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Abstract

This technical report introduces an approach for robust diagnosis of a general class
of multi-mode systems. The proposed approach is based on a temporal mode-dependant
failure propagation model referred to as hybrid failure propagation graph (HFPG). The
HFPG model is a labeled graph that represents failure conditions and their propagation
effect (causal consequences) as causal relations with timing and mode switching properties.
The proposed approach targets a general class of systems with both time and event driven
dynamics such as hybrid and discrete event systems.

1 Introduction

Large engineering systems such as manufacturing systems, power networks, and chemical plants
are usually designed for autonomous or semi-autonomous operation. Automated diagnosis and
control forms a necessary part of these systems. Accurate and speedy diagnosis of faults is
vital to their health and efficiency. In general, diagnostic modules aim to detect (recognize the
occurrence of fault), isolate (identify faulty components) and estimate (determine the parameter
value of faulty components) system failures by observing signals and measurements from the
system sensors and actuators, comparing it with a model representing nominal and/or faulty
behavior, and explaining the observed behavior in terms of a set of hypotheses about possible
changes to the parameters of the system components.

For diagnosis, two kinds of modeling paradigms have been commonly used to describe the
behavior of engineering systems: analytical models and fault models. Analytical models such as
difference and differential state equations, finite state machines, and hybrid automata are used
to describe the nominal (correct) system behavior. The choice of the model depends on the
physical characteristics of the system and scope of analysis. Modern diagnosis approaches infer
fault occurrences by comparing the observed behavior of the system with the given analytical
model. From the analytical (model-based) diagnosis viewpoint, the system model defines a con-
sistency relationship between the system behavior and its parameter. A fault occurrence reflects
a change in the consistency relationship in which the observed behavior no longer corresponds
to the one defined by the nominal system model. Model-based diagnosis involves monitoring the
set of measured variables, detecting inconsistencies between measured and nominal behavior,
and linking these inconsistencies to changes in specific model parameters.
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The analytical approach, however, depends on the availability of a precise mathematical
model which is difficult to obtain for many practical real-life systems. Even when a precise
model can be obtained the computational requirements of model-based diagnosis procedures
are usually prohibitive. To address the complexity in most engineering systems, researchers have
used abstraction techniques to reduce the complexity of the model while preserving relevant
information regarding the system behavior. In multiprocess systems, distributed model-based
reasoning techniques have been used also to reduce the complexity of diagnosis algorithms by
limiting the analysis to individual system components.

On the other hand, associative models such as fault trees, cause-consequence diagrams,
diagnosis dictionaries, and expert systems describe system behavior when faults are present [1, 6,
7]. Typically, association-based models emulate a human expert diagnosing faults and are used
for diagnosis of complex systems which can not be modeled analytically. The underlying fault
models usually describe qualitatively the causal relationship (dependency) between observed
signals and failure sources. Sensors signals are used to reason about possible failure based on
the given causal relationship.

Fault models help in diagnosis by reducing the diagnostic search space. Hypothesis gen-
eration is straight-forward - just consider all the failure modes that could have caused the
discrepancies. Diagnosing with a single fault assumption is simple. Diagnosing with multiple
faults and/or sensor failure assumption can possibly result in a large number of combinations
of faults to be examined. In this case, some reasonable heuristics can be used which are de-
rived from the fault characteristics. Using fault models is more common in practice due its
simplicity and computational efficiency. Associative fault models can be enriched to handle
temporal, probabilistic and dynamical specifications. Also, support for integrated diagnosis of
hierarchical systems can be easily established.

In this paper, we present a qualitative approach to failure diagnosis based on a temporal
fault model referred to as timed failure propagation graph. Timed failure propagation graphs
(TFPG) [3, 4] are causal models that describe the system behavior in presence of faults. The
TFPG model is closely related to the fault model presented in [5, 2] and used for an integrated
fault diagnoses and process control system. We extend the basic TFPG model to handle mode-
switching systems, in which the system model depends on a set of possible operation modes.
The extended structure, referred to as hybrid failure propagation graph (HFPG) captures the
effect of the switching dynamics and timing constraints on the propagation of failures in typical
discrete event and hybrid systems. The HFPG model adds mode dependency constraints on
the propagation links which can be used to handle failure scenarios in hybrid and switching
systems. The HFPG model supports both AND and OR propagation semantics which can be
used to build complex failure propagation dependency situations. The proposed extension also
allows cyclic dependency between signals (discrepancies) in the fault model.

The paper is organized as follows. Section 2 introduces the notation and terminology that
are used throughout the report. In Section 3, an informal description of temporal failure
propagation graph models is given. The hybrid failure propagation graph model is introduced
in Section 4. Section 5 presents the formal description of the diagnosis problem and the main
elements of the diagnostic system based on the hybrid failure propagation graph settings. In
section 6, the diagnosis reasoning algorithm is introduced together with complexity analysis of
its main procedures.
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2 Notation and Terminology

In this section some of the terms and concepts used in this report are defined and discussed.
A component is part of the physical hardware assembly of the system. It may refer to a single
component like a pipe or an assembly of components, e.g., a pump assembly. A system may have
different modes of operations, referred to as system modes. The nominal and faulty behavior
of the system depends on the current mode of operation and therefore different models may
be needed for each mode. Typically a system has to stay in each mode for a finite non-zero
amount of time before switching to another mode. It is assumed that the number of possible
mode-switching in any finite time interval is finite.

A failure mode is a failure of a component. A component may have more than one failure
mode, i.e., a component may fail in more than one way. When a component malfunctions,
we say that a failure mode of the component has occurred. The occurrence of a failure mode
is called a fault. A component which exhibits one or more failure modes is referred to as a
faulty component. A component which is not malfunctioning (none of the failure modes have
occurred) is called a healthy component.

A fault in a component will produce anomalies in system behavior. These anomalies are
called discrepancies. A discrepancy may be immediately observable or it may go unobserved
depending upon sensor allocation and fault detection algorithms used. The generic term for a
failure mode, a fault and a discrepancy is failure. When the term failure is used, it should be
clear from the context what is meant; otherwise it will be explicitly stated.

Fault detection means determining that there is something wrong with the system. Usu-
ally, faults are detected by observing the values of physical variables in the system and then
deducing that one or more discrepancies exist, which implies that one or more faults in some
components have occurred. Once a discrepancy is observed, i.e., a fault has been detected, it
needs to be diagnosed. Fault diagnosis means identifying the faults, i.e., locating the physical
components that are not functioning properly. The diagnostic result consists of a set of one or
more components in the system that are believed to be faulty.

Correctness of the diagnostic results means that only those components that are actually
faulty are identified as faulty and no healthy component is part of the diagnostic result. Com-
pleteness of results means that all the components that are faulty are indicated.

Sensors are those components in the system that are used to measure values of physical
variables like temperature, pressure, etc. The signals generated by these sensors can be used
for control and monitoring. The fault detection algorithms can use these signals to determine
whether a discrepancy exists or not. Sensor failure means that the sensor is given a wrong value
(within a given accuracy limits) for the associated variable or parameter.

