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Abstract – In this paper we present an approach for
QoS management that can be applied for a general class
of real-time distributed computation systems. In this pa-
per, the QoS adaptation problem is formulated based on
a utility function that measures the relative performance
of the system. A limited-horizon online supervisory con-
troller is used for this purpose. The online controller ex-
plores a limited region of the state-space of the system at
each time step and decides the best action accordingly.
The feasibility and accuracy of the online algorithm can
be assessed at design time.

Keywords: Quality of service management, online hy-
brid control,switching systems

1 Introduction
In multi-process environment with performance vari-

ations, multiple applications share and compete for a
limited amount of resources. Given the variations of re-
source availability, an adaptation mechanism needs to
be implemented to ensure certain level of fairness and
minimum level of services as well as satisfying user-
defined priorities among the competing applications.
This requires applications, in distributed computing en-
vironment, to be able to adjust their demands based
on the availability of resources while preserving the re-
quirements of their critical components. In addition,
the overall system must posses a capability to rearrange
the resources between various applications depending on
their demands and the availability of resources.

There is a growing interest to apply automatic control
techniques for QoS management in distributed compu-
tation systems. In [8] a two level control structure is
used to manage QoS at the middleware level. In this
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framework, a PID controller is used to adjust the re-
source distribution at the system level. The adaptation
provided from this controller is mapped to specific ap-
plication adaptation using fuzzy controllers. A flexible
structure for control-based adaptation is presented in
[12]. The underlying project aims to provide a library
to create feedback control loops for QoS management
and adaptation. Another toolkit to construct feedback
control loops is described in [7]. Combined estimation
and compensation control has been applied in [10] to en-
hance the performance of a Lotus Notes server. Control
theoretic techniques have also been used for congestion
control in networks [2].

In the devolvement of feedback control for QoS man-
agement, a (linear) discrete-time model is usually as-
sumed. However, the dynamics of practical distributed
computation systems are typically complex involving
both discrete-event and continuous-time dynamics. Sys-
tems with such mixed discrete-event and continuous-
time dynamics are usually referred to as Hybrid systems.
Considerable research work has been dedicated recently
to the study of hybrid systems. See for example [4, 5]
and the references therein.

In this paper, we present an online approach to the
QoS adaptation of a general class of real-time comput-
ing systems modeled as switching hybrid system. The
QoS control problem requires the system to optimize
a given utility function during its operation. The pro-
posed approach does not require the existence of a finite-
state quotient equivalent for the system. Moreover,
the approach can be adapted to accommodate possi-
ble changes in the system parameters that may occur as
a result of a fault or parameter changes in time-varying
systems.

The proposed procedure is conceptually similar to the
model predictive control approach [9, 11] in which a lim-
ited time forecast of the process behavior at each state
is optimized according to given criteria. Also related to
our work is the limited lookahead supervision of discrete
event systems (DES) [6]. In this approach a tree of all
possible states is generated up to a given depth, then a
control action is chosen to satisfy the specification.



2 Modeling for QoS management
In order to utilize control theory for QoS adaptation

a suitable model for the underlying computational sys-
tem needs to be established. System model captures the
relationship between the observed system parameters -
particularly, those relevant to the requirement specifi-
cations - and the control inputs used to adjust these
parameters. In general, the system model can be given
at the outset or identified through parameter estima-
tion techniques. Typically, an initial model is build for
those system components with known dynamics while
parameter estimation and learning techniques are used
to identify other unknown parts of the system.

Typical distributed computation systems contain
both time and event-driven dynamics. The timed-driven
dynamics are usually sampled in practical systems so
without loss of generalization we will assume that such
dynamics is described by discrete-time difference equa-
tions. In real-time computation systems queues, filters,
and sampling units can be modeled as (linear) discrete-
time systems. On the other hand communication proto-
cols and certain software components are event-driven
structures which can be described by finite state ma-
chines possibly with timing information. Such com-
ponents of different dynamics can interact through an
interface composed of event generators that maps dis-
crete time signals into events (for example a threshold
detection event), and actuators which maps events to
discrete-time signals (for example a desired level of the
queue).

There are several available models to describe hybrid
dynamic systems. A general class of hybrid systems
can be represented by hybrid automata [3]. In this pa-
per, however, we consider a special class of hybrid sys-
tems, referred to as switching systems, that can describe
switching dynamics associated with most real-time com-
putation systems. Switching hybrid system can be de-
scribed by the discrete-time equation

x(k + 1) = φ(x(k), r(k))

where k ∈ 0, 1, . . . is the time index, x(k) ⊂ Rn is the
sampled form of the continuous state vector at time k,
and r(k) ⊂ Rm is the discrete valued input vector at
time k. We will use X and R to denote the state space
and the input set for the system, respectively. For each
input r ∈ R, the function φ(., r) is continuous in X
and meets the conditions for existence and uniqueness
of solutions for a set of initial states Xo ⊆ X. We as-
sume that the set of inputs R is finite. Boldface letters
are used here to denote vectors and vector-valued sig-
nals. We will use the subscript i to distinguish the ith
component for a vector, for example, xi denotes the ith
component of the state vector x, and φi(x, r) denotes
the ith component of the map φ(x, r).

