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Abstract

Dependable computer systems hosting critical com-
merce, transportation, and military applications, among
others, must satisfy stringent quality-of-service (QoS)
requirements. However, as these systems become in-
creasingly complex, maintaining the desired QoS by
manually tuning the numerous performance-related pa-
rameters will be very difficult. This paper devel-
ops a generic online control framework to design
self-managing computer systems. The proposed ap-
proach explores a limited region of the system
state-space at each time step and decides the best con-
trol action accordingly. We present two case studies
to demonstrate the practicality of the proposed con-
trol framework.

1. Introduction

Computer systems hosting information technol-
ogy applications vital to commerce and banking, trans-
portation, military command and control, among others,
must satisfy stringent QoS requirements while operat-
ing in highly dynamic environments; for example, the
workload to be processed may be time varying, hard-
ware (software) components may fail during system
operation, etc. To achieve the desired QoS, numer-
ous performance-related parameters must be con-
tinuously optimized to respond rapidly to changing
computing demands. The current state-of-the art re-
quires substantial manual effort, and as computer sys-
tems increase in size and complexity, it will become
very difficult for administrators to effectively man-
age their performance.
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This paper presents a generic control framework to
design self-managing computer systems. We develop an
online controller that aims to satisfy designer-specified
QoS goals by implementing appropriate (near-optimal)
adaptation strategies based on continuous observations
of system states and operating parameters. Control the-
ory offers a systematic way to design automated and ef-
ficient resource management schemes. If the computer
system of interest is correctly modeled and the effects of
its operating environment accurately estimated, control
algorithms can be developed to achieve the desired per-
formance objectives. Also, well established techniques
to analyze controller stability and convergence are read-
ily available [17].

Recently, control-theoretic methods have been suc-
cessfully applied to various resource management prob-
lems in computer systems including task scheduling
[14, 8], bandwidth allocation and QoS adaptation in web
servers [2], load balancing in e-mail and file servers
[19, 13], network flow control [15], and power man-
agement [10, 21]. The above methods all use classical
feedback control to first observe the current system state
and then take corrective action, if any, to achieve the
desired QoS. Furthermore, they usually assume a lin-
earized and discrete-time model for system dynamics.
However, many practical systems exhibit hybrid behav-
ior comprising both discrete-event and time-based dy-
namics [4, 18].

We develop a generic framework to address resource
management problems in computer systems modeled as
switching hybrid systems—a special class of hybrid sys-
tems where the set of possible control inputs is finite
[1]. At each time instant, the control problem of inter-
est is to optimize a (multi-variable) objective function
specifying the trade-offs between achieving the desired
QoS and the corresponding cost incurred in terms of re-
source usage; for example, a controller may be required
to meet a certain response time for a time-varying work-
load while minimizing system power consumption.



Under the proposed framework, control actions are
obtained by optimizing system behavior, as forecast by a
mathematical model, for the specified QoS criteria over
a limited look-ahead prediction horizon. Both the con-
trol objectives and operating constraints are represented
explicitly in the optimization problem and solved at each
time instant. Our method applies to various resource
management problems, from those with simple dynam-
ics to more complex ones, including systems with long
delay or dead times, and those exhibiting non-linear be-
havior. It can also accommodate changes to the behav-
ioral model itself, caused by resource failures and/or pa-
rameter changes in time-varying systems.

The forementioned approach is conceptually similar
to model predictive control, widely used in the process
control industry [16, 20], where a limited time forecast
of process behavior is optimized as per given perfor-
mance criteria. Also related to our work is the look-
ahead supervision of discrete event systems [9] where,
after each input (output) occurrence, the next control ac-
tion is chosen after exploring a search tree comprising
all future states over a limited horizon.

As specific applications of our approach, we present
two case studies. First, assuming a processor capable
of operating at multiple frequencies and a time-varying
workload, we design a controller to address the trade-
offs between processing requirements and power con-
sumption. The second case study extends the online con-
trol to distributed systems. We develop a decentralized
controller for a distributed signal classifier application
where incoming digital signals are processed to extract
certain features from them in real time. The controller
addresses trade-offs between detection accuracy and re-
sponsiveness.