An alarm is an indication that a discrepancy has occurred. The alarm is said to signal
when a discrepancy is observed. A discrepancy which has an alarm assigned to it is called a
monitored discrepancy, while the ones without alarms are called non-monitored discrepancies.
An alarm may become silent after ringing for a while (the discrepancy may not exist after a
while, possibly because of a repair action). The ringing and silencing of alarms introduce events
that trigger the diagnostics. All the events have a time stamp associated with them, signifying
the time that the status of the discrepancy changed. Alarms may fail by either being silent
while it should be ringing or ringing while should be silent, in this case it is called false alarm.
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Sensor and alarm failures can lead a diagnoser astray and the diagnostic results can be
incorrect and/or incomplete. A robust diagnostic system should be able to handle observation
errors. By a diagnostic system that can handle observation errors we mean a system that will,
ideally, be able to interpret the (possibly erroneous) observations properly and come up with
the correct and complete diagnostic result. At worst, the diagnostic system should degrade
gracefully as the number of observation errors increases. An important issue of the diagnosis of
large scale systems is that of efficiency of the diagnostic algorithm. An algorithm of exponential
complexity is not scalable. Thus an efficient diagnostic algorithm should be able to handle
observation errors and also be of polynomial complexity.

Diagnosability of a system, in its most general sense, means that property of the system
which allows the faults in the system to be detected and diagnosed in a timely manner, that
is, within a finite interval from the time at which the failure occur. In order to characterize
the diagnosability of a system, one needs to develop some criteria or metrics, which express the
property of diagnosability in a reasonable and coherent manner.

3 Temporal Failure Propagation Models

There are three main aspects to the failure propagation models: failure modes of physical
components, temporal and mode switching dependencies, and discrepancies in functionalities
and their associated sensors. In the following we will describe the intuitive physical meaning of
each aspect and its rule in the overall failure propagation model.

3.1 Failure Propagation

The occurrence of a failure mode causes one or more discrepancies in the system. These
discrepancies usually appear as out of range physical variables. For instance, an output valve
of the pump assembly, when stuck closed, causes the output flow rate to drop and the internal
pressure to build up. Because the physical variables are related to each other, an out of range
physical variable may cause some more physical variables to go out of limits. For example, a
rise in temperature inside a gas container will cause the internal pressure to build up. Further,
an out of range physical variable can cause a fault in a physical component, e.g., high pressure
may lead to a leak in a pipe.

This phenomenon of causation between failure modes and discrepancies is called failure
propagation. We say that the antecedent failure (failure mode or discrepancy) propagates
to the consequent discrepancies. Following the chain of antecedent and consequent failures,
we can enumerate the failure propagation paths starting from any given failure. The failure
propagation paths are the mechanisms by which a fault in one part of the system can cause
discrepancies to occur in another “remote” part.

Due to the dynamics of the system, the failure propagations do not take place instanta-
neously; instead they take a finite amount of time. For example, a “heater broken high” will
take some finite amount of time to cause the temperature to rise beyond acceptable limits. Fur-
ther, in any real system, the time taken can not be specified exactly. However, the minimum
and maximum time that a propagation takes can be known fairly accurately, allowing us to
use a time interval to express the uncertainty. To incorporate the dynamics into fault models,
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each failure propagation is parameterized with a time interval [tmin, tmax], called propagation
interval, which gives the minimum and the maximum time that the antecedent failure will take
to cause the consequent failure. In another words, assuming that the propagation link is active,
the failure cannot reach the destination of the propagation link before tmin time from the time
it reached its source and had to reach the destination before tmax time from the time it reached
its source

Many real life systems have several operation modes. Each mode is characterized by a
smooth and continuous energy flow between the physical components of the system. Mode
changes corresponds to discontinues evolution of some of the system variables which typically
results in a sudden changes in the flow. Consequently, and due the fact that failure take a finite
amount of time to propagate, failure propagation may change direction as a result of mode
switching in multi-mode systems. For example, depending on the state of the valve connecting
two pipes, the failure effect on one pipe may or may not propagate to the other pipe. To
incorporate mode switching effects into the fault model, propagation links are parameterized
with the set of mode at which they are active on. Under the assumption that mode switching
is totally observable, one can always determine if a given fault can propagate from one part of
the system to another.

The interactions between failure modes and discrepancies can be represented pictorially, as
shown in Figure 1 for a system with two three components C1, C2 and C3 and two modes of
operations A and B. There are four failure modes in the systems FM1 to FM4. The discrepan-
cies of first component, C1 are D1, D2 and D3; of C2, D4, D5, D6 and D7; of C3, D8, D9, D10.
The system also contains a discrepancy, D11, that is not associated with any component. In the
shown diagram rectangle boxes represent the failure modes while the circles represent the dis-
crepancies. The arrows between the nodes represent failure propagation. All the propagations
shown are parameterized with propagation interval [tmin, tmax] as well as the activation modes.
Here tmin is the minimum time for propagation of failure along the edge, and tmax which is the
maximum time for propagation of failure along the edge. Activation modes are not shown for
propagation that are always active irrespective of the current system mode.
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Figure 1: Pictorial representation of failure propagation
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Figure 2 shows the propagation of failure mode FM1 at different time instances and with
respect to several mode switches occurring at the boundaries of these time intervals. The
Figures show the discrepancies (dark circles) that will occur at the given time instances (shown
above the circles) as the faults propagate. The left diagram shows the discrepancies that will
signal after 10 sec of operation given that the failure mode FM1 occur after 1 sec of operation.
During the first 10 sec of operation the system was in mode A. Inactive propagation links,
during this period, are shown as dashed lines. The right diagram shows the situation after 16
sec of operation where the system operates at mode B during the period (10, 16].
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Figure 2: Propagation of faults

The above scenario demonstrates the intuitive rule of fault propagation; a fault should
propagate from node A to node B within the given time interval counted from the time when
the failure reached node A (alarm at A is signaling) and the link between A and B becomes
active. For instance, the failure effect that reached discrepancy D3 could not propagate to D9
during the first period t ∈ [0, 10] as the corresponding link (D3,D9) is inactive for mode A.
However, when the system switches to mode B, the failure effect takes 4 seconds to propagate
from D3 to D9. That is, in this case, the failure effect starts to propagate at time t = 10
when the link is activated at mode B. Another interesting case happened when the failure effect
reached D2. The failure effect starts to propagate at time t = 6 but could not reach D8 before
the link becomes inactive due to mode switching at time t = 10.

For fault diagnosis, the spatial and temporal pattern of discrepancies can be used to isolate
the faults. An inconsistency in the pattern can be used to detect sensor failures. For diagnos-
ability studies, it should be possible to determine the relative importance of a discrepancy for
detecting and/or diagnosing a failure mode and the time periods involved.

