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Abstract
In this paper we present the design and implementation of a controller scheme for efficient

resource management in Advanced Life Support Systems. In the proposed approach, a
switching hybrid system model is used to represent the dynamics of the system components
and their interactions. The operational specifications for the controller are represented as
a utility function, and the corresponding resource management problem is formulated as
a safety control problem. A limited-horizon online supervisory controller is used for this
purpose. The online controller explores a limited region of the state-space of the system at
each time step and uses the utility function to decide on the best action. The feasibility
and accuracy of the online algorithm can be assessed at design time. We demonstrate the
effectiveness of the scheme by running a set of experiments on the Reverse Osmosis (RO)
subsystem of the Water Recovery System (WRS).

1 Introduction

This paper discusses an online hybrid control approach for robust fault adaptive resource man-
agement and control in Advanced Life Support Systems. The methodology developed targets a
class of hybrid dynamic systems that have finite control sets. The underlying model, referred to
as a switched hybrid system model, can describe the dynamics of a wide variety of practical real-
life systems. General hybrid systems can be described by a transition structure on a state space
which is a cross product of two domains: (i) discrete-event and (ii) continuous-time dynamics.
The interaction of discrete-event and time-based variables makes the behavior generation and
analysis tasks quite challenging and computationally complex. Considerable amount of research
work has been dedicated recently to the study of hybrid systems dynamics ([2, 3, 11, 18] and
the references therein).

The complex nature of hybrid systems limits the applicability of traditional optimal control
techniques and supervisory control techniques that can be be applied directly to hybrid systems.
Several promising approaches have been proposed in the literature to deal with the complexity
of hybrid systems. For example, abstraction techniques, have been developed to reduce the
complexity of the hybrid models while preserving features of the original model relevant to
the analysis/control objectives (e.g., [16]). Supervisory control design with abstracted hybrid
system models has been investigated in [15, 21, 9]. Efficient control synthesis for reachability
specifications through mode switching has been presented in [14].

In this paper, we develop an online control approach for efficient resource management in
Advanced Life Support Systems. The proposed approach is designed to ensure distribution of
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a finite amount of resources among contending subsystems of a larger system in a way that
“optimal” performance may be obtained over an extended period of time. In more detail, the
control algorithm is to designed to achieve a set of pre-specified performance requirements for
the system over finite time intervals, while simultaneously optimizing a given utility/cost func-
tion for the composite system and maintaining overall system stability. We further demonstrate
the application of this approach for fault-adaptive control by introducing faults in system com-
ponents. We apply fault diagnosis methods online to isolate and identify the fault, and once
this is done, the controller uses the updated system model to derive a new set of performance re-
quirements. The online decision-theoretic control scheme is then applied at runtime to optimize
performance in the faulty system.

To achieve these objectives, we propose a receding horizon online supervision algorithm.
This algorithm selects the next set of control actions (i.e., the input to the system) based on
information available about the current state and a utility-based evaluation of the consequences
of various action sequences over a finite lookahead window. In this setting, the selection of the
next step is based on two maps; a distance map that that defines how close the current state is to
the desired set point trajectory, and a utility map that defines the current level of performance
of the system. Both maps are generated at design time from system specifications.

The proposed control approach is conceptually similar to model predictive control schemes [17,
20], where a limited time forecast of the process behavior at each state is optimized according
to a given criterion (cost function) over the set of controlled inputs. The application of model
predictive techniques for the control of hybrid systems was investigated in [22, 13]. The online
control approach is also conceptually related to the online limited lookahead supervision of
discrete event systems [8].

A second component of our approach is an online fault diagnosis methodology for hybrid
systems. This approach derives fault signatures from a temporal causal graph derived from
the system model, and uses them in an innovative fault isolation scheme. Search methods are
employed to track system behavior across discrete mode changes. After the qualitative fault
isolation process, a parameter estimation scheme is employed to estimate the fault parameter
value. This approach is discussed in more details in [4].

The fault isolation and online control scheme is applied to subsystems of the Water Recovery
System (WRS) of Advanced Life Support Systems (ALS) being designed by NASA for long-
duration planetary missions. We demonstrate the effectiveness of the fault isolation scheme
on the Reverse Osmosis (RO) process, and demonstrate the online controller keeps system
performance within reasonable bounds for a variety of degradations and faulty conditions.

