-
Programmable
Environment

Step 1 Step 2 Step 3

Figure 1: Process Model for Reusing CQML for QoS Mod-
ularization and Weaving

2.1 Identifying Invariant Properties of Component-
based Structural Modeling Languages

Our focus is on general component-based systems,
which are composed using multiple components orches-
trated to form application workflows. Contemporary com-
ponent models often have first class support for primitives,
such as components, connectors, and methods. The struc-
tural artifacts of a component-based system can be realized
using these primitives in a language specifically designed
for modeling system structure.

Since CQML is aimed specifically at modularizing
non-functional concerns of component-based systems in
a platform-independent manner, CQML requires an un-
derlying base composition modeling language that al-
lows construction and manipulation of platform-specific
structural models. Many platform-specific as well as
platform-independent component structural modeling lan-
guages, such as Embedded Systems Modeling Lan-
guage(ESML) [9] for embedded systems, J2EEML [17]

for Enterprise Java Beans, and Platform Independent Com-
ponent Modeling Language (PICML) [2] for Light-weight
CORBA Component Model [12] (LwWCCM) exist today that
capture various composition semantics. In this paper we
have focused on languages developed using GME since
CQML is also developed using GME. However, the con-
cepts behind CQML can be applied in other tool environ-
ments.

. Inclusive OR
—@ Mandatory Feature
—(O Optional Feature

System Composition
Modeling Language

Remote
Method

Component | | Connection

Port Assembly

‘ Input Port ‘

Output Port ‘

Figure 2: A Feature Model of Composition Modeling Lan-
guage

We refer to such a structural modeling language as sys-
tem composition modeling language or base language in
short. We formalize the features of a base language in a
feature model [4] shown in Figure 2. CQML is designed
taking into account the mandatory and optional features
present in such languages. The base language should have
first class modeling support for components, connectors,
and remotely invocable methods at the minimum. ESML,
J2EEML, and PICML support all the mandatory entities
mentioned in Figure 2 and therefore these languages can
play the role of a base language for CQML as shown in step
(1) in Figure 1. In step (2), meta-modeling composition
techniques are used to “mix-in” the metamodel of CQML
with that of the base composition modeling language with-
out affecting the syntax and semantics of the structural mod-
eling language. In step (3), the composed meta-model is
used to create the instances of the composition modeling
language, which has enhanced QoS modeling capabilities
due to CQML.

2.2 Extensible Design of CQML

Based on the feature model of component-based model-
ing languages, CQML builds an extensible QoS modeling
layer. CQML has an ability to associate declarative QoS
characteristics to one or more of the invariant properties of
the underlying base language. We have designed several
declarative QoS characteristics that are applicable to a gen-
eral class of component-based systems. We have developed
(1) FailOverUnit [16], which modularizes fault-tolerance
requirements of one or more components and assemblies,
(2) PortSecurityQoS, which modularizes security aspects
of port based communication, (3) NetworkQoS [1], which
modularizes network level QoS requirements while invok-
ing remote methods. Some examples of the above concrete

QoS characteristics are shown in Figure 3. A FailOverUnit
is used to annotate component A as a fault-tolerant compo-
nent. For connections between component B and C, net-
work level QoS attributes (e.g., priority of communication
traffic) are associated using NetworkQoS modeling element.
In this paper, we do not explain the semantics of all the
above concrete QoS characteristics in detail, however, in-
terested readers are encouraged to read [1] and [16] to
read more on NetworkQoS and FailOverUnit modeling re-
spectively.

aan_av out_al

= .« datal datao "
‘ Component A Component B

FailOverUnit
- 2 Replicas “ 3—

PortSecurityQoS NetworkQoS °§2.“t§*. ‘_
- Role Based Access -- High Priority -

Control Policies Network

Traffic Component C
LEGEND
I:“‘ l Connection QoS associations
T (Green Line) (Blue lines)
Component

Figure 3: Declarative QoS Modeling Capability of CQML

To support evolution of QoS metamodel without affect-
ing the structural metamodel, CQML defines a set of ab-
stract QoS elements: Component-QoS, Connection-QoS,
Port-QoS, Assembly-QoS and Method-QoS. As the name
suggests, each abstract QoS element is associated with its
corresponding element from the base language. For ex-
ample, abstract Component-QoS can be associated with a
Component in the base language. Moreover, all the concrete
QoS models (e.g., FailOverUnit) must be derived from one
or more abstract QoS types as shown in Figure 4.