3.2 Failure Monitoring

The observation of anomalies in system behavior is provided by sensors. This section discusses
their role in diagnostics and how they are modeled. Sensors measure the values of physical
variables and provide signals. These signals can be used for control or they can be used for
monitoring the health of the system. Following the dichotomy of physical and functional struc-
ture, we model sensors as physical components that monitor the functional failures.
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From the diagnostic point of view, sensors provide evidence about the existence of discrep-
ancies. These evidences are called alarms, which have been defined earlier in section 2. Sensor
allocation describes which sensors are used for which alarms. However, this representation is
not comprehensive, in that, it does not allow one to describe exactly how the sensor values re-
late to the alarms and discrepancies. This relationship can be modeled by using sensor states.
A sensor in the system typically provides continuous valued readings over a wide range. The
continuous range of sensor values can be divided into a set of ranges (not necessarily disjoint)
that cover the sensor range which are called sensor states. When a sensor value is within one
of these sub-ranges, the sensor is said to be in the state corresponding to that sub-range, or,
that the particular sensor state has “occurred”.

For example, a temperature sensor might have a continuous range from 20oC to 90oC.
Typically, the sensor states for this sensor might be Temp-Zero, Temp-Low, Temp-Nominal,
Temp-High and Temp-Full, representing ranges 20oC-25oC, 26oC-40oC, 41oC-70oC, and 71oC-
90oC respectively. Many sensors, on the other hand, are used to display a binary condition
in which the off state corresponds to the normal operation and the on state corresponds to
the off-normal one. For example, a pressure sensor in a tank may indicate a normal pressure
(specified as a range of possible values) or an abnormal pressure situation which can be above
or below (or both) the normal range.

There is no prescription as to the number and kinds of states that a sensor can be in. There
can be as many sensor states as are required to model the monitoring scheme. A sensor can
be in only one of these states at any given time. Whenever the sensor is reading values that
correspond to a particular state, the sensor state is said to be active. Since the sensor can be
in only one state at a given time, all the other sensor states corresponding to the sensor are
said to be inactive.

A discrepancy causes one or more sensors to be in particular state(s). Thus there is a causal
relationship which goes from discrepancies to sensor states. During diagnosis, by examining
the combinations of current states of the sensors, it can be ascertained if a discrepancy exists.
Thus, the monitoring mechanism for a discrepancy can be modeled by specifying the alarm
on that discrepancy or by listing the sensor states that the discrepancy impacts. The alarm
representation does not give any information about how an alarm is generated from the sensors,
while sensor state representation does.

Sensor states can be considered to be primitive discrepancies and the causality between
discrepancies and sensor states can be modeled as failure propagations even though, strictly
speaking, sensor states are not failures. In fact, sensor states can be converted to a set of binary
conditions each represented by a discrepancy. For instance, the states Temp-Zero, Temp-Low,
Temp-Nominal, Temp-High and Temp-Full in the above example can be converted to four
discrepancies each corresponds to one of the above abnormal states and can take the values of
either ON or OFF where ON indicates the condition of the underlying state is true while OFF means
the condition is false1. This approach allows us to integrate the causality into fault models more
coherently. To simplify the presentation, in the following we will assume that sensor states are
incorporated into the failure propagation model as monitored or non-monitored discrepancies.
However, the current model and diagnosis algorithm can be easily extended to handle sensor
states directly.

1Note that, in general, the conditions defining the discrepancies are not necessarily disjoint.
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In the fault model the state of a discrepancy is evaluated based on the condition of its parent
nodes which could be either fault modes or other discrepancies. One can distinguish between
two primitive forms at which the discrepancy can be affected by its parents; AND, and OR. A
monitored discrepancy of type AND can only be triggered if the all its parents nodes are triggered
and enough time has been elapsed so that the signals from the parent alarms could reach the
child discrepancy node. The same applies to non-monitored discrepancies of type AND except
that no alarm is triggered when the discrepancy condition becomes true (discrepancy state=
ON). A discrepancy of type OR will be activated by any of its parent. In the failure propagation
graph we AND type discrepancies will be depicted as squares.

[3,5] B

t = 3t = 3

System modes

Case2: Failure propgarion to an AND discrepancyCase1: Failure propgarion to an OR discrepancy

D4D2

[1,8]

, A[1,4]

D3

t = 7

D1

t = 2
t = 2

D1

t = 7

D3

[1,4], A

[1,8]

D2 D4

Activation period Activation period

Mode BMode A

time = 0 6 22

[4, 6] ∪ [9, 11] ∅

[3,5] B

Figure 3: The effect of the discrepancy type on the propagation of fault

The activation of both types of discrepancies is affected by the propagation delay and
possible mode switchings. Consider for instance the situation shown in the Figure 3. The
system has two modes of operation A and B. In this scenario the system remains in mode A for
the first 6 sec and then switches to mode B. In the first case, the OR discrepancy D4 can be
activated by D1 during the period [9, 11], by D2 during [4, 6], or by D3 during [8, 15]. Therefore,
the earliest time D4 can be activated is t = 4 and the latest time is t = 11 and D4 cannot
be activated in the period [6, 8]. In the second case, D4 cannot be activated during the given
period [0, 22] due to the fact that there is no common time at which the failure effect from
D1,D2, and D3 can reach D4. D4 can be activated, however, if the propagation link between
D2 and D4 is mode independent. In this case, the failure effect at D2 can propagate to D4 in
the period [4, 7] and therefore, D4 can be activated in the period [9, 11].

The combined fault model with failure modes, discrepancies, alarms, etc. is called the
Failure Propagation Model (FPM). The pictorial representation used for failure propagations
can now be extended to include alarms. As before, the square boxes represent the failure modes
of components and the circles represent the discrepancies. The bold line circles are discrepancies
that are monitored with an alarm. The fine line circles are discrepancies that don’t have any
alarm explicitly associated them.
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4 The Hybrid Failure Propagation Graph Model

In this section we will present a formal model for failure propagation, referred to as hybrid failure
propagation graph, that represent the the failure aspects discussed in the previous section. The
hybrid failure propagation graph (HFPG) is a labeled directed graph where the nodes represent
either failure modes - which are fault causes - or discrepancies - which are off-nominal conditions
that are the effects of failure modes. Discrepancies can either be monitored (attached to alarms)
or non-monitored, and depending on the way it is triggered by the incoming signals it is further
classified as either AND or OR discrepancy. Edges between nodes in the graph represent failure
propagation. The interval attribute of a failure propagation edge specifies the upper and lower
constraints on the time it will take for the failure to propagate from the source to the destination
node.

The HFPG model allows the representation of failure propagation in multi-mode (switching)
systems in which the failure propagation depends on the current mode of the system. To this
ends, edges in the graph model can be constrained to a subset of the set of possible operation
modes of the system. Formally, a hybrid failure propagation graph model is represented as a
tuple G = (F, D, E, M, ET, EM, DC, DS), where:

• F is a nonempty set of failure nodes,

• D is a nonempty set of discrepancy nodes, with F ∩ D = ∅,

• E ⊆ V × V is a set of edges connecting the set of all nodes V = F ∪ D. We will write
src(e) and dst(e) for the source and destination nodes of the edge e, respectively,

• M is a nonempty set of system modes. We assume that at each time instance t the system
can be in only one mode.

