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Abstract – In this paper a modelling and analysis
paradigm for multiprocess discrete event systems is pre-
sented within the formal language and automata set-
tings. The proposed modelling structure features explicit
representation of the system components as well as their
interaction constraints. The model is then extended for
hierarchical multilevel systems.
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1 Introduction
This paper presents a modelling and analysis frame-

work for a general class of multiprocess discrete event
systems with well-defined interaction between the sys-
tem components. The proposed model structure, re-
ferred to as interacting discrete event system (IDES),
provides a concrete and separate representation for the
system components and their interaction specifications.
In this setting, standard interaction specifications as
well as custom ones can be incorporated directly into
the modelling structure. Interaction specification in
the IDES structure is directly linked to the system be-
haviour. The proposed framework can therefore provide
a systematic way to explore the relationship between
the components interaction and the system behaviour.
Such information can then be utilized to develop effi-
cient analysis procedures for multiprocess discrete event
systems [1].

In the last two decades, several models for parallel
and concurrent logical systems have been proposed. In
[7], a general framework to express parallelism in log-
ical multiprocess systems is introduced through which
the relationship between several modelling formalisms
is investigated. The relation between the system model
and its observed behaviour has been addressed recently
in formal language theory literature. In [4], the notion
of vector controlled concurrent systems was introduced
as a behavioural model for concurrent systems. In this
approach the system is represented by a set of sequential
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processes together with a vector synchronization mech-
anism controlling their mutual synchronization. The
idea originated from the theory of path expressions [2]
and its vector firing sequence semantics. The notion of
vector firing sequences was also introduced in [6] as a
semantic of COSY systems [3]. In another approach [5],
the operation of “shuffle on trajectories” is introduced
as a generalization of the parallel composition of asyn-
chronous systems.

This paper aims to address the relationship between
the system model and its behaviour from a formal lan-
guage perspective. The proposed modeling can rep-
resent many standard synchronous/asynchronous con-
structs such as refinement, serial composition and in-
terleaving. The model can also represent the tree-like
structure of hierarchical interactions. Proofs of the the-
orems in this paper can be found in [1].

2 Preliminaries and notation
Let Σ be an alphabet representing the events in

the process under consideration. A string or word is
a sequence of events. We will write Σ+ for the set
of all nonempty finite strings with events in Σ, and
Σ∗ = Σ+ ∪ {ε}, where ε 6∈ Σ denotes the empty string.
A language over the alphabet Σ is any subset of Σ∗.
The set of languages over Σ will be denoted L(Σ). A
string s′ ∈ Σ∗ is a prefix of s ∈ Σ∗, if ∃u ∈ Σ∗ such that
s′u = s. The prefix closure of a language H ⊆ Σ∗, de-
noted H, is the set of all strings in Σ∗ that are prefixes
of strings in H. The complement of a language L ⊆ Σ∗

is defined as Σ∗ − L and is denoted Lc.
We will extend the above notation to handle multi-

process systems. Let I be the index set of a collection of
processes. An alphabet vector over I is a set {Σi|i ∈ I}
of alphabets. In the following we will use bold letters to
distinguish vector quantities. Let Σ = {Σi|i ∈ I} be an
alphabet vector. The union of all alphabets in Σ will
be denoted α(Σ) or simply Σ if no confusion arises. We
will write Σs for the set of shared (synchronous) events
in Σ, namely Σs =

⋃
i 6=j (Σi ∩ Σj). A multi-process

environment will be referred to as a process space. A
process space is uniquely defined by its alphabet vector,



hence both terms designate the same thing.
A language vector over Σ is a set L = {Li ⊆ Σ∗i |i ∈

I}. The set of all language vectors over Σ is denoted
L(Σ). The language Li is called the ith component of
L. Similarly a string vector is a set s = {si ∈ Σ∗i |i ∈ I}.
For two language vectors L′ and L over Σ, L′ is said
to be a language subvector or simply a subvector of L if
L′i ⊆ Li for all i ∈ I. In this case we write L′ v L. The
componentwise union and componentwise intersection
of L′ and L are denoted L′tL and L′uL, respectively.