The above model is general enough to describe a wide
class of hybrid systems, including nonlinear systems and

piece-wise linear systems. The requirement that the in-
put set R is finite is typical in many practical computer-
controlled systems, where the input is usually discrete
and restricted to a finite set. It is important to note,
however, that the proposed online control approach is
more suitable for systems with small number of control
inputs as, in general, the size of the search tree grows
exponentially with the number of input switching sig-
nals which is proportional to the size of the input set.
Many real-time computation systems have a limited fi-
nite (quantized) set of control inputs and therefore can
be adequately captured using the above model.

In real-time computation systems, performance spec-
ifications can be classified into two categories. The first
type is set-point specifications in which the underly-
ing parameter (variable) is required to be maintained
at specific level or follow a certain pattern. Examples
of this type include utilization level of the server, min-
imal acceptable frame rate, and queue size. The other
type of specification is used for performance enhance-
ment where it is required to maximize or minimize the
underlying variable. In this case several variables can be
lumped together with different weights in one function,
typically referred to as utility or cost function. In gen-
eral, it is assumed that the two sets of variables involved
in these two types of specifications are disjoint.

The objective of adaptation is to achieve the desired
levels of the set-point specifications in reasonable time
while maintaining the system stable at the desired value.
In addition, it is required to optimize the given utility
functions. In most situations, set-point specifications
take precedence over utility optimization. Due to the
nature of the computation environment, it is common
that variables that contribute to the utility function are
evaluated over a quantized finite domain. For example,
the quality of the result of a given task varies with re-
spect to the size of the input which can only take a finite
set of values.

In this paper we are primarily dealing with the sec-
ond type of specifications. We assume that the optimal
performance of system is expressed in a utility function
defined over a finite domain of systems variables and
parameters. However, it is easy to see that a utility
function can also be used for set point control by con-
sidering the difference between the current value and
the desired level. The precedence factor can be approx-
imated by considering high weights for the set point
variables relative to the utility variables.

3 Control of switching systems
The problem of optimal performance is stated as fol-

lows. Given a switching hybrid system H and a utility
function U and a range of operation Xr ⊆ X, design a
supervisor S that can maximize the given utility func-
tion for the given region of operation. In this paper we
assume that the set Xr is convex. The key requirement



to the success of this control action is the ability of the
controller to keep minimizing the given utility function
at any point in the operation region of the system. It
is also required that the system is maintained within a
predefined operation region which is typically defined
as a limit on the values of some or all of the system
variables.

To achieve the above objective, we propose an online
supervision algorithm that explores only a limited part
of the system state space and selects the next input
based on the available information about the current
state. For the safety control problem, the selection of
the next step is based on a utility map U : Rn → R
that defines the current level of performance of the sys-
tem. We assume that the argument of the map U is the
current state vector x. However, this can be easily ex-
tended to include input variables as well. The decision
of the controller is also influenced by the boundary of
the given operation region where it is required to main-
tain the system variables within.

The online supervision algorithm starts by construct-
ing the tree of all possible future states from the current
state xc up to a specified depth. To avoid the Zeno ef-
fect, in which the controller may try to preempt time
indefinitely through continuous switching, we require
that any input switching event is followed by at least
one sampling period. The exploration procedure identi-
fies the set of states with the utility based on the map U .
A state xm is then chosen from this set based on certain
optimality criterion (for example, minimal input switch-
ing), or simply picked at random. The chosen state is
then traced back to the current state xc and the event
leading to xm is used for the next step.

Giving the limited exploration nature of the online
algorithm, it is important to obtain a measure of fea-
sibility to determine if the online control will be able
to maximize (minimize) the given performance measure
in a finite time. Such measure is particularly impor-
tant in uncertain environments where the system vari-
ables may be influenced with some stochastic factors.
Such situation is not uncommon in real-time distributed
computation system where, for instance, system perfor-
mance may be affected by noise, communication delay,
and measurement inaccuracy. The feasibility measure
can provide an assurance that the system will continue
to improve its performance even in the presence of such
unpredictable factors.