• ET : E → I is a map that associate every edge in E with a time interval in I =
{[tmin, tmax] | tmin ∈ R+, tmax ∈ R+ ∪ {∞}, tmin ≤ tmax} is the set of all finite time
intervals,

• EM : E → P(M) is a map that associate every edge in E with a set of modes in M (we
assume that EM(e) 	= ∅ for any edge e ∈ E ),

• DC : D → {AND, OR} is a map defining the class of each discrepancy as either AND or an
OR node,

• DS : D → {ON, OFF} is a map defining the monitoring status of the discrepancy as either
ON for the case when the discrepancy is monitored by an online alarm or OFF for the case
when the discrepancy is not monitored.

The set V contains n + m vertices, representing n failure modes and m discrepancies. Some of
the discrepancies are monitored as defined by the map DS. The set of monitored discrepancies
will be denoted Da. An edge e = (v, v′) ∈ E iff the failure effect represented by the node
v can propagate and participate in causing the effect represented by the node v′. The map
ET associates each edge e ∈ E with the minimum and maximum time (given as interval) for
propagation of failure along the edge. We will write tmin(e) and tmax(e) for the minimum
and maximum time for failure propagation along the edge e, respectively, so that ET(e) =
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[tmin(e), tmax(e)]. That is, given that a propagation edge is enabled (active), it will take at
least (most) tmin (tmax) time for the fault to propagate from the source node to the destination
node. The map EM associates each edge e ∈ E with a subset of the system modes at which the
failure can propagate along the edge. Consequently, the propagation link e is enabled (active) in
a mode m ∈ M if and only if m ∈ EM(e). The map DC defines the type of a given discrepancy
as either AND or OR. An OR type discrepancy node will be activated when the failure propagate
to the node form any of its parents. On the other hand, an AND discrepancy node can only be
activated if the failure propagates to the node from all its parents. We assume the following
assumptions hold for the graph structure (V, E):

• (∀v ∈ V ) (v, v) 	∈ E

• (∀e ∈ E) dst(e) 	∈ F

• (∀d ∈ D)(∃v ∈ V ) (v, d) ∈ E

The first assumption states that the graph does not contain self loops as the current version
of HFPG only deals with persistent faults. The second assumption states that a failure node
cannot be a destination of any edge so in effect failure nodes are the initial nodes of the graph.
Finally, we assume that every discrepancy must the destination of an edge, that is a discrepancy
must be caused by either another discrepancy or failure mode.
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[1,5] B

[2,5] A
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Figure 4: A hybrid failure propagation graph

Figure 4 shows a modified version of the failure propagation graph discussed in the previous
section. As indicated earlier, rectangles in the hybrid failure propagation graph model represent
the failure modes while circles and squares represent OR and AND type discrepancies, respectively.
Monitored discrepancies are shown with bold lines. The arrows between the nodes represent
failure propagation. Propagation edges are parameterized with the corresponding interval,
[tmin, tmax], and the set of modes at which the edge is active. The above figure shows also a
sequence of alarm signals identified by shaded discrepancies. The time at which the alarm is
observed is shown above the corresponding discrepancy.
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5 The Diagnosis Problem

The diagnostic system operates on the HFPG model described in the previous section and
characterizes the fault status (actual current state) of the system by hypothesizing about the
faults in components and sensors based on the signals received from the sensors and the current
mode of the system. The diagnoser uses the HFPG model and the timed sensor/mode-switching
signals to generate a set of logically valid hypotheses of the current state of the system. The
hypotheses are then ranked according to certain criteria that is generally based on the number of
supporting alarms versus the number of inconsistent ones. A more advanced ranking that takes
into account the relative significance/relaiablity of the sensor signals can also be established.
The set of hypotheses with the highest rank will be selected as the most plausible estimations
of the current state of the system. The diagnoser is implemented as a reactive module that is
triggered by signals from the set of active sensors and mode-switching signals.

5.1 Diagnosis Strategy

The HFPG diagnoser (1) receives events, (2) generates hypotheses, and (3) selects some hy-
pothesis(es) according to how consistently they explain the observations. For this it uses the
principles of parsimony and structural redundancy. In the following, these two general principles
are explained in the HFPG context.

Parsimony

A particular hypothesis is said to be consistent with the received events (observations) if the
spatial and temporal constraints imposed by the propagation models are satisfied. If observation
errors are possible, not all of the received events have to comply with the spatial and temporal
constraints. Consequently, the number of hypotheses that are plausible under the given set of
observed events will become larger. In the extreme case when the sensors and/or fault detection
algorithms are completely unreliable, any fault hypotheses is plausible, since the observations
do not carry information about the actual state of the system. Of course, in any realistic
case, most of the observed events are directly related to underlying faults, therefore diagnosis
is possible. The principle of parsimony suggests that the simplest explanation is the best. If
a hypothesis can explain consistently all of the observed events, it should be considered more
plausible than another one, which additionally requires the assumption of a sensor fault as well.
Application of the principle of parsimony means that the set of plausible hypotheses should be
minimal.

Structural redundancy

As we have discussed before, the physical interactions in dynamic systems impose spatial and
temporal constraints on the observed events. In those parts of the system where failure propa-
gation occurs, a single fault results in multiple manifestations. Obviously, these manifestations
are not independent of each other. They provide a redundant observation of the fault. Because
the failure propagation models primarily represent structural relationships in the systems, we
call this redundancy structural redundancy. Due to the structural redundancy, events can con-
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firm or contradict other events in a propagation model, therefore, a concept similar to that of
the analytical redundancy approach can be developed. The idea is illustrated with the simple
HFPG shown in Figure 5. The graph shown here includes only failure propagations. For the
sake of simplicity, all of the discrepancies are of the OR type. Also, there is only one mode
at which all edges are enabled and there is no temporal restriction on the failure propagation
on any edge (tmin = 0 and tmax = ∞ for all edges). Discrepancies here are associated with a
unique sensor, whose output signal is used by a monitoring algorithm to generate the alarm.

DY1

DY2

DY3

DY4

DY5

DY6

DY7

DY8

FM1

FM2

Figure 5: Use of structural redundancy for sensor fault detection

In the particular fault scenario in Figure 5, the alarms associated with DY1, DY2, DY3,
DY4 and DY5 are ringing (shown as shaded in the graph), while the alarm assigned to DY8
is silent. The simplest explanation for the alarms at DY1, DY2, DY4 and DY5 is that FM1
is a fault source (parsimony). Possible explanation for alarm DY3 is that FM2 is also a fault
source. However, if FM2 is a fault source, the alarm at DY8 should also ring (structural
redundancy), therefore this hypothesis implies that the sensor at DY8 must be faulty as well.
An alternative explanation is that the sensor associated with DY3 is faulty and is giving rise
to a spurious alarm. This hypothesis is more plausible than the previous one, since it explains
the alarm scenario with two fault sources (FM1 and the sensor associated with DY3) instead
of three (FM1, FM2 and the sensor associated with DY8) (parsimony). A number of other
explanations can be found for the alarm pattern that are all less plausible than the previous
ones. Thus, structural redundancy means the use of the interdependence among the alarms in
the reasoning algorithm. The actual reasoning method is considerably more complex than the
illustrative example due to the temporal aspect of the HFPG model.