This paper is organized as follows. The switching hybrid system model used to represent
the RO system is introduced in Section 2. In this section, we discuss also different forms
of performance specifications for this class of systems. In Section 3, the ALS water recover
system is introduced and the main elements system are presented. Section 4 presents the online
approach for control of switching hybrid systems. The proposed approach is demonstrated
for the control of a ALS water recovery system in Section 5. The fault detection and isolation
approach is briefly discussed in this section. Results for control in failure scenarios are presented
in this section. Conclusion and future work are discussed in Section 6.
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2 Switching hybrid systems

As discussed, we consider a special class of hybrid systems in which the controlled input to the
system is characterized by a finite control set. The continuous dynamics of this class of hybrid
systems is described by the following discrete-time form of the state space

x(k + 1) = Φq(k+1)(x(k)),
q(k + 1) = δ(q(k), u(k))

where k ∈ 0, 1, . . . is the time index, x(k) ⊂ Rn is the sampled form of the continuous state
vector at time k, u(k) ⊂ Rm is the discrete valued input vector at time k, and q(k) ∈ Q is the
mode (discrete state) at time k. Note that Q is a finite set of modes (discrete states) that the
system can be in. δ is the (partial) transition relation. We will use X and U to denote the state
space and the finite input set for the system, respectively. For each input q ∈ Q, the function
φq is continuous in X and meets the conditions for existence and uniqueness of solutions for
a set of initial states Xo ⊆ X. Note that in the above representation, at any time step k the
system input defines the next mode of the system and the next state is computed from the
corresponding state equation.

A switching hybrid system is a special class of hybrid automata [1], therefore, in general,
it is possible to represent switching hybrid systems as a hybrid automaton. The discrete-time
dynamic specification above can be extended to a hybrid automaton representation by adding
the guard and invariant conditions as shown in Figure 1. In each mode, the system dynamics is
described by the set of discrete-time state equations of the form described above. An invariant
condition may be added describe the domain of operation in each mode. Transitions between
modes are defined by guard conditions on the system states, and a transition between automaton
states may cause some of the state variables to be reset.

q1

x := R22

x := R32

x := R21

x := R13

xk+1 = f3(xk + uk)

xk+1 = f2(xk + uk)xk+1 = f1(xk + uk)

x ∈ Inv3

x ∈ G22

x ∈ G32

x ∈ G13

x ∈ G12

q3

x ∈ Inv2

q2

x ∈ Inv1

Figure 1: A Hybrid Automaton

For switching hybrid systems, discrete inputs drives the system into different modes of
operation. In contrast with the general hybrid automata model there is no continuous input
that can drive the system dynamics within the discrete modes. However, the switching hybrid
system model is general enough to describe a wide class of practical hybrid systems. The
requirement that the input set R is finite is typical in many computer-controlled systems,
where the input is usually discrete and restricted to a finite set. However, the proposed online
control approach is more suitable for systems with small number of control inputs as, in general,
the size of the search tree grows exponentially with the number of input switching signals which
is proportional to the size of the input set.
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Specification patterns

In many real-life systems performance specifications can be classified into two categories. The
first type is set-point specifications in which the underlying parameter or variable is required to
be maintained at specific level or follow a certain pattern (trajectory). Examples of this type
include car speed in cruse mode and water quality in a water supply system. The other type of
specification, referred to as performance specifications, is used to optimize the system perfor-
mance by minimizing or maximizing a given performance measure such as power consumption
and system utilization. The performance measure is a function of the state, input, and output
variables, typically, a weighted norm in which these variables are added together with different
weights reflecting their contribution to the overall system utility and/or cost.

The objective of the control structure is to achieve the desired level of the set-point spec-
ifications in “reasonable” time, maintain the system stable at the desired value, and optimize
the given performance function. Note that, due to the nature of the system environment, it
is common that the variables used to optimize the performance functions are evaluated over a
quantized finite domain. For example, the quality of the result of a given subsystem varies with
respect to the size of the input which can only take a finite set of values.