The decomposition (vector projection) map P Σ :
L(Σ) → L(Σ) associates each language L ∈ L(Σ) with
the language vector {PiL | i ∈ I} where Pi : Σ∗ → Σ∗i
is the natural projection map that erases all events
other than those of the ith component of Σ. On
the other hand, the composition (synchronous product)
map BΣ : L(Σ) → L(Σ) associates each language vec-
tor with its synchronous product ‖L. To simplify no-
tation we will write PBΣ to denote the composition
P Σ ◦BΣ : L(Σ) → L(Σ), and BP Σ for the composition
BΣ ◦ P Σ : L(Σ) → L(Σ).

3 Process space analysis
Behavioural analysis problems in the multiprocess

space environment usually share two main arguments,
namely, a system consisting of a set of concurrent pro-
cesses, and a specification defining certain tasks or cor-
rectness criteria for the system. It is then required to
check if the system satisfies the given specification and
if not to check whether the system behaviour can be re-
stricted through supervision to satisfy the specification.
In both situations the system behaviour has to be com-
pared to the specification. This comparison is based on
the containment order on the set of languages.

In multiprocess environments, a system of concurrent
processes is represented by a language vector while the
specification is usually given as a language. Direct com-
parison between the two domains is not possible. There-
fore, a transformation from one domain to the other is
necessary for such comparison. Typically, the composi-
tion operation is used to generate the language repre-
senting the behaviour of a given language vector while
the decomposition operation generates the vector pro-
jection of a given language. For any two languages L
and L′ in L(Σ) and any two language vectors L and
L′ in L(Σ), it is straightforward to verify the following
result

Proposition 3.1

P Σ(L ∩ L′) v P Σ(L) u P Σ(L′)
P Σ(L ∪ L′) = P Σ(L) t P Σ(L′)

BΣ(L) ∩BΣ(L′) = BΣ(L uL′)
BΣ(L) ∪BΣ(L′) ⊆ BΣ(L tL′)

2

In order to compare the behaviour of a language vec-
tor to a given language, one of these two transforma-
tions has to be made. In the composition approach,
the language vector of a given system is converted to
the language generated by the system. In this case,
behavioural comparison can be conducted for the sys-
tem with respect to any given specification. However,
it is well-known that the composition operation is in-
tractable with respect to the number of components.

The decomposition (projection) operation is not com-
putationally efficient either. However, in most cases the
system is given as a set of components and the spec-
ification is given as a language. Therefore, it is only
required to decompose the specification. Also, the state
size of the specification is usually much less than the size
of the composite system. Under these assumptions, it
would be more efficient to decompose the specification
into a language vector and then compare it componen-
twise with the language vector of the system. This will
not work, however, as the outcome of this comparison
does not generally reflect the relation between the be-
haviour of the system and the specification.

The problem here is that neither the composition nor
the decomposition operation preserves behavioural in-
formation, or more precisely, the containment order on
the set of languages. In the composition operation in-
formation is lost due to the synchronization constraints,
whereas in the decomposition operation information is
lost because of the ambiguity associated with partial
observations.

4 Compact language vectors
The composition operation enforces strict synchro-

nization of shared events, that is, shared events must be
triggered simultaneously by the corresponding compo-
nents of the system. Under this rule, it is possible that
certain strings in one component do not synchronize
with the other components of the system, and therefore
these strings do not contribute to the overall behaviour
of the system. As a result, componentwise comparison
between language vectors cannot give precise informa-
tion about the relation between their corresponding be-
haviours. This can be resolved by defining a class of
language vectors in which the composition operation is
totally order preserving.1

Let Σ be a process space. Then, for any language
vectors L and L′ in L(Σ) we have

L′ v L =⇒ BΣ(L′) ⊆ BΣ(L)

The reverse direction does not hold in general. There-
fore, the composition operation BΣ is not fully order
preserving. To get a closer look into this situation, con-
sider the kernel of the map BΣ. This kernel defines an