6 Elements of the Diagnostic System

The diagnosis system operates on the HFPG model of the system to detect and isolate faults
by generating and selecting appropriate hypothesis to explain the incoming signals from the
system. In this section we will discuss the structure of the failure hypothesis generated by the
system to identify a possible state of the system. We also present the basic definition of system
events and states that are used for hypothesis generation and reevaluation.
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6.1 Failure Mode Hypotheses

The diagnoser responds to input signals by generating hypothesis. Each hypothesis is an eval-
uation of the status of a failure mode in the HFPG model together with the corresponding
evidences. Formally, a hypothesis is a tuple hf = (f, te, tl, r, SP, SS, I, M, P ), where f ∈ F
is the failure mode for which the hypothesis stands, te and tl are the estimated earliest and
latest time of occurrence of the failure mode f . The static rank, r, of the hypothesis is number
associated with a measure of belief in the hypothesis. The rank is set to 0 at the creation of the
hypothesis and updated each time a new event is triggered. Hypotheses with negative ranks
are not considered during the reasoning process. The elements SP , SS, CS, I, M , and P are
sets of discrepancies with special relevance to the hypothesis hf :

• SP ⊆ Da is the set of primary signalling discrepancies that support the hypothesis h.
These are the active alarms that are triggered as an immediate consequence of f , or
the ones that can only be explained based on the occurrence of f and does not require
any other failure mode for explanation. These alarms are the main justification of the
hypothesis hf .

• SS ⊆ Da is the set of secondary signalling discrepancies that support the hypothesis
h. These are the active alarms that are triggered as a consequence of alarms already
explained as a consequence of f and are supporting the hypothesis hf . Active alarms in
the set SS can be explained based on the occurrence of f alone and do not require any
other failure mode for explanation.

• CS ⊆ Da is the set of secondary signalling discrepancies that support the hypothesis h
given that other hypothesis are valid. These are the active alarms that are triggered as
either a consequence of a set of failure modes F ′ ⊆ F where f ∈ F ′ or as a consequence
of alarms already explained as a consequence of F ′.

• I ⊆ Da is the set of signalling monitored discrepancies that are inconsistent with the
hypothesis h. These are the alarms that are connected to the failure mode f but cannot
be explained based on the hypothesis hf .

• M ⊆ Da is the set of silent monitored discrepancies that are inconsistent with the hy-
pothesis hf . These are the alarms that are connected to the failure mode f but should
be singling according to the hypothesis hf .

• P ⊆ Da is a set of pending discrepancies whose status cannot be identified at the current
time. Pending discrepancies are silent monitored discrepancies that are expected to signal
in the future according to the hypothesis hf .

Note that the hypothesis hf also implicitly provide an estimation of the status of the mon-
itored alarms connected to the failure mode f . That is, hf is also a hypothesis for monitored
alarms connected to f . Under the hypothesis hf , supported alarms are considered healthy
(providing the correct signals) and inconsistent alarms are faulty. In addition to generating and
updating hypotheses, the diagnoser also generates a list of false alarms, namely those alarms
that could not be explained by any hypothesis based on the timing of events and the structure
of the failure propagation graph.
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Note that each hypothesis hf considers only those discrepancies that are reachable from the
underlying failure mode f . This allows the diagnoser system to deal with the sensors signals
more efficiently by focusing on the nodes that are connected to the corresponding discrepancy.
However, in general the TFPG structure may contain several failure modes that can propagate
to certain common discrepancies. These mutual dependencies can lead to a conflict between
the hypothesis of different failure modes, because as mentioned above hf also implicity provides
an estimation of the status of monitored discrepancies connected to it.

Consider for instance the HFPG graph in Figure 5, assume h1 is a hypothesis about FM1
that considers DY2 as a primary supporting alarm and h2 be a hypothesis about FM2 that
considers DY2 as an inconsistent alarm. Then clearly both hypotheses cannot be part of a
consistent set of hypotheses as one considers DY2 healthy while the other considers it faulty.
Note that this situation is independent of the type of DY2, that is, the conflict between the
two hypotheses remains if DY2 is either of type AND or OR. The diagnoser eliminates those sets
of hypotheses that contain conflicting elements when generating the failure report. The exact
definition of conflicting hypotheses will be discussed later in this technical report.

6.2 System Events

The current state the HFPG edges and nodes can change in reaction to system events. These
changes can then trigger a set of hypotheses updates which include creating new hypothesis
and/or reevaluating current hypothesis. There are two types of events that the can trigger a
hypothesis update in the HFPG diagnosis system; physical and hypothetical events. A physical
event correspond to observed signals from the system sensors, while a hypothetical event cor-
respond to confirmed measurement inconsistencies according to a given hypothesis. The two
event types are described below in more details.

There are two types of physical events that triggers a hypothesis change in the HFPG model:
a signalling alarm event and a mode change event. Formally, a physical event is represented by
the tuple e = (x, t), where x ∈ Da∪M is either a monitored alarm (x ∈ Da) or a mode-switching
signal (x ∈ M) and t is the time at which the signal is observed. We will write Signal(e) to
identify the source of the event, and Time(e) to identify the time at which the event occur.
Therefore, e = (Signal(e), Time(e)). An event e is triggered whenever the state of a discrepancy
is changed or the system switches to a new mode. The diagnostic system keeps a record of the
sequence of all timed events from the system initial start to the current time. As mentioned
earlier, we write ek to identify the kth event. The diagnostic system maintains a record of all
physical events ordered by their time.

In contrast with physical event, a hypothetical event does not correspond to any new ob-
servation or measurement. A hypothetical event is generated based on the expectation of a
given hypothesis regarding a future signal that should occur according to the hypothesis. Such
event is referred to as a time-out event. Time-out events are internal event generated by the
diagnostic reasoner based on the current hypothesis set. For a given hypothesis hf , a time-out
event will be issued at time t if a monitored discrepancy da was expected to signal by the time
t according to hf but it did not signal. In this case the time-out event is given by the tuple
o = (hf , da, t).
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6.3 Physical and Hypothetical States

The diagnostic reasoner generates hypotheses based on the notions of causality and temporal
consistency. Both are defined over the current state of the HFPG nodes. Based on the way the
state of a given node is evaluated we distinguish here between two types of states that are used
to define the failure status of the system: physical states and hypothetical states. A physical
state corresponds to the observed state of a monitored discrepancy, while a hypothetical state
is the estimated state of a node in the HFPG model according to a given hypothesis. The
relationship between there two types of states defines the consistency relationship between
alarms and hypothesis. The two state types are described below in more details.

A physical state type can only be defined for monitored discrepancy, as it corresponds to
the state of a node as either signalling or not. The physical state of the set of monitored
discrepancies is given by a map PState : Da → {ON, OFF}, which assigns to each monitored
alarm d ∈ Da it current measured status which can be ON if the alarm is signalling, otherwise it
is OFF. We define another map PTime : Da → R where PTime(d) is the time of the last change
in the physical state of d ∈ Da. The maps PState and PTime are time dependent and therefore
we may write PStatek and PTimek to denote the maps after the kth event, ek. The script k will
be removed if the evaluation time is clear from the context. Initially, the physical states of all
alarms are set to OFF and the corresponding physical times are set to zero. That is,

(∀d ∈ Da) PStateo(d) = OFF, PTimeo(d) = 0

In general we will write Time(ek) or simply Time(k) to denote the time at which the kth event
ek occur. Therefore, eo is the event of starting the system.

