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ABSTRACT

We describe the use of the Cyber-Physical Modeling Lan-
guage (CyPhyML) to support trade studies and integration ac-
tivities in system-level vehicle designs. CyPhyML captures pa-
rameterized component behavior using acausal models (i.e. hy-
brid bond graphs and Modelica) to enable automatic composi-
tion and synthesis of simulation models for significant vehicle
subsystems. Generated simulations allow us to compare perfor-
mance between different design alternatives. System behavior
and evaluation are specified independently from specifications
for design-space alternatives. Test bench models in CyPhyML
are given in terms of generic assemblies over the entire design
space, so performance can be evaluated for any selected design
instance once automated design space exploration is complete.
Generated Simulink models are also integrated into a mobility
model for interactive 3-D simulation.

INTRODUCTION

The DARPA AVM project aims to reduce the typical spec-
ification, design, analysis, construction, and manufacturing time
and cost for a new military vehicle design by a factor of five. Two
significant challenges that impact development cost and schedule
are 1) system-level integration and 2) evaluation of design alter-
natives. Integration, or the resolution of details between design
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domains and subsystems in an engineered system is frequently
cited as a principal source of schedule and cost overruns [1].
Tackling integration issues early in the design cycle goes a long
way towards producing the expected gain. Heterogeneity of com-
ponents and design concerns complicate integration, leading to
innovative solutions to these problems [2]. Second, the number
of potential vehicle designs which could be built from a set of
existing components is very large, even when considering only
macro-component choices such as engines, transmissions, hull,
and chassis options. Evaluation of possible candidate designs
against the system requirements enables the decision-making
necessary to converge to a final design candidate. As for integra-
tion, the early pruning of candidate designs dramatically reduces
the effort required to complete the end-to-end design and devel-
opment processes. However, early design candidates usually lack
the details necessary to effectively prune the design space, sug-
gesting an iterative approach.

In this work we describe the Cyber-Physical Modeling Lan-
guage (CyPhyML) and tools that use model-integrated comput-
ing techniques to support the design-time integration of numer-
ous aspects of a system-level vehicle design, and the automated
exploration of design alternatives. CyPhyML integrates models
from existing engineering design and analysis tools to seamlessly
support design work across multiple domains.
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FIGURE 1. DESIGN SPACE REFINEMENT

CyPhyML supports integration and evaluation efforts using
a few key concepts:

1. Model-Integrated Computing (MIC) is the core technology
on which CyPhyML and its tools are built [3]. The use of
MIC in system-level design moves many of the detailed de-
sign decisions normally resolved during lengthy integration
(and often redesign) phases forward to the design and anal-
ysis stage of a system design, or often even prior to design
activities. These details are resolved by an up-front con-
certed modeling effort which captures concepts and rela-
tions from design models in different design and analysis
domains, representing each domain in a formal language
description known as a metamodel. These metamodel de-
scriptions are then integrated into a single language (in this
case, CyPhyML) that precisely represents the relationships
between the metamodels for the different domains. Model
interpreters automatically import language and analysis ar-
tifacts from existing design tools into models in the inte-
grated language, and can also be created to generate required
design models. Both CyPhyML and its integrated domain-
specific metamodels are defined using the Generic Modeling
Environment (GME). GME also provides tools and APIs to
develop the model interpreters required to realize the bene-
fits of the MIC approach.

2. Components in CyPhyML correspond (in most cases) to real
physical components. CyPhyML aggregates the different
domain models associated with each component using care-

fully designed interface abstractions for each domain, so
that larger design models can be assembled automatically
using the multi-domain component definitions and descrip-
tions of acceptable interconnections. We say that CyPhyML
is compositional with respect to well-formed domain mod-
els. For the dynamics domain, model designers create be-
havioral models in a model repository, and specify interface
details for those models using CyPhyML. The interface def-
initions expose strongly-typed signal and power ports that
can be used to specify behavioral interactions between sys-
tem components. Model hierarchy is used to define sys-
tem assemblies in the design - the behavior of an assem-
bly comes from the behaviors of its individual components,
sub-assemblies, and the specified interactions between those
components.