1Within the domain of languages and language vectors, the
term order refers to the (componentwise) containment order.



equivalence relation on the set of language vectors in
L(Σ) in which two language vectors are equivalent if
they generate the same language. Therefore, each coset
of kerBΣ contains a set of language vectors generating
the same behaviour. It is straightforward to see that
the set of language vectors within each coset of kerBΣ

is closed under componentwise intersection as indicated
by Proposition 3.1. Hence, there is a unique minimal el-
ement (with respect to componentwise inclusion) in each
coset that can generate the language associated with the
coset. This minimal element is formally characterized
as follows. A language vector L over the process space
Σ is said to be compact if it satisfies

(∀L′ ∈ L(Σ)) BΣ(L) = BΣ(L′) =⇒ L v L′

Basically, a compact language vector contains the min-
imal set of components that is needed to generate its
language. Hence, L is compact if it is the minimal ele-
ment in its coset in the partition kerBΣ.

It can be verified easily that for a language L ∈ L(Σ),
the language vector P Σ(L) is always compact. There-
fore, if the components of a given system are known
to be equal to the vector projection of the system be-
haviour then this system is compact.

Proposition 4.1 L is compact if and only if L =
PBΣ(L) 2

Therefore, a language vector is compact if and only if
its components are exactly the vector projections of the
composite behaviour of the system. Based on this result,
the compact language vector that can generate the same
behaviour as a language vector L is PBΣ(L). Hence,
we can define a closure operator CΣ : L(Σ) → L(Σ)
that associates each language vector in L(Σ) with the
compact language vector that generates the same be-
haviour. That is, CΣ(L) = PBΣ(L). Note that redun-
dant information in vector languages arises from the set
of incomposable string vectors, which is directly related
to the shared behaviour of the system. Therefore, a
more efficient procedure can be developed for the com-
putation of CΣ(L) by tracing only the shared behaviour
of the system as follows. For i ∈ I, define the language
vector Li derived from the language vector L as follows

Li
i = Σ∗i and (∀j ∈ (I − {i})) Li

j = PsLj

where Ps : Σ∗ → Σ∗s is the natural projection of the
set of shared events in the process space. Hence, Li is
constructed by replacing the ith component of L by Σ∗i ,
and replacing all other components by the correspond-
ing projection onto the shared events. The following
proposition defines another way to compute the map
CΣ. First the following lemma will be needed.

Lemma 4.1 Let Σ and Σo be an alphabet set such that
Σs ⊆ Σo ⊆ Σ and let Po : Σ∗ → Σ∗o be the associated

natural projection. Then,

(∀L ∈ L(Σ)) Po(BΣ(L)) = BΣ(PoL)

2

The above lemma is a simple extension of a result in
[8]. The proof of this extension is direct based on the
associativity of the synchronous product.

Proposition 4.2

CΣ(L) = {Li ∩ Pi(BΣ(Li)) | i ∈ I}

2

Based on the above result, the computation of CΣ de-
pends only on the shared behaviour of the system com-
ponents. This result also confirms that asynchronous
language vectors (containing no shared events) are al-
ways compact.

Proposition 4.3 Let L and S be two compact lan-
guage vectors. Then

BΣ(L) ⊆ BΣ(S) ⇐⇒ L v S

2

This says that the composition operation restricted to
the set of compact language vectors is order preserving.
Because of the importance of this property to basically
all forms of behavioural analysis discussed in this paper,
we will be dealing mainly with compact language vectors
hereafter.

5 Interacting DES
Let Σ be an alphabet vector with index set I. An

interacting discrete event system over Σ is a pair L =
(L,K) where L is a language vector in L(Σ) and K is
a language in L(Σ). The language K will be referred to
as the interaction specification language or simply the
interaction language of the IDES L. We will write Li to
denote the ith component of L. The language generated
by L is given by

BΣ(L) = ‖L ∩ K

Therefore, the IDES structure consists of a set of com-
ponents, represented by the language vector L, running
concurrently, and a language K that synchronizes with
the composite behaviour of these components.