A hypothetical state, on the other hand, is the state of an HFPG node according to a given
hypothesis. This state type can be defined for any node in the HFPG model. Given a set of
hypotheses H, the hypothetical state of a node with respect to a hypothesis hf ∈ H is given as
a map HStatehf : V → {ON, OFF, UDF}, where UDF is used hereafter to denote undefined values.
The map HStatehf assigns to each node v ∈ V it status according to the hypothesis hf . The
above map satisfies

(∀v ∈ V ) v 	∈ Domain(f) → HTimehf (v) = UDF

Where Domain(f) denotes the domain of f , namely, the set of nodes that can be reached from
the failure mode f at any system mode including the node f . Note that Domain(f) is a model
property and does not depend on the current mode or time. The status of a node in the
domain of f can be ON if the node should be active according to the hypothesis hf , otherwise
it is OFF. Here the word “active” has different interpretation depending on the type of the
node. If the node is a failure mode then active means that the associated failure must have
happened according to hf . Otherwise if the node is a discrepancy then active means “should
be signalling” according to the hypothesis hf .

We define another map HTimehf : V → I ∪ {UDF} that assigns to each node in V the time
interval in which the node must have been activated within according to the hypothesis hf .
Recall that I denotes the set of all finite time intervals. The map HTimehf also satisfies,

(∀v ∈ V ) v 	∈ Domain(f) → HTimehf (v) = UDF

That is, the map HTimehf is only defined for nodes that are within the domain of the failure
mode f . Note that the map HTimehf is defined for silent discrepancy in the domain of f ,
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Domain(f). In this case, HTimehf (d) shows the time interval at which the discrepancy d should
be active according to hf . This interval or a subset of it may occur in the future.

In general, a hypothetical state may be dependant on more than one hypothesis. Such situ-
ation is attributed to the existence of AND type discrepancies in the HFPG graph, particularly
due to the fact that the state of an AND-type discrepancy depends on the combined states
of all its parent nodes. There are several way to represent such multiple dependency. In this
report this is modeled using the dependency set map DSethf : V → P(H) which assigns to each
node v ∈ V the set of hypothesis that the hypothetical state HStatehf (v) depends on. That is,
the evaluation HStatehf (v) is valid only in conjunction with the validity of the set DSethf (v). If
DSethf (v) = ∅ then the hypothetical state HStatehf (v) is independent of any other hypothesis.
Note that DSethf always evaluate to empty set when there is only OR-type nodes in the HFPG
model.

The maps HStatehf , HTimehf and DSethf are time dependent and therefore we may write
HState

hf

k and HTime
hf

k to denote the maps after the kth event, ek. We may remove the scripts k
or hf if the map evaluation is clear from the context. Note that there are no initial hypotheses
for a HFPG, that is, H = ∅ when the system starts and therefore there are no hypothetical
states initially.

In the HFPG model propagation edges can be disabled and enabled based on the current
mode of the system. The diagnoser maintains a record of the status of the propagation edges.
The physical state of the an edge e ∈ E is given by a map EState : E → {ON, OFF}, which assign
to each edge e ∈ E it current status which can be ON if the edge is enabled, that is, failure can
propagate through it, otherwise it is set to OFF. We define another map ETime : E → R where
ETime(e) is the time of the last change in the physical state of the edge e ∈ E. The maps
EState and ETime are also time dependent and therefore we may write EStatek and ETimek to
denote the maps after the kth event, ek. The script k will be removed if the evaluation time
is clear from the context. The initial state of the edges depends on the initial mode of the
system. Note that the state of an edge is a physical (observable) state and is not subject to
failure conditions.

7 The Diagnostic Reasoning Approach

Given a HFPG representing the failure propagation in the system and a sequence of sensors
signals corresponding to monitored discrepancies and possible mode switches, the diagnosis
problem is to generate a failure report which consist of a set of hypothesis that explains all the
current signaling discrepancies. At the occurrence of every event, the diagnoser updates the set
of hypothesis and the faulty components will be identified. The reasoning algorithm uses two
basic data structures, the system current fault status and the HFPG model. The system fault
status consists of the current set of fault hypotheses and the corresponding evidences. The
diagnoser updates the set of possible hypotheses about the system state based on the causal
and timing consistency between the discrepancies. Consistency between discrepancy nodes is
calculated based on the type of the node and the current mode of the system.
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7.1 Causality Relationship

The diagnoser reasoner generates hypotheses based on the notion of causality. Causality is a
relation between the states of the nodes in the HFPG mode. There are two types of causalities
depending on the type of the node AND or OR. Causality relationships are time dependent and
therefore will be scripted by the current event index. The OR-causality at the kth event is
denoted as OCk. OR-causality is a relationship between the state of a discrepancy and the
hypothetical state of one of its parent nodes, while AND-causality is a relationship between the
state of a node and the states of all its parents.

Causality relationship are independent on the state type of the node. Therefore it will be
described for a general state. To this end, we will write State(v), Tmin(v), Tmax(v) to denote
the current state of the node and the limits of the time interval at which this state was last
changed, respectively. In case of physical state, we have Tmin(v) = Tmax(v) = PTime(v), that
is the interval reduces to a single time instance. Let v′, v ∈ V be two nodes in the HFPG model
such that, DC(v) = OR and (v′, v) ∈ E, that is v is a child node of v′. Assume that at time
index k, v′ hold a state Statek(v′) and that v changed its state to a new state Statek(v) such
that Tmin(v) ≤ Time(k) ≤ Tmax(v). Then (Statek(v′), Statek(v)) ∈ OCk if all the following
hold.

• Statek(v′) = ON,

• Statek(v)) = ON,

• EStatek((v′, v)) = ON,

• tmin((v′, v)) ≤ (
Tmin(v) − max

(
Tmax(v′), ETime((v′, v))

))
,

• tmax((v′, v)) ≥ (
Tmax(v) − max

(
Tmin(v′), ETime((v′, v))

))

The above simple says that Statek(v′) (possibly) caused the current change of the Statek(v) to
ON if v′ is also ON and the link between v′ and v is currently enabled and the time it takes for
the fault to propagate for v′ to v is consistent with the timing attributes of the propagation
link and the time this link is enabled. OR-causality is illustrated in the following graph.

time

vv′

Tmin(v′) Tmax(v′) Tmin(v) Tmax(v)

ETime(v′, v)

tmin(v′, v)

tmax(v′, v)

Figure 6: OR-Causality relationship

AND-causality can be defined similarly. Let v ∈ V be a node in the HFPG model such
that DC(v) = AND. Assume that at time index k each parent of v, v′ hold a state Statek(v′)
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and that v changed its state to a new state Statek(v) such that Tmin(v) ≤ Time(k) ≤ Tmax(v).
Write Statek(V ′) to denote the conjunction of the individual states of each v′ ∈ V . That is,
Statek(V ′) = {Statek(v′) | v′ ∈ V ′}. Then (Statek(V ′), Statek(v)) ∈ ACk if all the following hold

• (∀v′ ∈ V ′) Statek(v′) = ON

• Statek(v)) = ON,

• (∀v′ ∈ V ′) EStatek((v′, v)) = ON,

• (∀v′ ∈ V ′) tmin((v′, v)) ≤ (
Tmin(v) − max

(
Tmax(v′), ETime((v′, v))

))
,

• (∃v′ ∈ V ′) tmax((v′, v)) ≥ (
Tmax(v) − max

(
Tmin(v′), ETime((v′, v))

))

The above conditions says that the Statek(V ′) (possibly) caused the current change of the
Statek(v) to ON if state of every v′ ∈ V ′ is also ON and the link between every v′ and v is
currently enabled and the time it takes for the fault to propagate for v′ to v is consistent with
the timing attributes of the propagation link. AND-causality is illustrated in Figure 7.