C 11QoS A blyQoS PortQoS ConnectionQoS| Abstract
QoS

Elements

ﬁl lﬁ in caQML

Inheritance

)

I I
CQML::FailOverUnit| |CQML::SecurityQoS | |CQML::NetworkQoS ConcreteJ

QoS
Elements

Figure 4: Simplified Meta Model of CQML

CQML can be extended with new concrete declarative
QoS modeling capabilities by inheriting from the basic set
of abstract QoS elements. To enhance CQML with a con-
crete QoS characteristic, a language designer has to ex-
tend the metamodel of CQML at the well-defined points

of extension represented by the five abstract QoS elements.
The concrete QoS elements simply derive from the abstract
QoS elements defined in CQML. By doing so the con-
crete modeling entities inherit the abstract syntax, static
semantics, relationships, integrity constraints, and visual-
ization constrains of the abstract QoS entities defined in
the meta-model of CQML. For example, as shown in Fig-
ure 4, FailOverUnit inherits association constraints from
the abstract ComponentQoS and AssemblyQoS. Therefore,
FailOverUnit can be associated with components and as-
semblies only and never with ports or connections.

View separation of QoS elements and structural elements
is achieved by controlling the visibility of concrete QoS
modeling elements using visualization constraints defined
on abstract QoS elements. CQML defines visibility con-
straints on them such that they project QoS concerns in the
QoS view of GME model editor, which is different from
the view where structural concerns are edited and manipu-
lated. All the concrete QoS elements inherit association and
visualization constraints from one or more abstract QoS el-
ements defined by CQML as shown in Figure 4.

Along with the basic five abstract QoS elements, these
visualization and association constraints constitute the
generic QoS modeling framework of CQML. Although de-
signing a new language construct — in this case a new QoS
characteristic — is an extremely thoughtful process, a signif-
icant portion of design decisions are already taken for the
language designer in the generic QoS modeling framework
of CQML. The reuse promoted by CQML design and its
generic QoS entities thus lends itself to easier component-
based systems modeling enhancements. It prevents rein-
vention of previously designed artifacts for every new QoS
concern that is added.

3 Evaluation

Rationale. An important responsibility of a fault-tolerant
system is to monitor the running system for faults and when
faults are detected they must be reported to higher level
components so that appropriate recovery procedure can be
initiated. Developers of fault-tolerant DRE systems must
also reason about how the monitoring subsystem will be
deployed and configured so that failure of business compo-
nents can be detected and reported in a timely and reliable
way. This additional responsibility of designing, deploying,
and configuring monitoring subsystem delays developers’
main task of developing business logic. Therefore, an auto-
mated support for generating, deploying, configuring live-
ness monitoring infrastructure is highly desirable.

Methodology. To demonstrate the capabilities of CQML,
in this section we present an AOM solution to automatically
generate, deploy, and configure liveness monitoring infras-
tructure for fault-tolerant component-based systems from
their requirements. We use CQML’s FailOverUnit model-

ing capability to capture fault-tolerance requirements of one
or more components. In this paper, we use it as a way of
annotating a group of components for which runtime moni-
toring infrastructure should be generated.

Our solution uses Constraint Specification Aspect
Weaver (C-SAW) [15], which is a generalized model-
to-model transformation engine for manipulating domain-
specific models, which is implemented as a plug-in for the
Generic Modeling Environment. It can also be used to in-
strument structural changes within the model according to
some higher-level requirement that represents a crosscutting
concern. We used PICML as our base structural modeling
language and we composed CQML’s QoS meta-model with
the structural meta-model of PICML.

CQML + PICML N
@ ~ =—defines— — — -defines— 1

FailOverUnit

Generated

ECL Specification for
~ . Components

CQML+PICML Input Model with

o
Fault-tolerance Requirements Monitoring

Inrastructure

Purely Structural Qutput Model
with Menitoring Components

XML-based Metadata |<Deployment> @ v lL
for Deployment, <Instance> ... <fnstance> odeling
¢ <C ion> ... </C: i <

Assembling, and Tools

</D:

LEGEND

Collocated Components
Business Components (Heart-beat and Gomponent A) Fault Detector

Figure 5: Automatic Weaving of Monitoring Components
Using Embedded Constraint Language Specification

As shown in Figure 5, we have developed model trans-
formation specifications for CQML models using C-SAW’s
input language: Embedded Constraint Language (ECL).
These specifications transform CQML models (shown by
(1) in Figure 5) with FailOverUnit into structural models
(shown by (2) in Figure 5) containing monitoring compo-
nents, their interconnections, and their deployment informa-
tion. The model-to-model transformation bridges the gap
between the higher-level fault-tolerance requirements cap-
tured using FailOverUnit and lower-level structural mod-
els used by existing modeling tools, such as deployment,
configuration and packaging tools that generate platform-
specific metadata based on structural models. Such a trans-
formation requires several steps, including (1) generating
models of monitoring components, (2) generating the nec-
essary interconnections between the instances of monitor-
ing components, and (3) generate deployment and config-
uration models for instances of monitoring components so
that they are deployed along with the business components

when the system is deployed.