3. The design process supported by CyPhyML and its tools
performs additional pruning of the design space by gener-
ating simulation and analysis models which can be evalu-
ated against test cases to determine suitability and perfor-
mance of candidate designs. Low-fidelity simulation mod-
els are first used to prune the design space (after reduction
by structural details), then increasingly detailed (and time-
expensive) simulation models are used to iterate and reduce
the number of candidate designs which can meet design re-
quirements. The level of fidelity of the models is not stat-
ically encoded in the CyPhyML language. Fidelity levels
are domain-specific, and are determined by the component
designers which must agree on project-specific standards to
ensure consistency.

4. CyPhyML allows users to specify test bench models to sim-
ulate model behavior or perform detailed model analysis. A
test bench provides a context in which the details of a ve-
hicle or particular subsystem can be evaluated. Designers
can assess correctness and compare different design config-
urations with respect to design metrics, which are the key
performance parameters for the design.

Figure 1 illustrates the general process of defining a design
space to identify and compare design candidates which satisfy
the requirements, and then the refinement steps to narrow the
set of candidate designs down to a manageable set of alterna-
tives. First, domain-specific component models (such as CAD
parts/assemblies, dynamics simulations, etc...) are captured in
interface definitions in a component library. System require-
ments drive the specification of component assemblies and de-
sign alternatives. Some requirements are modeled as static con-
straints during automated design space exploration processes [4].
The static constraints eliminate many designs from a set of fea-
sible design candidates, leaving a smaller set of designs for more
detailed evaluation. Behavioral constraints such as performance
requirements call for behavioral analysis of designs using simu-
lation or other analysis tools. Since simulation for large models
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is expensive, structural reduction is a good strategy to restrict
the design space before exploring the remaining (smaller) can-
didate designs using simulation (e.g., as shown in Fig. 1). Re-
peated simulation and analysis steps driven by test specifications
further reduce the set of possible design candidates, while pro-
viding metric values to compare between remaining candidates.
The summary metrics are displayed in a dashboard to visualize
the trade-offs.

We will cover a specific subset of the CyPhyML design flow
which relates to the specification and evaluation of the dynamic
behavior represented by designs captured in CyPhyML.

BACKGROUND
Model-Integrated Computing

In model-based design, systems are described by models ex-
pressed in domain specific modeling languages (DSML). For-
mally, a DSML is a five-tuple of concrete syntax (C), abstract
syntax (A), semantic domain (S) and semantic and syntactic map-
pings (Mg, and Mc):

L=<C,A,S,Mg,Mc > (1)

The concrete syntax C defines the specific notation used to
express models, which may be graphical, textual or mixed. The
abstract syntax A defines the concepts, relationships, and in-
tegrity constraints available in the language. Thus, the abstract
syntax determines all the (syntactically) correct “sentences” (in
our case: models) that can be built. The integrity constraints,
which define well-formedness rules for the models, are fre-
quently called “structural semantics.” The semantic domain S
is usually defined by means of some mathematical formalism in
terms of which the meaning of the models is explained. The
mapping M¢ : A — C assigns syntactic constructs to the elements
of the abstract syntax. The semantic mapping Mg : A — S relates
syntactic concepts to those of the semantic domain.

Any DSML requires the precise specification (or model-
ing) of all five components of the language definition. The lan-
guages which are used for defining components of DSMLs are
called meta-languages and the concrete, formal specifications of
DSMLs are called metamodels [3].

The models and languages we will describe were created us-
ing the ISIS Generic Modeling Environment tool (GME). GME
allows language designers to create stereotyped UML class di-
agrams defining metamodels. The metamodels are instantiated
into a graphical language, and metamodel class stereotypes and
attributes determine how the elements are presented and used by
modelers. The GME metamodeling syntax may not be entirely
familiar to the reader, but the syntax is well-documented [5].

We build up custom domain-specific modeling languages
(DSMLs) in GME by creating metamodels for individual do-
mains, whether describing a component interface language or the
language required by an existing analysis tool. These metamod-
els capture the model structure and relationships to formally rep-
resent concepts and relations in each particular domain. Model
integration occurs when we use those specific metamodels as
sublanguages to build up a larger language to support system in-
tegration activities, engineering design flows, and multi-domain
analysis. Wrenn et al [4] give a more detailed description of the
use of Model-Integrated Computing in the context of CyPhyML.