Tmax(v′)Tmin(v′)

tmax(v′′, v)

tmin(v′′, v)

ETime(v′′, v)

Tmax(v′′)Tmin(v′′)

time

Tmin(v) Tmax(v)

v′′

tmax(v′, v)

tmin(v′, v)

ETime(v′, v)

v′

v

time

Figure 7: AND-Causality relationship

Note that the conditions for AND-causality require that the minimum time it takes for the
fault to propagate from any parent node v′ ∈ V ′ to the node v is greater than the minimum
propagation time of the corresponding link. However, there is no “similar” restriction regarding
the maximum propagation time. It is only required that the maximum time it takes for the
fault to propagate from one of the parents node v′ ∈ V ′ to the node v is less than the maximum
propagation time of the corresponding link. Intuitively, this condition ensures that the node
v′ will not be activated until it receives all the failure effects from its parents. Note that it is
required that all parent links between v and its parent nodes are enabled. That is, an AND-type
node cannot be activated in a mode that disables a propagation link from a parent node.
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7.2 Temporal Consistency and Hypothesis Update

The diagnostic reasoner receives inputs from the alarm and system-mode monitors and update
the physical state of the system accordingly. This is achieved by changing the map PState or
EState to reflect the new measurement. Based on the change of the system state, the reasoner
tries to explain the new state by updating the set of hypothesis to explain the new state. This
update includes creating new hypothesis and/or reevaluating the current set of hypotheses.
Based on the principle of parsimony, the reasoner would not create a new hypothesis unless the
new state cannot be explained using the current set of hypothesis. In addition, the reasoner
will try to limit hypotheses reevaluation to a minimum.

Consider the event ek = (d, t) indicating that a monitored discrepancy d has changed its
state from OFF to ON at time t = Time(ek). Assume that d is of OR-type. That is, d is an OR-
type monitored discrepancy that is triggered at time index k. Then the signalling discrepancy
d is said to be temporally consistent with the hypothesis h if

(∃v′ ∈ Parents(d)) (HStateh
k(v′), PStatek(d)) ∈ OCk

Where Parents(d) denotes the set of parents of the node d in the HFPG model. That is one
of the parents of v has a hypothetical state with respect to h that is OR-causal to the current
physical state of d.

Consistency with respect to AND-type nodes can be defined similarly. However, for AND-
type nodes consistency depends on the AND-causality relationship. Let d be an AND-type
monitored discrepancy that is triggered at time index k. Then the signalling discrepancy d is
said to be temporally consistent with the hypothesis h if

(HStateh
k(Parents(d)), PStatek(d)) ∈ ACk

The above condition requires that all the parents of d has a hypothetical state with respect to
hf that is AND-causal to the current physical state of d. Note that in the above definition,
all the parents of d must have a hypothetical state with respect to the same hypothesis h. In
above conditions, it is assumed that the hypothetical state of the parent(s) does not depends
on any other hypothesis, that is, DSeth(v′) = ∅, where v′ is the corresponding parent of d.

When d is explained by h the correspond state and time maps is then updated by set-
ting HStateh

k(d) = PStatek(d) = ON, and HTimeh
k(d) = [t, t]. Consequently, the monitored

discrepancy d is added to the set of secondary supporting alarms of h and the rank of h will
be incremented accordingly. In following we will refer to temporal consistency between nodes
simply as consistency. The consistency relationship at time index k will be represented by the
predicate Consisk ⊆ Hk × V , where Hk denotes the set of hypothesis at time index k. That is,
Consisk(h, v) is true when the node v is consistent with the hypothesis h.

Consistency between nodes as defined above for a given hypothesis hf is absolute in the
sense that it does not depend on any other hypothesis. However, it is possible that consistency
between a node state and parent node state(s) depends on more than one hypotheses. Such
dependency originates from the nature of AND-type alarms and can propagate to OR-type
alarms. A consistency relation that depends on more that one alarm is referred to as conditional
consistency. The conditional consistency relationship at time index k will be represented by
the predicate DConsisk ⊆ Hk × V × P(Hk). That is, DConsisk(h, v, H ′) is true when the node
v is conditionally consistent with the hypothesis h given the set of hypothesis H ′ ⊂ Hk.
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Conditional consistency is defined formally as follows. Let d be an AND-type monitored
discrepancy that is triggered at time index k. Then the signalling discrepancy d is said to be
conditionally consistent with the hypothesis h given the set of hypothesis H ′ ⊂ Hk if all the
following holds

• (∀vi ∈ Parents(d))(∃hi ∈ Hk) ({HStatehi
k (vi)|i ∈ I}, PStatek(d)) ∈ ACk

• (∃i ∈ I) hi = h

• H ′ =
(⋃

i∈I{hi} ∪ DSethi(vi)
) − {h}

In the above conditions, I denotes the index set of the parents of the node d. The above
condition requires that all the parents of d have hypothetical states. This set of hypothetical
states of the parent nodes is AND-causal to the current physical state of d. The second con-
dition requires this set of hypothetical states of the parent nodes contains a hypothetical state
with respect to h. The third condition states that consistency is conditional on the set of all
hypotheses that the hypothetical state of the parents of d depends on.

Conditional consistency for OR-type alarms can be defined similarly. Let d be an OR-type
monitored discrepancy that is triggered at time index k. Then the signalling discrepancy d is
said to be conditionally consistent with the hypothesis h given the set of hypothesis H ′ ⊂ Hk if

(∃v′ ∈ Parents(d)) (HStateh
k(v′), PStatek(d)) ∈ OCk and DSethk(v′) = H ′

That is, one of the parents of d, v′ has a hypothetical state with respect to h that is OR-causal
to the current physical state of d and in addition the hypothetical state of v′ is conditionally
dependent on H ′.

When the node d is explained by hf conditional on the set of hypothesis H ′ the corre-
spond state and time maps is then updated by setting HStateh

k(d) = ON, HTimeh
k(d) = [t, t],

and DSethk(d) = H ′. Consequently, the monitored discrepancy d is added to the set CS of
conditionally supporting alarms of hf . However, the rank of h will not be incremented in this
case. The rank will only be incremented if h is provided in conjunction with the set H ′.