Algorithm 1 Transformation Algorithm for Generating
Monitoring Infrastructure

1: M : Systems’s structural model with annotations.

2: D : Deployment model of the system

3: M, : Extended M with monitoring components

4: D, : Deployment model of M,

5: ¢ : A business component

6: S¢ : A set of collocated components such that ¢ € S,
7: HB, : Heartbeat component monitoring ¢

8: F : Fault Detector component.

9: Input: M, D
10: Output: M,, D, (Initially empty)

11: begin

122 M, =M
13: D, =D
14: Sp =0

15: F := New fault detector component

16: M, :=M,UF

17: Sp:=SrUF

18: D, :=D,USF

19: for each component c in M do

20: if a FailOverUnit is associated with ¢

21: let HB, := New heartbeat component for c.
22: M, =M,UHB,

23: let i := New connection from F to HB,.

24: M, =M,Ui

25: letceS.and S. € D

26: Se:=S.UHB,

27: D,:=D,US,

28: endif

29: end for

30: end

The algorithm behind the transformation is shown in Al-
gorithm 1. The transformation accepts system’s structural
model and a deployment model as input and produces an
extended structural model with monitoring components and
an extended deployment model with placement of mon-
itoring components as output. A deployment model can
be viewed as a simple mapping of components to physical
hosts in a system. Components are called collocated com-
ponents when they are hosted in the same process on the
same host. When a process or a host dies, all the compo-
nents hosted in that process/host become unavailable, which
can be detected remotely using monitoring infrastructure.

The algorithm begins with a copy of system’s structural
and deployment model in the corresponding extended mod-
els. For every structural model, a new Fault Detector com-
ponent is added in the extended model along with its place-
ment in the deployment model. Followed by that, for every

business component in the original structural model, a new
Heartbeat component is added that is collocated with the
business component. The collocated components are placed
in the same process as that of the business component at
run-time. A connection from the FaultDetector component
to every new Heartbeat component is created so that the for-
mer can poll the liveness of the later at runtime. As a result
of the algorithm, monitoring components are weaved-in the
original structural and deployment models of the system.

The above algorithm that we developed for generating
monitoring components for PICML models can be used un-
changed to generate monitoring components for J2EEML
as well as ESML models. In that sense, strong separa-
tion of structural modeling from QoS modeling allows us to
write generic model transformation algorithms using ECL
that work across variety of structural modeling languages as
long as they satisfy the minimal invariant properties speci-
fied in Section 2.1.

The actual implementation of the Heartbeat and Fault-
Detector components is provided as a library using Com-
ponent Integrated ACE ORB (CIAO), which is our open-
source implementation of OMG’s Light-weight CORBA
Component Model specification. The component library
uses the OMG’s IDL 3.0 interfaces shown in Listing 1. The
FaultDetector component periodically invokes isAlive re-
mote method on all the instances of the Heartbeat compo-
nent. The implementation of isAlive method in Heartbeat
component returns true indicating the fact that it is “alive”.
If a Heartbeat component does not respond within a con-
figurable timeout period, the FaultDetector concludes that
the Heartbeat component and the collocated business com-
ponent have failed. It initiates a recovery procedure after
detecting the failure.

Listing 1 OMG’s IDL 3.0 Interfaces Used by The Fault
Monitoring Infrastructure Generated by ECL Transforma-
tion

module Monitor { // A module defines a namespace.
interface Monitorable { // An interface for checking liveness.
bool isAlive(void); // Returns true if component is alive.

bi
component Heartbeat { // Implements Monitorable interface.
provides Monitorable alive; // Used by the FaultDetector.
i
component FaultDetector { // Polls liveness
requires Monitorable poll; // Uses Heartbeat components.
ti
}

Finally, existing model interpreters for generating valid
XML-based metadata (shown by Step 3 in Figure 5) are in-
voked on the weaved-in structural and deployment model to
generate packaging and deployment descriptors.