Based on the setting of the IDES model it is possible
to decompose any single process (flat) DES to an IDES
structure that generates the same behaviour. This can
be done by compensating the information lost in the
projection operation, that is, by adding necessary infor-
mation to the composite behaviour BP Σ(L) such that
the overall behaviour of the structure is equal to L. It



is easy to see that, for any language L such a compen-
sator depends on L (is a function of L) and must contain
L. The set of Σ-compensators for L, denoted CΣ(L), is
defined as follows

CΣ(L) = {K ∈ L(Σ) | L = BP Σ(L) ∩K}
The set CΣ(L) is not empty as it contains L. The set
CΣ(L) is closed under union and intersection and hence
has a supremal and infimal element. The infimal ele-
ment of CΣ(L) is L. We will write ČΣ(L) to denote the
infimal element of the set CΣ(L) and ĈΣ(L) to denote
its supremal element.

Proposition 5.1

ĈΣ(L) = L ∪BP Σ(L)c

2

It is easy to see that any language K such that
L ⊆ K ⊆ ĈΣ(L) is a Σ-compensator for L. In gen-
eral a compensator K for L may be blocking in the
sense that the intersection of K with BP Σ(L) may pro-
duce blocking states. We write Co

Σ(L) to denote the set
of nonblocking compensators for L. Formally, the set
Co

Σ(L) is defined as follows:

Co
Σ(L) = {K ∈ CΣ(L) | BΣ(P Σ(L),K) =

BΣ((P Σ(L), K))}
Also, this set is not empty for any language L as it
contains L itself. It is easy to verify that this set is closed
under union and hence contains a supremal element. We
will denote this supremal element by Ĉo

Σ(L) for a given
language L. Therefore, it is always possible to generate
an optimal non-blocking IDES model that generates the
language L. This is based on the following result.

Proposition 5.2

Ĉo
Σ(L) = L ∪

[
LΣ ∩ [BP Σ(L)]c

]
Σ∗

2

Therefore, the supremal non-blocking compensator
Ĉo

Σ(L) can be obtained by adding to L any string that
extends a string in L without being a prefix of BP Σ(L).

6 Abstract interactions
In many practical situations, component interactions

do not affect the internal behviour of the components
but rather their external arrangement. For instance, in
serial composition the system components run sequen-
tially in a way that is independent of the internal struc-
ture of these components.

To capture such specifications, we define the index
equivalence relation, EΣ, generated by Σ, as follows

(σ, σ′) ∈ EΣ ⇐⇒ (∀i ∈ I) σ ∈ Σi ⇔ σ′ ∈ Σi

That is, two events are equivalent with respect to EΣ if
they are shared (triggered) by exactly the same set of
components. Consequently, each coset of EΣ is associ-
ated with a subset of I where the corresponding com-
ponents share exactly the events of the coset. The coset
of EΣ that contains the event σ will be denoted [σ]Σ.

The set of subsets of I that are associated with the
cosets of the index equivalence relation, EΣ, will be de-
noted IΣ. Each element in the set IΣ can be viewed as
an abstract event that corresponds to a transition made
simultaneously and collectively by the corresponding set
of components. Define the map fΣ : α(Σ) → IΣ as fol-
lows (recall that IΣ ⊆ Pwr(I)),

(∀σ ∈ Σ) fΣ(σ) = {i ∈ I | σ ∈ Σi}

The map fΣ associates every event in Σ with the set
of components in the process space Σ that have to co-
ordinate in triggering this event. The function fΣ is
extended over languages in the usual way.