Acausal Modeling Paradigms

The key to compositional specification of physics is the use
of an acausal modeling framework. Causal models such as signal
data flows make it difficult to represent component connections
that share forces. Acausal models expose power ports, which
represent a simultaneous, bidirectional energy exchange. This
means that a well-formed model in an acausal framework repre-
sents a well-formed set of dynamic equations. For further details
see the tutorial article by Willems [6].

Acausal models often must interface with causal models, for
example to represent the integration of a controller function into
a physical system. A physical modeling formalism must define
the interactions between the acausal and causal components in
the system. Usually the physical part includes a means for expos-
ing the physical variables in the model as either input or output
signals (e.g. through sensors and actuators).

Hybrid Bond Graph Modeling Bond graphs are a
physical, domain-independent graphical notation for describing
the behavior of components and systems which can be modeled
using differential algebraic equations. Bond graphs generically
model the energy exchange between different types of energy
storage and conversion components, analogous to a circuit dia-
gram in the electrical domain. Junctions in a bond graph corre-
spond to either series (common flow) or parallel (common effort)
connections between the primitive components or other junc-
tions. Power ports connect quantities in one component with
another, and each includes two variables - an effort and a flow.
Bond graphs easily and uniformly represent electrical, rotational,
translational, thermal, and other types of power domains. Input
signals either control parameters (e.g. modulated effort or flow)
or directly influence the system behavior through functions on
the physical variables.

The hybrid bond graph language (HBGL) within CyPhyML
includes the ability to resolve causality and create a Simulink
model from a bond graph model [7].
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Modelica Modelica is a general modeling framework for
physical systems [8]. Modelica does not strive for the uniformity
of representation that bond graphs provide, but provides a library
of standard components for each physical modeling domain. In-
terconnections between components are made using connectors
which directly represent physical connections (e.g. attaching a
wire to a pin of an electronic device), enabling the compositional
definition of system behaviors. For a well-formed model, Mod-
elica compilers translate all of the model subsystems into equa-
tions suitable for simulation or analysis. Unlike bond graphs,
the Modelica language is an international standard that has well-
supported commercial tools.

Embedded Systems Modeling Language (ESMolL)

ESMoL is a graphical modeling language created using
GME which allows designers to use Simulink diagrams as syn-
chronous software function specifications. In ESMoL the ex-
ecution of each block is equivalent to a single bounded-time
blocking C language call. These specifications are used to create
model entities representing ESMoL software component types.
ESMoL components have message structures as interfaces, and
the type specification includes a map between Simulink signal
ports and the fields of the input and output message structures.
The messages represent C structures, and the mapping graphi-
cally captures the marshaling of Simulink data to those struc-
tures.
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Once software component types and interfaces have been
specified, ESMoL designers instantiate those components into a
distributed deployment model. ESMoL allows the separate spec-
ification of the logical data flow, the mapping of component in-
stances to hardware, timing information for tasks executing those
components, and timing for messages sent over a time-triggered
communication bus. Code generated from the models conforms
to an API for time-triggered execution. A portable virtual ma-
chine implementation of the API allows execution in simulation
(via the TrueTime toolkit for Simulink [9] [10]), hardware-in-
the-loop, and fully deployed configurations. A more detailed de-
scription of ESMoL can be found in [11].
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BEHAVIOR MODELING
Supported Design Flow

Some design properties and metrics can only be determined
through behavioral evaluation, whether it be through simulation
or testing a physical prototype. We support automated assem-
bly of dynamic simulations from test bench models defined in
CyPhyML together with detailed domain-specific models refer-
enced by the CyPhyML component descriptions. In cases where
designs must be refined as part of a design process we support al-
ternative representations of a component so that simulations can
be generated for versions of a component having different lev-
els of detail. For example, an ideal continuous-time controller
defined in Simulink can be compared in simulation with a much
more detailed implementation model of the same controller once
it has been discretized, assigned to computing hardware, and
transformed into source code. We can also assess controller per-
formance in context using a 3-D mobility simulation for vehicle
designs. In the sequel we present a variety of models drawn from
different subsystems in a single notional vehicle design. A uni-
fied model would have been preferable for illustration, but we are
limited by the availability of detailed models for different parts
of the design.