4 Related Work

Capturing QoS specifications at design-time has long
been a goal of researchers [7, 18]. A prior effort, called
Component Quality Modeling Language [18], developed
by Aagadel is a platform-independent, general-purpose lan-
guage for defining QoS properties. It allows both in-
terface annotation as well as component type annotation.
Moreover, it has support for UML integration based on
a lightweight QoS profile and has QoS negotiation capa-
bilities. All the previous work on QoS specification lan-
guages including QML [7] (QoS Modeling Language) and
QuoO [19] (Quality Objects) is superseded by [18].

Therefore, we limit our comparison of QoS specifica-
tion languages to the quality modeling language developed
by Aagedal. Our CQML has been designed to be super-
imposed on domain specific component-based system com-
position modeling languages and not with interface defini-
tion languages as in the case of Aagedal’s QoS language.
The latter allows QoS annotations at type level (IDL inter-
face and component definition) only and therefore, cannot
be used to specify QoS requirements on components on a
per-instance basis. Although, the QoS specification capa-
bility in our CQML is not as general as in Aagedal’s quality
modeling language, instance level QoS specification is pos-
sible in our CQML.

Lightweight and heavyweight extensions for UML are
possible to create QoS profiles using extensibility mecha-
nisms provided by UML. Lightweight extensions use only
the mechanism of stereotypes, tagged values, and con-
straints. Heavyweight extensions require modification to
the UML metamodel, which is naturally more intrusive than
lightweight approaches. The OMG has adopted UML pro-
file [11] for schedulability, performance and time specifi-
cation, which is based on lightweight extensibility mecha-
nisms of UML. OMG has also adopted a more general pro-
file for modeling QoS [13]. This UML profile provides a
way to specify the QoS ontology with QoS characteristics.
It has support for attaching QoS requirements to UML ac-
tivity diagrams. A common feature between these UML
profiles and CQML is that both have first class support for
QoS concerns. Compared to the lightweight mechanisms
of above-mentioned UML profiles, CQML requires heavy-
weight metamodel level composition of two languages. A
benefit of this approach is that the full strength of the
metaprogramming environment can be leveraged in the pro-
cess.

Another approach [6] for managing QoS is based on the
QuO framework. It is an aspect-based approach to pro-
gramming QoS adaptive applications that separates the QoS
and adaptation concerns from the functional and distribu-
tion concerns. It puts more emphasis on encapsulating the
system adaptation and interactions as an aspect. But it is
more applicable to the CORBA-based platforms. The work

described in [8] shows similarities between network-level
configurable protocols and aspects. Both of the above men-
tioned approaches focus on lower-level OS and network re-
lated QoS whereas CQML is an AOM approach that focuses
on the higher level platform-independent QoS concerns in
component based systems and provides intuitive, visual ab-
stractions. These lower-level concerns can be modeled as
separate declarative QoS aspects in CQML.

S Concluding Remarks

Large-scale component-based systems often incur sec-
ondary non-functional concerns comprising quality of ser-
vice (QoS), which crosscut the system’s primary concern:
structural composition. The scattering and tangling of these
secondary concerns impede comprehensibility, reusability
and evolution of component-based systems. A Domain-
specific Modeling (DSM)-based approach holds promise to
address these challenges because it raises the level of ab-
straction at which the systems are designed and reasoned
about. The complexity of system design incurred due to
the crosscutting concerns, however, is not eliminated even
at a higher level of abstraction because of lack of the right
DSM-level modularizing abstractions.

The key contribution of this paper is to address the chal-
lenges in DSM tools for component-based system devel-
opment. We described a reusable, platform-independent
Component QoS Modeling Language (CQML) which when
composed with a host structural modeling language, en-
hances the host language with declarative QoS modeling
capability without breaking the syntax, semantics and the
tool support of the host language. CQML not only pro-
vides separate views to specify and manipulate QoS con-
cerns and system’s structural concerns but also allows QoS
metamodel to be extended without affecting the structural
modeling capabilities of the host language. We evaluated
this capability of CQML by composing it with a rich struc-
tural modeling language: PICML [2]. Finally, we also
demonstrated how CQML’s fault-tolerance models can be
used to automatically generate structural and deployment
models of fault monitoring infrastructure using an aspect-
oriented model weaver.

The capabilities of CQML are available in open source
from the CoSMIC tool web site at www.dre.vanderbilt.
edu/cosmic.