In certain situations, the optimal operation point can be computed at design time and
used as set-point objective for the system controller. This is the case for instance when the
performance function can be translated into a linear or integer programming problem. In
this paper we assume that optimal points for performance functions can be computed at any
given time instance and therefore the requirement specification is given as a set-point, multiple
set-points, or a state-space region. Such specification may change during the operation. The
proposed approach can accommodate such changes as will be described in the next section.

3 The ALS Water Recovery System

The support of human life in the hostile environment of space critically depends on a set
of complex technical systems that contain or interact with biological and chemical processes.
NASA’s Advanced Life Support Systems (ALS), a component of the Advanced Human Support
Technology (AHST) Program, was created to explore new technologies required to support
extended manned missions in space [10]. Potential applications include a Lunar base, manned
missions to Mars, and the International Space Station (ISS). An ALS must exhibit a high level
of autonomy, so as not to detract from the mission specific tasks of the crew. This requirement
translates to a high level of availability of the individual components of the ALS. It also requires
that the integrated system have the ability to adapt to changing mission objectives and crew
configurations, mainly in response to unplanned events.

The ALS system is typically made up of multiple loosely-coupled subsystems [6], such as
(i) a Water Recovery System (WRS), (ii) an Air Revitalization System (ARS), (iii) a Power
generation system, (iv) a Thermal Control system, (v) a Biomass Production system, and (vi)
a Waste Processing subsystem. These subsystems comprise a number of interacting control
loops, such as the fluid flow loop, the energy management loop, the thermal control loop, the
bio-regeneration and gas transfer loop, and the chemical production loop. These loops also
cover multiple physical (energetic) domains and operating regimes, and operate at multiple
time scales. An effective way to describe the behavior of the controlled physical subsystems
is to model them as hybrid dynamic systems, which capture both the both continuous and
discrete dynamics [19].
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In this paper, we focus on the water recovery system (WRS). This subsystem recycles urine
and waste water into potable and utility water. Critical requirements for such a system are that
it consume low power, minimize the use of consumable resources, and be able to run in a fully
autonomous mode for long periods of time. The WRS, as shown in Figure 2, is comprised of
(i) a Biological Water Processor (BWP) to remove organic and inorganic compounds including
ammonia; (ii) a Reverse Osmosis (RO) System to remove particulate matter after the BWP,
(iii) an Air Evaporation subsystem (AES) to purify the remaining concentrated brine that is
purged from the RO system; and (iv) a post processing system (PPS) to remove the trace
organic and trace inorganic compounds by ultra-violet treatment to bring the water within
potable limits. As shown in the figure, 85% of the water outcome of the reverse osmosis module
is directed for post processing while the remaining 15% (most unclean water) is directed to the
Air evaporation unit.

Biological

Water

Processing

85%

15%

Evaporation

Air

Processing

Post

Osmosis

Reverse
Wastewater

Feed Tank Tank

Portable

Figure 2: The Water Recovery system

The reverse osmosis (RO) system, as shown in Figure 3 is the linchpin subsystem in the
WRS loop. It pulls water from the GLS (gas liquid separator) of the BWP, and delivers
purified water (permeate) to the PPS and concentrated brine to the AES. The RO removes
inorganic compounds and particulate matter by pushing the input water at high speed through
a cylindrical membrane that acts like a molecular sieve. The clean water permeate is passed on
to the PPS, and the dirty water (brine) continues to circulate in the RO loop.
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Figure 3: Diagram of the Reverse Osmosis system
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For proper operation, the RO is designed to go through four distinct modes. The primary
phase draws water into a coiled section of pipe that acts like a reservoir, while processing
permeate in the outer loop of pipes. At some point as the brine concentration increases, the
system is switched to a secondary mode, where the brine circulates in a smaller inner loop
with the recirculation pump, therefore, its speed increases and it is pushed harder against the
membrane. This keeps the production of clean water at a reasonable rate, but the concentration
of brine in the inner loop continues to increase. At some point, the concentration of brine
becomes high enough to reduce the output from the RO system significantly, so the brine is
purged into the AES, a new batch of water is drawn in from the BWP, and the primary cycle
starts again. Periodically, however, as particulate matter accumulates in the membrane, it
needs to be cleaned by running the water backwards in the inner loop. This is known as the
slough phase.