In the above setting, (absolute) consistencies takes precedence over conditional ones. That
is, if an alarm can be explained based on the occurrence of a single failure mode f , then any
other explanation that requires the occurrence of several failure modes including f will not
be considered. However, explanations the requires the occurrence of several failure modes non
of which can be used as a single explanation of the alarm will be considered. This setting is
a direct consequence of the parsimony principle which suggests the preference of the simplest
explanation when possible.

For every event ek = (d, t), d ∈ Da, the reasoner will try to explain ek based on the current
available hypothesis. If the event cannot be explained based on any of the current hypothesis,
a new set of hypothesis will generated to explain d. In the case of OR-type discrepancies the
reasoner will generate a hypothesis for each failure mode directly connected to d. Formally, let
f be a failure mode directly connected to the OR-type discrepancy d. Then a new hypothesis
for f is created if all the following holds.

• EStatek((f, d)) = ON,
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• tmin((f, d)) ≤ (
Time(k) − ETime((f, d))

) ≤ tmax((f, d))

In the new hypothesis hf the hypothetical state of f , HState
hf

k (f), is set to ON and the corre-
sponding interval is set to HTimeh

k(d) = [t1, t2], where

t1 = Time(k) − tmin(f, d), and t2 = min(ETime((f, d)), Time(k) − tmax(f, d))

Note that condition for generating hf ensures that t1 ≤ t2. Also, in the new hypothesis
hf , the correspond state and time maps is then updated by setting HState

hf

k (d) = ON, and
HTime

hf

k (d) = [t, t]. The monitored discrepancy d is added to the set of primary supporting
alarms of hf and the rank of hf will be set to 1.

The case when d is an AND-type discrepancy is treated similarly. In this case a new
hypothesis for each failure mode f directly connected to d is generated similar to the OR-
type case. The hypothetical state and interval of f is also set in the same way. However, the
hypothesis generated in this case are temporary hypothesis. Once all possible new hypothesis
are generated, the reasoner will try to explain the alarm at d using the conditional consistency
definition for AND-nodes as discussed earlier in this section. If the node cannot be explained
using the new generated hypothesis. Then this set of temporary hypothesis will be deleted, and
the node will be declared inexplainable.

Finally, if the new event (alarm) (d, t) cannot be explained by either consistency relation-
ship with existing hypothesis or by generating new hypothesis, then the alarm is declared an
absolute false alarm. In this case, the type of corresponding discrepancy will be changed to
un-monitored discrepancy, that is, DS(d) will be set to OFF and any physical event correspond
to the discrepancy d will be ignored. Algorithm 1 below shows the procedure for updating
hypotheses for alarm events.

7.3 Evaluating Hypothesis and Generating Failure Report

In this stage, the current set of hypotheses are examined for possible conflicts due to common
paths and nodes in the HFPG model. The ranks of consistent hypotheses sets are updated
counting into effect mutual dependencies. The hypotheses set with the highest ranking is used
to generate the failure report which contains an estimation of the current failure modes, their
time of occurrence, and any possible sensor failures.

7.4 Complexity Analysis

The total number of nodes in the HFPG model is (n + m) where n is the number of failure
modes and n is the number of discrepancies. The graph is implemented as an adjacency matrix,
and therefore both BFS and DFS searching algorithms are O(n + m)2. The worst case number
of hypotheses is O(nm). However, the number of hypotheses in typical practical situations is
more likely to be within O(n). Updating the hypotheses set is done by updating the consistency
relation between nodes in the graph which is by search the graph recursively until the set reach
a settling point (for the given hypothesis). This part is of polynomial complexity on the size
of the graph and the current number of hypothesis. Resolving the conflict between hypothesis
is done by generating all possible combinations of hypothesis and therefore is of exponential
complexity with respect to the number of hypothesis.
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// This procedure is called every time a new alarm is activated.
// It terminates by explaining new alarms w.r.t the current hypotheses
// or by generating a new set of hypothesis or by declaring the alarm false
Input: ek = (d, t)
Explained := false
for all h in Hk do

if Consisk(h, d) then
Explained := true
h.SS.add(d)
Rank(h) := Rank(h) + 1
HStateh

k(d) := ON; HTimeh
k(d) := [t, t]

else if DConsisk(h, d, H ′) then
Explained := true
h.CS.add(d)
HStateh

k(d) := ON; HTimeh
k(d) := [t, t]; DSethk(d) := H ′

end if
end for
if not Explained then

for all f in Parents(d) ∩ F do
if EStatek(f, d) = ON and tmin((f, d)) ≤ (

t − ETime((f, d))
) ≤ tmax((f, d)) then

if DC(d) := OR then
hf = Hk.AddNewHypothesis(f)
Explained := true

else
hf = Hk.AddNewTempHypothesis(f)

end if
HState

hf

k (f) := ON; Rank(hf ) := 1
HTime

hf

k (f) := [(Time(k) − tmin(f, d)), min(ETime((f, d)), Time(k) − tmax(f, d))]
HState

hf

k (d) := ON; HTime
hf

k (d) := [t, t]
end if

end for
if DC(d) = AND then

for all h in Hk do
if DConsisk(h, d, H ′) then

Explained := true
h.CS.add(d)
HStateh

k(d) := ON; HTimeh
k(d) := [t, t]; DSethk(d) := H ′

end if
end for

end if
end if
if not Explained then

Hk.RemoveTempHypotheses
FalseAlarms.add(d)
DS(d) = OFF

end if
Algorithm 1: The Update Hypothesis algorithm
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8 Diagnoser Implementation

Given a HFPG representing the failure propagation in the system and a sequence of sensors
signals corresponding to monitored discrepancies and possible mode switches, the diagnosis
problem is to generate a failure report which consist of a set of hypothesis that explains all the
current signaling discrepancies. Figure 8 shows a simplified UML diagram of the basic elements
of the HFPG diagnosis system and the relation between them.
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Figure 8: A simplified diagram of the HFPG diagnosis system

We have developed and tested a real-time diagnosis tool based on the hybrid failure prop-
agation graph. The HFPG diagnosis tool is shown above in Figure 9. The reasoner engine in
the HFPG tool is based on a robust incremental diagnostics algorithm described above. The
tool can handle observation errors (sensor failure) and multiple fault scenarios. The tool also
provides a simulation interface to test and evaluate the HFPG model for fault scenarios. The
HFPG diagnosis algorithm is currently used as a part of the diagnostic module in a fault adap-
tive control structure aimed to support integrated fault diagnostics and control reconfiguration
for large-scale and heterogeneous systems.

9 Conclusion

In this paper we introduced an approach for robust diagnosis of switching systems based on
an extended version of the hybrid failure propagation graph model. The model can be used
for diagnosis a general class of systems with mode switching conditions. We presented the
main elements of the diagnostic system based on the hybrid failure propagation graph settings,
and described the main parts of the diagnosis reasoning algorithm. In future work, we plan
to enhance the efficiency of the diagnosis algorithm by incrementally identifying conflicting
hypotheses at each time the set of hypotheses is updated.

24



Figure 9: The HFPG diagnostic tool
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