The utility optimization problem can be formulated
as a safety control problem as presented in [1]. This is
the case when the optimal value of the utility within the
given region can be calculated online. In this case, let
xo be the value of the system variables corresponding to
the optimal utility. In the online control, the selection
of the next step would then be based on a distance map
Ds : Rn → R that defines how close the current state is
to the optimal state. The distance map can be generally

defined as follows

(∀x ∈ Xr) Ds(x) = ‖x− xo‖
where ‖.‖ is a proper norm for Rn. In other words,
Ds(x) defines the minimal distance between x to the
optimal state. The above measure can be extended eas-
ily to the case when optimal utility is associated with a
region Xo rather than a point. In this case, Ds(x) will
be defined as the minimal radius of all spheres centered
at x that contain at least one point from Xs.

Given the above settings, a hybrid system H is said
to be online controllable in the region Xr ⊆ X if there
exists δ̌Xr

> 0 such that for any partition {n+, n−} of
the set [1 . . . n] there exists an input r ∈ R such that
(∀x ∈ Xo)(∀i ∈ [1 . . . n]),

i ∈ n+ ⇒ φi(x, r)− xi > δ̌Xo
,

i ∈ n− ⇒ xi − φi(x, r) > δ̌Xo

That is, H is online controllable in the region Xr if
at any state x ∈ Xr it is always possible to find an
input that can control the next step direction by incre-
menting some components of x and decrementing the
other components. The requirement that the increments
(decrements) be greater than a given positive number is
needed to ensure that the system does not converge to
a fixed point within the region Xr.

Consider a hybrid system H which is online control-
lable within a region Xr. For a state xr ∈ Xr write
φc(xr, k) for the state x(k) obtained from the online
control algorithm after k time steps starting from xr.
The accuracy error of the online controller within the
region Xr and for a distance map Ds after k time steps
is defined as follows,

Ek(Xr, Ds) = min{Ds(φc(xr, k)) | xr ∈ Xr}
That is, Ek(Xr, Ds) is the minimal distance to the safe
region that can be obtained starting at any state in Xo

after k time steps. The accuracy error of the online
controller can be estimated based on the upper limit
of the distance covered by the system in a single step.
Write δ̂Xr for the maximal single step absolute change
to any component in a state x ∈ Xr under any input
from R, namely δ̂Xr is equal to

max{|φi(x, r)− xi| | x ∈ Xr, r ∈ R, i ∈ [1 . . . n]}

Write δ̂Xr for the vector (δ̂Xr , . . . , δ̂Xr ). Then,

Proposition 1 There exists N > 0 such that

(∀k > N) Ek(Xr, Ds) ≤ 0.5‖δ̂Xr‖
2

Therefore, an online controllable system H can be
driven by the online controller in finite time to the op-
timal state xo ∈ Xr with a maximum accuracy error of



0.5‖δ̂Xr
‖. This means it is always possible to reach a

near optimal performance (depending on the accuracy)
in a finite time interval. In the implementation of the
online control, the set Xr may need to be adjusted to
take into account this accuracy error as well as the ex-
istence of measurement noise.

The parameters δ̌Xr
, δ̂Xr

can be used to reduce the
search tree in the online control algorithm. The algo-
rithm can safely stop exploring if there is no prospect of
further reduction in the current minimal distance along
any path starting from the current node up to the limit
of the search tree. This can easily be determined using
the values δ̌Xr , δ̂Xr , and the predefined depth of the
search tree.

4 Case study
This section describes a prototype signal detection

system, developed by Southwest Research Institute, San
Antonio, Texas, that we are using to evaluate the QoS
adaptation approach presented above. A typical sig-
nal detection system accepts as input a finite-duration,
time-domain signal and classifies it according to the
properties of interest, such as modulation (Phase Shift
Keying vs. Frequency Shift Keying), carrier frequency,
symbol rate, etc. The signal classification takes a finite
amount of time, and provides a confidence measure in
the quality of the results. The classification is done us-
ing highly involved signal processing algorithms. It is
often the case that several of these detection algorithms
are parameterized and may be ”tuned” to trade-off the
quality (accuracy) of the result with the computation
time in order to achieve the desired real-time perfor-
mance. The system operates as follow:

1. A random number of new signals arrive at any given
point of time in the field of operation of the system.
The number of signal arriving at time k is denoted
B(k). In certain situations, the number of arriving
signals can be approximated as an auto-regressive
stochastic process.

2. Typically there are more than one signal arriving at
each time unit. These signals are added to a FIFO
queue in order to be processed by the system.