Figure 2 depicts the specialization of the generic CyPhyML
design evaluation flow to the subset of functionality supporting
simulation of vehicle and subsystem dynamics. The component
library is built up from acausal physics models and from soft-
ware and controller models. Candidate designs are evaluated by
generating a simulation model for the dynamics. Performance
metrics calculated from the simulations can be used to winnow
the set of candidate vehicle designs. Individual tests are based

on system requirements and captured in CyPhyML test bench
models. Iterating the whole evaluation process with successively
more detailed dynamics models can significantly reduce the over-
all simulation and analysis effort by performing the most costly
(in compute time) analyses only on small sets of design candi-
dates.

Behavioral Component Interfaces

In the CyPhyML metamodel we have captured key concepts
from the physical and computational design domains and com-
bined them using a single integration language. Figure 3 shows
the details of the static set of physical port types available in
CyPhyML. CyPhyML designs consist of interconnected compo-
nents and assemblies, where the connections are made between
component ports representing physical types, and valid connec-
tions must have the same type at both endpoints. For example,
the port class MechanicalRPort provides a mechanical rotational
power interface for its parent component. It must be connected to
another mechanical rotational port, which means that rotational
power (torque and angular velocity) are shared between the two
components. For analysis and simulation, the equations repre-
senting the dynamic behavior of two components connected via
a power interface are merged to form a single set of equations,
and the torque and angular velocity variables associated with the
respective power port interfaces are merged in the resulting equa-
tion set.

Controller Models

For controllers that can be realized as software, causal mod-
eling is the only option as digital and software systems are in-
herently causal. In this version of the CyPhyML language, con-
troller components can be specified either as a wrapper around
a Simulink component with its input and output signal ports
exposed, or as an assembly that specifies the deployment con-
straints for a controller software component (i.e. the cyber sub-
language). A CyPhyML cyber assembly has components repre-
senting computing hardware (sensors, actuators, and processors),
and components representing the software realization of a con-
troller function as shown in the example in Fig. 4. Within the
controller assembly shown, the TransHardware object is also an
assembly which includes a single sensor, processor, and actua-
tor. The sensor input signal port and its corresponding logical
data connection back to the software function block, the proces-
sor scheduling port, the bus connection port, and actuator output
signal port (with its corresponding logical data connection in-
put) are exposed on the interface of the hardware assembly. The
logical connections are made using connectors associated with
InformationFlow class (Fig. 5). This type of connector defines
constraints between software interface elements and hardware in-
terface elements.
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The AutoTransComp object represents the software compo-
nent which realizes the transmission controller logic. It exposes
two data ports (one from the sensor and the other to the actua-
tor), and a scheduling port to indicate which execution context
runs this component. In this case we have only a single proces-
sor with a single component, so the allocation is straightforward.
Semantically, a connection between a processor and a software
component represents an allocation constraint — the task which
runs the given component must execute in the context defined
on that particular processor. Figure 6 describes the language el-
ements defining the connection. Unconnected context ports in-
dicate that the software tasks are available to be automatically
allocated, though it must be remembered that data requirements
(as given by the InformationFlow connections) may force the
creation of bus or network data messages if a particular com-
ponent is not allocated near its data source. The final element of
the cyber interface is the addition of Parameter objects for the
configuration of the controller assembly. In CyPhyML Param-
eter objects appear as ports on the controller assembly model
when viewed from a higher level in the design hierarchy. In a
CyPhyML test bench model Parameter objects are created and

attached to those ports, allowing the tester to override default pa-
rameter values for a particular test. In the example ExecPeriod
configures the sampling rate of the computational controller, and
WCET specifies the worst-case execution time.
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FIGURE 6. CYBER ALLOCATION CONSTRAINTS
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The details of the controller implementation are specified
outside of the CyPhyML model. The ESMoL language and tools
are first used to provide the detailed software component inter-
faces in the CyPhyML component library. For Fig. 4 the in-
terface message details of the AutoTransComp software control
block are defined externally in an ESMoL model in the software
component library. The key details in the ESMoL model include
the full functional specification of the controller (imported from
Simulink) and the structure of the data types on the input and out-
put interfaces. The ESMoLLink block in the figure indicates that
the entire assembly will also be realized in ESMoL. During sim-
ulation synthesis the CyPhyML assembly is translated automat-
ically into an ESMoL deployment model, an execution schedule
is calculated, and the resulting models and data are used to gen-
erate a TrueTime Simulink model of the controller software [10].
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Component Assemblies, Alternatives, and the Compo-
sition of Dynamics