Languages over the set IΣ can be viewed as a form
of abstract behaviour that does not distinguish between
the events in the system components while recogniz-
ing the boundaries of the system components and their
synchronization constraints. Languages over IΣ will be
referred to as abstract layouts. The corresponding lan-
guages over the alphabet set Σ will be referred to as
layouts. Formally, a layout in the process space Σ is a
language K ∈ L(Σ) that satisfies

(∀(σ, σ′) ∈ ker fΣ)(∀u, v ∈ Σ∗) uσv ∈ K ⇐⇒ uσ′v ∈ K

It is easy to see that the above condition is equivalent to
having K = f−1

Σ (fΣ(K)). The composition map f−1
Σ ◦

fΣ : L(Σ) → L(Σ) will be referred to as the natural
abstraction map and will be denoted FΣ.

The set of layouts over Σ will be denoted Y(Σ).
Clearly, there is a bijective correspondence between the
set of layouts and the set of languages over IΣ repre-
senting the set of abstract layouts. Therefore, we will
not distinguish between these two sets as long as the
interpretation is clear from the context.

Abstract interaction specifications (ideally) do not
impose any restriction on the internal dynamics of the
system components. If this is valid for all language vec-
tors in the process space, then we say that this inter-
action specification is universal. Parallel composition
(K = Σ∗) is an example of a universal interaction speci-
fication. Universality is achieved if the projection of the
interaction specification is equal to the supremal lan-
guage vector in the corresponding process space. That
is, a specification K is universal if P Σ(K) = P Σ(Σ∗).

Example 1 Let Σ = {{ai, bi, ci, di, x} | i ∈ [1, 2, 3]} be
a process space. The index equivalence relation is EΣ =
{{a1, b1, c1, d1}, {a2, b2, c2, d2}, {a3, b3, c3, d3}, {x}}.
The corresponding abstract events will be denoted U ,



V , W and X respectively. The natural abstraction map
here is defined as follows; FΣ(x) = {x} and

FΣ(ai) = FΣ(bi) = FΣ(ci) = FΣ(di) = {ai, bi, ci, di}
for i ∈ [1, 2, 3]. Now, consider a system consisting of
three machines in this process space. The overall system
is shown in Figure 1 for the layout K = {U, V, W,X}∗
which allows the components to run in parallel.

a1 a3

b3
V

c1

b1
W x

d3
c3

X

x a2

c2

b2

xU

d1

U, V, W, X

Figure 1: The IDES structure of three machines

Figure 2 shows another interaction setting where the
first two machines run in parallel and are then followed
by the third machine in a continuous cycle.

L1 L3L2

L3

x

(L, K)

x
L1‖L2

x

d1

U x

b2

c2

a2
x

X

c3d3

xW
b1

c1

V
b3

a3a1

U, V
U, V

XX

X

WW

Figure 2: The three machines in another configuration

The overall system behaviour is outlined in the above
figure. The detailed state machines for L1‖L2 and L3

are omitted for simplicity. 2

Many standard language operations can be simulated
using layouts as the corresponding interaction specifica-
tions. In the following, some standard binary operations
and their corresponding interaction specifications are

presented for the process space Σ = {Σ1, Σ2} consist-
ing of two components where the corresponding abstract
events are denoted U(= Σ1 − Σ2), X(= Σ1 ∩ Σ2), V (=
Σ2 − Σ2).

Serial composition

In asynchronous environments serial composition can
be simulated by the layout K = U∗V ∗. Note that this
layout is a universal interaction specification. For syn-
chronous environments, the layout K = U∗X∗V ∗ can
simulate a form of synchronous composition where one
process starts then synchronizes with a second process
and then the second process continues and exits.

Parallel composition

Parallel composition corresponds to the least restric-
tive interaction (no restriction at all) between the sys-
tem components. This interaction is represented sim-
ply by the synchronous product operation which can be
simulated by the layout K = {U,X, V }∗.
Refinement

Language refinements can be expressed using the gen-
eralized language composition under certain assump-
tions. For instance, when shared events are used to ini-
tialize the extension (substitution) procedure while all
other events are considered internal (not shared). This
means that each event σ in Σ is mapped to a language in
∆∗, where Σ ⊆ ∆, in the form σH, where H ⊆ (∆−Σ)∗.
This form of refinement can be simulated by the layout
K = {U,XV ∗}∗.