References

[1] Jaiganesh Balasubramanian, Sumant Tambe, Bal-
akrishnan Dasarathy, Shrirang Gadgil, Frederick
Porter, Aniruddha Gokhale, and Douglas C. Schmidt.
Netqope: A model-driven network qos provisioning
engine for distributed real-time and embedded sys-
tems. In RTAS’ 08: Proceedings of the 14th IEEE
Real-Time and Embedded Technology and Applica-

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

tions Symposium, pages 113—122, Los Alamitos, CA,
USA, 2008. IEEE Computer Society.

Krishnakumar Balasubramanian. Model-Driven En-
gineering of Component-based Distributed, Real-time
and Embedded Systems. PhD thesis, Department of
Electrical Engineering and Computer Science, Van-
derbilt University, Nashville, September 2007.

Clemens Szyperski. Component Software — Be-
yond Object-Oriented Programming - Second Edition.
Addison-Wesley, Reading, Massachusetts, 2002.

Krzysztof Czarnecki and Ulrich W. Eisenecker. Gen-
erative Programming: Methods, Tools, and Appli-
cations. Addison-Wesley, Reading, Massachusetts,
2000.

Dionisio de Niz, Gaurav Bhatia, and Raj Rajkumar.
Model-based Development of Embedded Systems:
The SysWeaver Approach. In RTAS ’06: Proceed-
ings of the 12th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pages 231-242,
San Jose, CA, USA, 2006. IEEE Computer Society.

Gary Duzan, Joseph Loyall, Richard Schantz, Richard
Shapiro, and John Zinky. Building Adaptive Dis-
tributed Applications with Middleware and Aspects.
In AOSD °04: Proceedings of the 3rd international
conference on Aspect-oriented software development,
pages 66—73, New York, NY, USA, 2004. ACM Press.

Svend Frolund and Jari Koistinen. Quality of Service
Specification in Distributed Object Systems. IEE/BCS
Distributed Systems Engineering Journal, 5:179-202,
December 1998.

Matti Hiltunen, Francois Taiani, and Richard Schlicht-
ing. Reflections on Aspects and Configurable Pro-
tocols. In AOSD ’06: Proceedings of the 5th inter-
national conference on Aspect-oriented software de-
velopment, pages 87-98, New York, NY, USA, 2006.
ACM Press.

Gabor Karsai, Sandeep Neema, Ben Abbott, and
David Sharp. A Modeling Language and Its Support-
ing Tools for Avionics Systems. In Proceedings of
21st Digital Avionics Systems Conference, Los Alami-
tos, CA, August 2002. IEEE Computer Society.

Akos Lédeczi, Arpid Bakay, Miklés Mar6ti, Péter
Volgyesi, Greg Nordstrom, Jonathan Sprinkle, and
Gabor Karsai. Composing Domain-Specific Design
Environments. Computer, 34(11):44-51, 2001.

Object Management Group. UML Profile for Schedu-
lability, Performance, and Time Specification, Final

Adopted Specification ptc/02-03-02 edition, March
2002.

Object Management Group. Light Weight CORBA
Component Model Revised Submission, OMG Docu-
ment realtime/03-05-05 edition, May 2003.

Object Management Group. UML Profile for Mod-
eling Quality of Service and Fault Tolerance Char-
acteristics and Mechanisms Joint Revised Submis-
sion, OMG Document realtime/03-05-02 edition, May
2003.

Douglas C. Schmidt. Model-Driven Engineering.
IEEE Computer, 39(2):25-31, 2006.

Software Composition and Modeling (Softcom) Lab-
oratory. Constraint-Specification Aspect Weaver
(C-SAW). www.cis.uab.edu/ gray/Research/C-SAW,
University of Alabama, Birmingham, AL.

Sumant Tambe, Jaiganesh Balasubramanian, Anirud-
dha Gokhale, and Thomas Damiano. @ MDDPro:
Model-Driven Dependability Provisioning in Enter-
prise Distributed Real-Time and Embedded Systems.
In Proceedings of the International Service Availabil-
ity Symposium (ISAS), volume 4526 of Lecture Notes
in Computer Science, pages 127-144, Durham, New
Hampshire, USA, 2007. Springer.

Jules White, Douglas C. Schmidt, and Aniruddha
Gokhale. Simplifying autonomic enterprise java bean
applications via model-driven engineering and sim-
ulation. Journal of Software and System Modeling,
7(1):3-23, 2008.

Jan AYyvind Aagedal. Quality of Service Support in
Development of Distributed Systems. PhD thesis, Uni-
versity of Oslo, Oslo, March 2001.

John A. Zinky, David E. Bakken, and Richard
Schantz. Architectural Support for Quality of Service
for CORBA Objects. Theory and Practice of Object
Systems, 3(1):1-20, 1997.