Anywhere in a CyPhyML model that a component can ap-
pear we can also substitute a design container. A design con-
tainer contains other components and specifies the relationship
between the included components and the design space. The
ContainerType attribute class DesignContainer indicates its in-
terpretation in the design space — a Compound container simply
aggregates components and design containers, an Optional con-
tainer indicates that the contents may be excluded, and an Al-
ternative container indicates that any one (and only one) of the
contained components may be used. The alternative containers
are key to the strength of the design space exploration process.
For design space pruning we use parameterized component mod-
els which share common physical and parametric interfaces. The
common interfaces allow the generation tools to operate orthog-
onally to the design space exploration process, so that any feasi-
ble model from the design space can be generated to either CAD
or to simulation accordingly. The DESERT design space explo-
ration tool is integrated into the CyPhyML tool suite to support
this process [12]. The uniformity of interfaces among compo-
nent alternatives allows the automated tools to create simulation
models in a generic way for any valid combination of compo-
nents defining a vehicle design.

Alternatives support the design space exploration process,
but the alternative structures can also be used to support design
processes which require multiple representations over the lifecy-
cle of the design. Specifically, controller design models normally
progress through multiple phases - an ideal feedback controller
may be designed in the continuous-time domain, then discretized
and quantized. The discrete-time form is converted to software
with typed data interfaces for deployment on computer hardware.
Deployed controller software differs in behavior from its ideal
model representation due to discretization, quantization, and tim-
ing delays introduced by data movement. We will be able to com-

pare simulation traces of the deployed software with traces from
the original ideal controller model to assess the effects of the
computation platform on controller stability and performance.
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Fig. 7 shows an alternative container for the transmission
controller block. During design evaluation, the ideal controller
(bottom IdealTransAssembly alternative) can be synthesized into
the design. Once detailed design for the controller software and
computing hardware has been made, the implementation alterna-
tive (top TransAssembly block) can be used during the evaluation.

TEST BENCH MODELS

In CyPhyML each test bench is defined in the context of
a complete system or subsystem design. The design container
that specifies the test bench context is called the top level system
under test, often abbreviated SUT (an instance of the TopLevel-
SystemUnderTest reference class in Fig. 8). An object from the
design space is included by reference as the single SUT for a par-
ticular test bench. The top level may also be the entire vehicle
model or a single component. In the test bench example model
shown in Fig. 9, the PowerPlant_and_Transmission subsystem is
the SUT. Subcomponents of the SUT can be called out by refer-
ence as fest injection points. The example model has no separate
test injection points, as the interface of the SUT is sufficient for
this test. Test injection points allow designers to direct inputs
to internal elements of the SUT. The reference class TestInjec-
tionPoint in the Fig. 8 specifies its membership in the test bench
and its reference association with the DesignEntity class, which
includes components and design containers. TestComponent ob-
jects can refer to models external to CyPhyML that specify in-
puts (Drivers), outputs (Evaluator), or utility functions for the
test. Bond graph test bench models generate to Simulink simu-
lations, so the test components can refer to an externally defined
Simulink model. In CyPhyML the test component object ex-
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poses the signal ports necessary to specify the connection of the
test component with the signal ports of the test injection points.
A test component itself can also have physical dynamics in order
to create a test harness for the SUT. These components can rep-
resent physical loads or behavior introduced by the environment.
In the example, the object RearEnd_TireLoad has its dynamics
specified as a bond graph, and it is composed with the SUT block
by means of a mechanical power port.
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FIGURE 10. TEST BENCH RESULTS