In handshaking, on the other hand, shared events are
used to initiate the extension (refinement) and they are
also required to signal its termination. Generally, there
are four disjoint sets of events; initiating events, termi-
nating events, internal events of the calling subsystem
and internal events of the called subsystem. Consid-
ering the same set of initiating and terminating events,
handshaking refinements can be simulated by the layout
K = {U,XV ∗X}∗.
Interleaving

In interleaving interaction two or more systems are
executed interchangeably based on certain time limits
and priority schemes. In the simple setting of two sys-
tems with equal priorities, no timing constraints, and
no shared events, interleaving can be represented by the
(universal) layout K = (UV )∗(U + ε). Figure 3 shows
this layout as well as the layout of some other standard
interactions.

7 Multilevel interaction
The IDES model can be extended to provide direct

representation of hierarchical multiprocess DES. This
requires expanding the interaction specification from a
language to a structure that matches the organization of
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Figure 3: The Layouts of Some Standard Interactions

the systems. This interaction structure can be viewed as
a more detailed representation of the interaction spec-
ification of the system, consisting of an ordered set of
local specifications, each one of which targets a specified
level of the system description.

Let Π and Σ be two alphabet vectors with index sets
I and J respectively such that α(Σ) = α(Π). We say
that Π is a cover for Σ, written Σ ¹ Π, if

1. (∀i ∈ I)(∀j ∈ J) Σi ∩Πj 6= ∅ =⇒ Σi ⊆ Πj ,
2. (∀i ∈ I)(∀j, k ∈ J) Σi ⊆ (Πj ∩Πk) =⇒ j = k.

That is, every component in Σ is a subset of some
unique component of Π and every component of Π is
the union of a unique set of components in Σ. Hence,
each j ∈ J corresponds to a unique subset of I and,
under this correspondence, the set J can be identified
with a partition of I. Note that, in general, both Σ and
Π may contain shared events. We will write Σ ≺ Π
for the case when Σ ¹ Π and Σ 6= Π. For example,
consider the case where Σ = {(a, b, x), (c, x, y), (y, d)}
and Π = {(a, b, x), (c, d, x, y)}. Then, Σ ≺ Π.

A formal model for multilevel interaction in hierar-
chical systems can be defined based on the above de-
scription. An N -level interaction structure for the pro-
cess space Σ is defined as the tuple (Π, K), where the
first element Π is a set of alphabet vectors {Σn | n ∈
[1 . . . N ], α(Σn) = α(Σ)}, referred to as a process space
structure, satisfying

(∀n ∈ [1 . . . N−1]) Σ ≺ Σn ≺ Σn+1 and ΣN = {Σ}

That is each alphabet vector in Π is a cover for any
lower rank alphabet vector. The highest rank alphabet
vector has one component, namely, the alphabet set Σ.
A set of partitions for the index set I will be used as
indices for the set Π. This set of indices is denoted IΨ

and defined as follows,

IΨ = {In ∈ EI , n ∈ [1, N ] | (∀i ∈ [1, N − 1]) Ii < Ii+1}

where EI is the set of all partitions of the set I. Each
element In ∈ IΨ serves as an index for the alphabet
vector Σn ∈ Π. Recall that each element in In is a
subset of I and the set In is a partition of I. Also,
the partition In is finer than the partition In+1 for all
n ∈ [1 . . . N ], and at the top level IN = {I}.

The following convention will be used to identify the
components in the set of alphabet vectors Π. Each com-

ponent will have two subscripts. The first subscript in-
dicates the abstraction level and the second one indi-
cates the index of the component. For example, Σn,j

denotes the component j of the alphabet vector Σn at
the nth level. Note that in this hierarchy, each alpha-
bet component in a given level covers (that is, contains
the alphabet of) a unique set of components at the next
lower level. The subvector of Σn−1 that is covered by
the component Σn,j at the next upper level will be de-
noted Σn,j .