Control engineers working on the WRS devised a control scheme where the primary loop
was run till about 70% of the water in the RO loop was processed. At this point, the four-way
valve was switched to the secondary phase, where the dirtier water now circulates at a faster
speed, and some water is injected from the coil into the secondary loop because of the effect
of the feed pump. When 90% of the original reservoir amount has been processed, the four
way valve is switched to the purge mode, and the concentrated brine drains into the reservoir
of the AES system. In experimental studies run on a testbed at NASA JSC, control engineers
derived average times the RO system spent in the primary and secondary loops for the above
conditions, and built a time-based controller for the RO system.

3.1 System model

For our study, the input voltage to the feed pump, e1, input current to the recirculating pump,
i1, pressure of liquid in the coil, p3, pressure drop at the membrane, p4, and the conductivity
of the water in the loop, K are used as state variables. The output (observed) variables are the
outflow of clean water to the PPS.

xk+1 = AP
k xk + BP

k uk xk+1 = AS
k xk + BS

k uk

xk+1 = AG
k xk + BG

k uk xk+1 = AC
k xk + BC

k uk

Clean

Secondary LoopPrimary Loop

Purge

Figure 4: The switching hybrid model of the Water Recovery System

In the system model, the feed pump provides a constant flow of water from the BWP to
the RO subsystem. Control actions are take by switching the 4-way valve and by changing the
pump speeds, i.e., the input voltage and current, respectively. x, the state vector of the system
is given by [e1 i1 p3 p4 K]T , and u the controlled input variable vector is [Se Sf V ]T , where
V is the valve position. As discussed earlier, the system starts in the primary mode and the
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initial value of the state vector is given by [0 0 0 0 12000]T . Figure 4 shows the hybrid system
model for the RO system. The figure reiterates that the switching hybrid model of the system
has the four operating modes: primary loop, secondary loop, purge, and clean.

The key component that governs the behavior and performance of the RO model is the
membrane, which behaves as a combination of a capacitor and a time-varying resistance. The
increase in resistance in the primary and secondary modes of operation are a function of the flow
rate of water in the loop and the water conductivity. This is because the amount of particulate
matter that sticks to the membrane and clogs its pores increases with time. The rate of increase
in resistance is greater in the secondary loop because the loop is shorter and the conductivity of
the water is higher (i.e., the water is dirtier). The membrane resistance is a quadratic function
of the flow rate and a linear function of conductivity. The outflow from the RO system, f3 is
given by the equation:

f3(k) = c1/(d1 + d2 rm(k)) i1(k) + c2/(d3 + d4 rm(k)) p3(k) + c3/(d5 + d6 ∗ rm(k)) p4(k)

where the ci and di parameters in the equation depend on the system mode. This outflow is
used to evaluate the system performance, which is discussed in more detail later.

4 Online control of switching systems

The problem of optimal safety control is stated as follows.

Given a switching hybrid system H and a set of safe states Xs and a set of initial
states Xo ⊆ X, where Xs ⊂ Xo, design a supervisor S that can drive the system
from any state in Xo to Xs in a finite number of time steps using a finite set of
switching events with minimum cost.

In addition, the supervisor is required to keep the system stable within the set Xs. In this
setting, the supervisor is simply considered an agent that applies a given sequence of events
(possibly changing the discrete input) in order to achieve a certain objective.

In the online supervision approach, the controller explores only a limited forward horizon in
the system state space and selects the next event based on the available information. For the
safety control problem, the selection of the next step is based on a distance map Ds : Rn → R
that defines how close the current state is to the safe region. The distance map can be generally
defined as follows; for each point x ∈ Rn,

Ds(x) = inf
x′∈Xs

‖x− x′‖,

where ‖.‖ is a proper norm for Rn. In other words, Ds(x) defines the minimum distance between
x and the closure of the safe region Xs.