3. The signal detection module removes one signal
from the queue, buffers it temporarily and processes
a fraction (we refer to this fraction as feature level
in the rest of this section) of it. In case the pro-
cessed fraction was sufficient to correctly classify
the signal, as determined by the lower threshold
on the confidence measure, then the signals is dis-
carded from the buffer and a new signal is fetched
from the queue. Otherwise, a larger fraction of the
signal is taken from the buffer and classification is
reattempted on this larger fraction. The end re-
sult of the signal detection is the estimated symbol

rate, the computation time required, and a confi-
dence measure. Note that the confidence as well as
the computation time required depends upon the
fraction of the signal that is used for classification.

4. A user-defined utility function continuously as-
sesses the utility of the system which. The utility
is defined with respect to the quality of the results
i.e. confidence measure, the throughput i.e. the
number of signals classified per unit of time which
is a function of the average compute time, and the
latency i.e. time between when signal enters the
queue, and when it is classified, which is a function
of the queue-size.

The above operational scenario is augmented with an
online controller module that monitors various system
variables and estimates the utility of the system, and
adjusts the feature level in a closed loop such that the
overall utility of the system is maximized.

We have realized this operational scenario in a Mat-
Lab/Simulink model. Figure 1 depicts the Simulink
model of the signal detection system integrated with
an online controller. The individual modules in the
Simulink model are described below.

Signal Source This module simulates the arrival of
new signals in the field of operation of the system.
At any time instant, this block adds n signals to
the queue. The signals are real data signals, read
from pre-recorded wave files. The number of signals
arriving at time k is denoted B(k). In many situa-
tions, it is reasonable to approximate the incoming
signals as an auto-regressive stochastic process.

Queue This module simulates a queueing function that
updates the number of unprocessed signals in the
queue based on the number of new signals received,
and the signals being processed by the signal de-
tection module. The current level of the queue is
denoted q(k).

Buffer This module simulates a signal buffer. Depend-
ing on the state of the switch v(k+1), as set by the
controller module, it either retrieves a new signal
from the queue, and dispatches a fraction n(k + 1)
of it to the signal detection module, or delivers an-
other fraction of the same (previously retrieved)
signal to the signal detection module.

Signal Detection This module performs classification
on the fraction of the signal delivered by the buffer
module. It uses a PSK feature extraction algo-
rithm provided by Southwest Research Institute.
The module outputs the PSK symbol rate, as well
as a confidence measure c(k) which estimates the
quality of the computations, and computation time.

The online control module uses the Utility module
to obtain an estimation of the next step utility given
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Figure 1: The Signal Detection System with Online Control

the current state and inputs. The Utility module relies
on two estimation modules. The first is the signal es-
timation module which estimates the next level of the
queue based on the current level and the estimated sig-
nal model. The estimated next queue level is given by

q̂(k + 1) = q(k) + B̂(k)t̂(k)− v(k + 1)

where B̂(k) is the estimated rate of incoming signal, t̂(k)
is the estimated computation time per data unit. Note
that in the above setting, the time between the k and
k + 1 instances, denoted t(k) is not fixed and depends
on the amount of data input to the Feature extraction
module, namely, n(k + 1). Typically t(k) grows almost
linearly with n(k+1). Also, an auto-regressive model is
used to estimate B(k) given the previous measurement.
The parameters of this model is update at each time
instance.

The quality of the processing at the feature extraction
algorithm is given through a confidence measure c(k).
The confidence c(k) depends to a large extent on the
size of the feature level n(k +1). An initial model to es-
timate the next confidence is obtained initially through
simulation. The estimated confidence is given by

ĉ(k+1) =





α n(k + 1) if v(k + 1) = 1
c(k) + α n(k + 1) if v(k + 1) = 0

and n(k + 1) > Ns

β otherwise

The parameters α, β,Ns are set initially from the sim-
ulation data and updated with the new information at
each time instant. The objective of the online controller
is to maximize the following utility function

U(k) = a1 [q(k)]2 + a2 [c(k)]2

The factors a1 and a2 are user specified and defines the
relative importance of the real-time versus accuracy per-
formance of the system. The online controller uses the
estimated utility Û(k+1) (based on q̂(k+1) and ĉ(k+1))
for given set of inputs up to a finite number of forward
steps to decide the best input to maximize the utility.

Simulation result

Figures 2 and 3 below show some results from a sim-
ulation run. It can be observed from the results shown
below that the controller tunes the feature level, to max-
imize the utility, which decrease because of increasing
queue size over some periods. In the absence of such
adaptation it can be expected that the queues will over-
flow, resulting in either system failure or missing of po-
tentially interesting signals.

5 Conclusion
In this paper we presented an online hybrid control

approach for the QoS management which can be ap-
plied to a wide range of real-time distributed computa-
tion systems. The proposed approach explores a limited
depth tree of all possible transitions from the current
states. The online controller can be tested at design
time for feasibility and accuracy.
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