The second element K is a set of interaction language
vectors {Kn|n ∈ [1 . . . N ]} satisfying

(∀n ∈ [1 . . . N ]) Kn = {Kn,j ⊆ Σ∗n,j | j ∈ In}

Here also two subscripts will be used to identify each
interaction language in the set K similar to the con-
vention used above. So, Kn,j is the component j of the
language vector Kn at the nth level.

Example 2 Let Σ = {(a, x), (b, x, y), (c, y), (d, y)} be a
process space over the index set I = {1, 2, 3, 4}. Let
Ψ = (Π, K) be a 2-level interaction structure over Σ
defined as follows

1. Π = {Σ1,Σ2}, with
Σ1 = {{a, b, x, y}, {c, d, y}} = {Σ1,A, Σ1,B},
Σ2 = {{a, b, c, d, x, y}} = {Σ2,I}

2. K = {K1, K2}, with K1 = {K1,A,K1,B}, and
K2 = {K2,I}, where
K1,A ⊆ Σ∗1,A, K1,B ⊆ Σ∗1,B , and K2,I ⊆ Σ∗2,I

The interaction structure Ψ applied to a language vector
L is shown in the following figure.

K1,1

L4L3L2L1

K1,2

K2,1

Here we have IΨ = {I1, I2} where, I1 = {{1, 2}, {3, 4}}
and I2 = {{1, 2, 3, 4}. In the above we write A for {1, 2}
and B for {2, 3}. 2

The composition operation BΣ can now be extended
to handle multiprocess systems with interaction struc-
ture specification. Let L be a language vector over Σ
and let Ψ = (Π, K) be an interaction structure over Σ.
The composition of L under Ψ, denoted BΣ(L,Ψ), is



defined through the following recursion. Let L0 = L.
For each i ∈ [1 . . . N ] define

Li = {Ki,J ∩ ‖j∈JLi−1,j | J ∈ Ii}

where Li−1,j is the component j of the language vec-
tor Li−1. This iteration will end up with the language
vector LN which contains a single element, LN,I , which
is the result of the compound composition BΣ(L, Ψ).
That is,

BΣ(L, Ψ) = LN,I

Clearly, BΣ(L, Ψ) is the language generated by the lan-
guage vector L under the restriction of the interaction
structure Ψ. Applying the above recursion on the last
example we get,

L0 = {L0,i | L0,i = Li, i ∈ [1, . . . , 4]} = L,

L1 = {L1,1, L1,2}, where
L1,1 = (L0,1‖L0,2) ∩K1,A, L1,2 = (L0,3‖L0,4) ∩K1,B ,

L2 = {L2,1}, where
L2,1 = (L1,1‖L1,2) ∩K2,I , BΣ(L, Ψ) = L2,I

It is worthwhile to see if the effect of the interaction
structure Ψ on a given alphabet vector can be simu-
lated by an interaction language. Define the language
BΣ(P Σ(Σ∗), Ψ) as the interaction language generated
by interaction structure Ψ. This language may be re-
ferred to as the Ψ-interaction language and will be de-
noted KΨ. Based on its definition, the language KΨ can
be obtained by composing the set K recursively starting
from the vector K1 in a way similar to the procedure
described above for computing BΣ. Applying this pro-
cedure to the last example we get

KΨ = ( K1,A ‖K1,B ) ∩ K2,I

We claim that the language KΨ simulates the effect of
the interaction structure Ψ on any given language vec-
tor in the process space Σ. That is, the restriction of
any language vector L in Σ to KΨ is equivalent to the
restriction of L to the structure Ψ. Let Σi ⊆ Σj be two
alphabet sets. We will write Pj/i : Σ∗j → Σ∗i for the
natural projection from Σj to Σi. The inverse of this
projection is denoted P−1

j/i .

Lemma 7.1 Let Σi ⊆ Σj ⊆ Σk be alphabet sets.
Then,

P−1
k/j ◦ P−1

j/i = P−1
k/i

2

The following result confirms the claim above and
shows that the restriction effect of any interaction struc-
ture on a given language can be simulated by an inter-
action language that depends only on the interaction
structure.