The online supervision algorithm starts by constructing the tree of all possible future states
from the current state xc up to a specified depth. To avoid Zeno effects, where the controller
may try to preempt time indefinitely by switching over very small time intervals, we require
at most one event switch per time unit. The exploration procedure identifies the set of states
with the minimum distance from Xs based on the distance map Ds. A state xm is then chosen
from this set based on certain optimality criterion (for instance minimum time from the current
state), or simply picked at random. The chosen state is then traced back to the current state
xc and the event leading to xm is used for the next step.
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In general, the complexity of the online control approach is exponential in the depth of the
exploration tree. However, it is possible to reduce the search tree significantly using some offline
analysis of the system dynamics. For instance, write δ̂Xo for the maximal single step absolute
change to any component in a state x ∈ Xo under any input from R, namely δ̂Xo is equal to

inf
x∈X,u∈U

‖Φ(x, u)− x‖

It is easy to see that |δ̂Xo | is an upper bound for the the distance covered by the system in one
step. The computation of δ̂Xo is simple for discrete-time linear and piecewise-linear systems.
This upper bound can be used to reduce the search tree in the online control algorithm. The
algorithm can safely stop exploring if there is no prospect of further reduction in the current
minimal distance along any path starting from the current node up to the limit of the search
tree. The algorithm for online control with efficient termination is given below.

Algorithm 1 Online Control Algorithm

Tree(xc) := {xc}; terminal(xc) = ∅
MinDistance := ∞
while Tree(xc).depth < N do
newStates := Post(Tree(xc).states) - (Tree(xc).states ∪ terminal(xc))
if newStates = ∅ then

break
end if
for all x ∈ newStates do

if Ds(x) + (N − x.depth) ∗ δ̂Xo > MinDistance then
terminal(xc).add(x)

else
if Ds(x) < MinDistance then

MinDistance := Ds(x)
OptState := x

end if
Tree(xc).addState(x)

end if
end for

end while
return OptState

In the above algorithm, the function Post(X) returns the set of all states that are reachable
from the set X in one time steps for all possible inputs u ∈ U . Upon termination the state
OptState is traced backward to the root state xc and the initial input leading to OptState is
selected as the next input.

5 Online Control of the ALS Water Recovery System

This section briefly describe the online control method and formulates the resource management
problem that includes the system performance and the utility function used to measure this
performance.
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The optimizing component to safety control is introduced in the form of a multi attribute
utility function, V =

∑
i Vi(pi), where each Vi corresponds to a value function associated with

performance parameter, pi. The parameters, pi, can be continuous or discrete-valued, and they
are derived from the system state variables, i.e., pi(t) = Pi(x(t)). The value functions employed
have been simple weighted functions of the form Vi(pi) = wi ∗ pi, where the weights take on
values in the interval [−1, 1], and represent the importance of the parameter in the overall
operation of the system. The supervisory controller uses the system model to predict possible
behaviors corresponding to different action sequences for a finite forward time horizon, and then
selects the action (i.e., control input) that maximizes the utility function. This process is then
repeated for the next time step, and so on. Figure 5 shows the controller structure comprising
the processor model, estimators, and the optimizer.

x(k)

Model

RO System

Input Selection
System

RO

Module

Utility

mode

x̂(i)

Tree(x(k))

Se, Sfu(k)

Figure 5: The basic structure of the online controller

In the ALS system, the quality (utility) of the system is measured in terms of its water
outflow f3, the conductivity of the water K, and the number of valve switches Sv. The corre-
sponding multi-attribute utility function is expressed as

V (k) =
k+N∑

i=k

(aK [K(i)/Kmax] + af [f3(i)/fmax] + aSv [Sv]) .

Sv is included as a penalty term to avoid too much switching. As discussed, the objective of the
online controller is to maximize the utility function, V (k). The parameters aK , af , and aSv are
designer-specified weights denoting the relative importance of the corresponding performance
parameters. In the above equation N denotes the number of lookahead steps. The online
controller uses the estimated future state vector x̂(k + 1) for given set of inputs up to a finite
number of forward steps, N , to decide the best input to maximize the utility.

Figure 6 summarizes the controller performance corresponding to one simulation run. The
figure to the left shows various state variables under the online control action. The figure to
the right shows the corresponding mode switching signals generated by the online controller.
In the above experiment we chose N = 3 and the heuristics discussed earlier limits the search
space to an average of 37 states to explore per time step. Also, we assumed a 4% noise in the
system measurement. It clear from the figure that the controller maintained a uniform cycling
in spite of the measurement noise.