Metrics and parameters define the configuration space for a
test bench. Parameters may be given by the user or propagated
automatically by the CyPhyML formula evaluator. For example,
the formula evaluator calculates the total weight of a given design
configuration from its constituent parts, and then propagates that
value to a parameter block specified in the test bench that uses
the vehicle model as the SUT. Metrics are the key performance
parameters of the system. Metric objects specify the output of a
test bench model, and define dependencies on state variables of
the SUT. The final values of the metrics represent the *quality’ of
the tested subsystem. For instance, the example shown in Fig. 9
includes metrics objects for average speed, maximum speed on
the test track, and efficiency. In the model metrics are derived

from the collected output signal values.

FuelFlow

:} EngineAngularVelocity
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Drive Shaft Out Throttle

7 *

FIGURE 11. DESIGN SPACE INTEGRATION OF TRANSMIS-
SION COMPONENTS
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FIGURE 12. DESIGN ALTERNATIVES FOR TRANSMISSION

The example in Fig. 9 examines the performance of the vehi-
cle power plant (hybrid drive) and transmission subject to a rota-
tional load. A test driver (TypicalTerrainCourse_Driver) creates
an input signal which varies the test load according to a spec-
ified terrain profile. Evaluation blocks collect data required to
compute the metric values. Three of them are shown here, while
others were removed for clarity. A speed controller test compo-
nent was included to simulate the behavior of a cruise control.
Figure 10 displays various quantities from the test run.

Figure 11 shows the details from two aspects within the
PowerPlant_and_Transmission block. On the left is the Dy-
namics aspect, which displays the physical ports (rotational and
fluid). The PowerPlant and Transmission share mechanical ro-
tational power, consistent with their actual configuration in a ve-
hicle. In the figure on the right the Cyber aspect shows the in-
put throttle signal, and the angular velocity and fuel flow signals
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which are exported to the test bench evaluators. The transmission
controller appears in this aspect. It contains the logic to change
the gear ratio based on angular velocity, and is specified by the
alternative container shown above, in Fig. 7. During simula-
tion model synthesis either an ideal Simulink controller can be
generated, or a Simulink model of the deployed control software
implementation using the TrueTime toolkit. The physical Trans-
mission model is also a design container as shown in Fig. 12.
The automated design space exploration process selects one or
the other transmission for the final design. A model interpreter
re-creates the test bench using parts selected from the available
alternatives.

Realization of Simulation Models

To illustrate the generation process once a design candidate
has been selected, the following steps produce a Simulink simu-
lation from a test bench model containing bond graph elements.
A script is generated, which when run uses the Simulink API to
create the model. The steps describe the order in which elements
are added to the generation script.

1. In the target Simulink model, create the hierarchical struc-
ture and elements (except Bond graph and ports) for the
model based on the hierarchical structure of the CyPhyML
design model.

2. In CyPhyML, collect all Bond Graph elements for compo-

nents in the design and create a flattened out bond graph in

memory. Bonds are resolved across the hierarchy.

Create Bond Graph elements in Simulink for the model.

Create power port elements in Simulink.

Create signal ports in Simulink.

Update the Simulink layout.

Create connections between elements in Simulink.

Add commands to open Simulink scopes automatically.

Copy all referenced Matlab models into the output directory.
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These steps have been implemented in automated CyPhyML
model interpreters. A similar procedure creates composed Mod-
elica models from a CyPhyML test bench. A few additions are
required to create TrueTime models to evaluate the deployed con-
troller implementations:

1. The CyPhyML to ESMoL translator must be invoked to cre-
ate the ESMoL deployment model.

2. The ESMoL tools are run to create the controller source
code, schedule the tasks, and generate scripts to create the
TrueTime models as described in [11].

3. The TrueTime generation scripts are invoked by the bond
graph dynamics generation scripts, integrating the TrueTime
controller models with the generated dynamics model in
Simulink.