Theorem 7.1 Let Ψ be an interaction structure in the
process space Σ. Then

(∀L ∈ L(Σ)) BΣ(L,Ψ) = BΣ(L, KΨ)

2

Based on the above result, an IDES model can be
represented as a tuple L = (L, Ψ) where Ψ is an in-
teraction structure. The same system can be described
by the multilevel IDES L = (L, KΨ), where KΨ is the
interaction language equivalent to Ψ.

Layout languages were introduced earlier to repre-
sent abstract interaction specifications. The abstract
characteristics of layouts can be extended to the multi-
level interaction structure as follows. In a process space
Σ with index set I, an N -level interaction structure
Ψ = (Π, K) is said to be a layout structure if

(∀In ∈ IΨ)(∀j ∈ In) Kn,j ∈ Y(Σn,j)

That is, every interaction language in the set K is a
layout with respect to the corresponding process space.
The following result shows that the interaction language
generated by a layout structure is a layout.

Proposition 7.1

Ψ is a layout structure =⇒ KΨ is a layout

2

A multilevel system can be represented as a tree in
which the components appear at the end leaves inside
rounded boxes while interaction languages are shown
at all other nodes inside double boxes. In this diagram
each interaction language shows the interaction between
the components that directly descend from its node.

Example 3 This example is a slightly modified version
of the three machines system of example 1. In this exam-
ple an extra shared event, y, is used to allow more flexi-
ble arrangements of the system. The system is arranged
in order to satisfy the following two requirements;

• The second machine can be initiated only after
event c1 and must terminate before the event d1

• The third machine works only after the first ma-
chine and must terminate before any of the two
machines can start again.

This arrangement can be represented as a hierarchical
layout structure as shown in the Figure 4. In this figure,
the layout K1 restricts the first two machines in accor-
dance with the first specification. The second specifica-
tion is handled at the second level using the upper level
layout.Note that in the first level the abstract event Z
refers to the event shared between the composition of
the first two machines (under K1) and the third ma-
chine, namely the event y.

Figure 5 shows the above system under the interaction
language generated by the above interaction structure.

2
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Figure 5: The IDES of the three machines system

Multilevel decomposition

Let Π = {Σn | n ∈ [1 . . . N ]} be an N -level process
space structure over the process space Σ and let S be a
language in L(Σ). An interaction structure Ψ = (Π, K)
is said to be a compensation structure for S if the com-
position of P Σ(S) under the interaction structure Ψ is
equal to S, namely

S = BΣ(P Σ(S), Ψ)

Based on Theorem 7.1, Ψ is a compensation structure
for S if and only if KΨ ∈ CΣ(S). Let Ψ1 = (Π,K1)
and Ψ2 = (Π, K2) be two interaction structures. The
componentwise union of Ψ1 and Ψ2 is denoted Ψ1 tΨ2

and is given as a structure Ψ1 = (Π, K) where

K = {Kn1 tKn2 | n ∈ [1 . . . N ]}

That is, the interaction vectors of K are the componen-
twise union of the corresponding interaction vectors in
K1 and K2. Componentwise intersection of interaction
structures is defined similarly. Note that in both op-
erations the arguments and the output are structurally
matched, namely, defined over the same process space
structure Π. It can be shown easily that the set of com-
pensation structures for a given language S is closed
under componentwise union and therefore has a supre-
mal element. Clearly, if Ψ is the supremal compensation
structure for S then KΨ = ĈΣ(S).

For a process space Σ and N -level process space struc-
ture Π over Σ with N > 1, it is easy to see that the
supremal compensation structure for a language S ⊆ Σ∗

is given by (Π, K) where,

Ki = P Σi
(Σ∗) i ∈ [1 . . . N − 1]

and KN = {ĈΣ(S)}. That is, the rth component of
Kj ∈ K, with 1 ≤ j < N is given as Kr,j = Σ∗r,j .
The supremality of this compensation structure is direct
based on the associativity of the synchronous product
operation.
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