In the following sections, we briefly describe the fault isolation algorithm, and the use of
the utility-based controller to accommodate for fault effects.
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Figure 6: System performance under the online control

5.1 Fault Detection and Isolation

Our model-based approach to fault detection and isolation (FDI) combines robust tracking of
nominal system behavior using extended Kalman filter techniques [7], statistical fault detection
and symbol generation techniques, and a novel fault isolation method that is based on the
qualitative analysis of the system dynamics immediately after the time point of fault occurrence
followed by quantitative parameter estimation to uniquely isolate and identify the fault [5]. The
extension of these methods to hybrid systems complicates the analysis in that discrete mode
changes, and, therefore, model switches occur while tracking and analyzing system behavior [19].
An automaton model is employed to switch system models when mode changes occur[12].

We have conducted extensive FDI experiments on a number of simulated fault scenarios
on the RO system. These correspond to faults in the pump (loss of efficiency and increased
friction in the bearings), membrane (clogging), and the connecting pipes (blocks). Faults were
introduced as abrupt changes in parameter values, i.e., a discrete change in the parameter value
that is assumed to occur at a point in time. Table 1 presents the comprehensive diagnosis results
for a set of faults in the RO system. The fault magnitudes were chosen to ensure detection
(after some delay). For each scenario, the qualitative fault isolation scheme reduced the initial
candidate set considerably, and parameter estimation converged to the correct fault candidate.
The estimated parameter values were also quite acceptable for all scenarios.
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Fault t− tf Step Symbolic Candidate set + parameter estimation

R+
ep, 35%

tf : 20000

88 0 e37 : (−, ·) C+
c , C+

memb I+
fp, I+

ep, R−brine, TF+, R−pipe, R−memb, C+
k , R+

fp, R+
ep, GY −

640 1 f25 : (−, ·) I+
fp, I+

ep, R−brine, TF+, R+
fp, R+

ep, GY −

720 2 e1 : (−, ·) I+
ep, R−brine, R+

ep, GY −

960 3 e37 : (−,−) R−brine, R+
ep

4640 4 e35 : (−, ·) R+
ep

parameter estimation: R+
ep changed by 0.374

GY −, 5%
tf : 18000

200 0 e37 : (−, ·) C+
c , C+

memb, I+
fp, I+

ep, R−brine, TF+, R−pipe, R−memb, C+
k , R+

fp, R+
ep, GY −

880 1 f25 : (−, ·) I+
fp, I+

ep, R−brine, TF+, R+
fp, R+

ep, GY −

1240 2 e1 : (−, ·) I+
ep, R−brine, R+

ep, GY −

1960 3 e35 : (−, ·) I+
ep, R+

ep, GY −

parameter estimation: GY − changed by 0.934

Table 1: Comprehensive FDI/diagnosis results for selected faults in the RO system.

5.2 Fault Adaptation

The online control approach can accommodate possible changes in the system parameters that
may occur as a result of a fault or parameter changes in time-varying systems. The online
control is usually robust enough to accommodate the consequence of fault for certain limited
time. Robustness of the controller is essential in managing faults in practical system as most
fault detection and isolation systems requires certain time to isolate faults.
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Figure 7: System performance under online control with pipe blocking failure
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Figure 7 shows the behavior of the system under online control in the presence of fault.
A blocking in a pipe (resulting in 35% increases its resistance) is introduced at time t = 400
min and was isolated at time t = 430 sec (see Table 1). The online controller managed to
compensate for the fault by increasing the time of the primary mode. The overall average
utility in this case was only 0.93% less than the utility in the non-faulty situation. In the above
figure, the original system output (no failure) is shown in dotted line for comparison.
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Figure 8: System performance under the online control with pump failure

Figure 8 shows the behavior of the system in the presence of under online control in the
presence of fault. A fault in the feeding pump (5% reduction in the out flow) is introduced at
time t = 360 sec and was isolated at time t = 400 sec.

6 Conclusions

Advanced life support systems must be operated in an resource-efficient fashion to maximize
their lifetimes while satisfying certain performance requirements. We have proposed an online
control approach to efficiently manage the system resources and maximize the system utility.
The controller uses finite control set to adjust the system performance over a set of possible
modes. We have described the system model, formulated the resource management problem,
and derived the corresponding controller. Finally, the proposed controller was evaluated via
detailed experiments using similar to simulated data from NASA.
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