Mobility Simulation

A design candidate can also be evaluated in the context of
its expected operating environment using a mobility simulation.
The mobility simulation exercises the vehicle in a 3D virtual
world and runs in real-time, giving the user the interactive expe-
rience of driving this particular vehicle configuration over a spe-
cific, detailed terrain. The simulation provides feedback on the
maximum obstacle heights the vehicle can traverse, suspension
performance over a given terrain, and power train performance
over a specific terrain. Delta3D is used as the 3D rendering en-
gine and for management of 3D solid objects. Open Dynamics
Engine (ODE) is a rigid-body dynamics simulator used to sim-
ulate the physical interactions of the terrain/world objects and
the vehicle elements (wheels/tires, suspension). A co-simulation
approach is used to combine the benefits of the rigid-body simu-
lation with the powertrain simulation implemented in Simulink.
The co-simulation is implemented with UDP socket communica-
tions that provide inputs from the 3D simulation including user
throttle/brake and loading on power train due to terrain as mon-
itored from vehicle kinematic feedback to the dynamics simu-
lation. The Simulink simulation of the powertrain returns the
torque produced from the power train that is fed back to the 3D
simulation and translated as a torque on the wheels in the rigid-
body physics simulation.

Evaluation of Candidate Designs

Table 1 displays values from the dashboard that can be de-
termined by component properties, the assembly rules, and the
selection of a particular design candidate. For space we only in-
clude two design candidates. Note that these numbers are only
representative to illustrate the kinds of values that can be mea-
sured in the design environment.

TABLE 1. DASHBOARD RESULTS FOR DYNAMIC METRICS
Design ID C025 | CO16

Max off-road speed (m/s) 32.0 29.8

Max on-road speed (m/s) 32.3 36.7
Acceleration (0-13.4 m/sins) | 7.1 7.7

Max obstacle height (m) 0.612 | 0.757

Min turn radius (m) 0.713 | 0.663

Range (km) 612.4 | 345.8
Ground Pressure (kPa) 30.3 34.5
Fuel Efficiency (kpl) 1.87 1.66
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RELATED WORK
State of Current MBSE Tools

Reichwein and Paredis offer a canonical overview of con-
cepts, history, and directions for the field of Model-Based Sys-
tems Engineering (MBSE) [13] - their work surveys some of the
basic terminology and fundamental issues. Our work has much
in common with current research efforts in SysML and related
tools.

In contrast to current MBSE approaches, our integration
methods aim towards a more strict glue’ role, which does not
prescribe particular technologies/standards, but selects and in-
tegrates from best of breed alternatives for attacking particular
aspects of the problem. We use abstractions for each of the inte-
grated capabilities (component definition, DSE, and generation)
so that users can work in different modeling tools and integrate
their existing component libraries.

The Core Product Model (CPM) from NIST is a standard
which covers many of the same design issues covered by Cy-
PhyML and its associated tools [14] [15]. CPM defines a meta-
model to capture components and their features, as well as the
design of assemblies using those components. CPM is multi-
domain, and seeks to separate the specification of function (i.e.,
intended behavior), form (i.e., physical realization), and behav-
ior (i.e., implemented behavior) within design models. From the
point of view of their ability to design and synthesize simulations
of model dynamics, both CPM and CyPhyML include the notion
of component port objects, which allow the designer to specify
a design as a hierarchy of components with interconnected ports
representing joint behavior of multiple components. CyPhyML
relies on a static, canonical set of port types for physical and
software systems. This allows analysis tools to work with all Cy-
PhyML models which conform to the standard. CyPhyML also
has acausal power ports, which represent direct variable sharing
betwen intertonnected components. Where CPM semantics are
generic and adaptable, CyPhyML strives for a precise behavioral
semantics in each design domain, by which well-formed models
can be formally verified with respect to requirements. The static
port type system also increases the compatibilitiy of components
submitted to the component library from separate sources.

Model-Based Testing

Hause et al discuss the use of UML and SysML to support
testing efforts [16]. They describe using test bench structures to
map test sequences onto implementation models and interpret the
results. This shields the testing concern from the implementation
concern, and also allows tests to be re-generated if the design or
testing procedures change.

SysML Extensions for Modelica
Paredis et al present a transformation specification to inte-
grate Modelica models with SysML models. SysML4Modelica

10

[17] contains the Modelica blocks and its equations as well. Our
tools abstract away from the specifics of Modelica and focus
only on the details required to perform the integration of physical
components.
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