The rest of this paper is organized as follows. Sec-
tion 2 discusses key online control concepts while Sec-
tion 3 presents a case study applying these concepts to
manage the power consumed by a computer processing
a time-varying workload. Section 4 extends the online
control scheme to a distributed environment and Sec-
tion 5 presents an application to a signal detection sys-
tem. We conclude the paper in Section 6.

2. Online Control Concepts

This section describes the hybrid system model and
introduces key online control concepts.

Hybrid System Model. The dynamics of a switching
hybrid system is described by [1]:

x(k + 1) = Φ(x(k), u(k)) (1)
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Figure 1. Online controller architecture

where k is the time index, and x(k) ⊂ R
n and u(k) ⊂

R
m are sampled forms of the continuous state and in-

put vectors at time k, respectively. We denote the system
state space and the input set by X and U , respectively.
The input set U is assumed to be finite. The above rep-
resentation describes a wide class of hybrid systems, in-
cluding nonlinear and piece-wise linear ones.

QoS Specifications. In most real-life systems, QoS
specifications may be classified in two categories. The
first is a set-point specification which requires that
the system performance be maintained at some speci-
fied level or follow a given pattern (or trajectory); exam-
ples include system utilization levels, response times,
etc. The second category involves performance spec-
ifications where relevant measures such as power
consumption and mode switching, etc., must be op-
timized. The performance measure is a function of
system state, and input (output) variables, and typi-
cally uses a norm in which these variables are added
together with different weights reflecting their contribu-
tion to the overall system utility.

Controller Design. Figure 1 shows the overall frame-
work of a generic online controller. Relevant parame-
ters of the operating environment such as workload ar-
rival patterns, etc., are estimated and used by the sys-
tem model to forecast future behavior over a look-ahead
horizon. The controller optimizes the forecast behavior
as per the specified QoS requirements by selecting the
best control inputs to apply to the system. The key ideas
behind the controller are as follows:

• Future system states, in terms of x̂(k+j), for a pre-
determined prediction horizon of j = 1 . . . N steps
are estimated during each sampling instant k using
the corresponding behavioral model. These predic-
tions depend on known values (past inputs and out-
puts) up to the sampling instant k, and on the future



control signals u(k + j), j = 0 . . . N − 1, which
are inputs to the system that must be calculated.

• A sequence of control signals {u(k + j)} result-
ing in the desired system behavior is obtained for
each step of the prediction horizon by optimizing
the QoS-related specification.

• The control signal u∗(k) corresponding to the first
control input in the above sequence is applied as
input to the system during time k while the other
inputs are rejected. During the next sampling in-
stant, the system state x(k + 1) is known and the
above steps are repeated again. Note that the ob-
served state x(k + 1) may be different from those
predicted by the controller at time k.

Assuming a set-point QoS specification, the next con-
trol action is selected based on a distance map defining
how close the current state is to the desired set point.
This map may be defined for each state x ∈ R

n as
D(x) = |x − xs|, where |.| is a proper norm for n. For
a performance specification, the control input optimiz-
ing a given utility function J(x) is selected. This func-
tion assigns to each system state, a cost associated with
reaching and maintaining that state.

Control Algorithm. Figure 2 shows the online control
algorithm OLC that aims to satisfy a given performance
specification for the underlying system. At each time in-
stant k, it accepts the current operating state x(k) and re-
turns the best control input u∗(k) to apply. Starting from
this state, the controller constructs in breadth-first fash-
ion, a tree of all possible future states up to the specified
prediction depth. Given an x(k), we first estimate the
relevant parameters of the operating environment, and
generate the next set of reachable system states by apply-
ing all control inputs from the set U . The cost function
corresponding to each estimated state is then computed.
Once the prediction horizon is fully explored, a unique
sequence of reachable states x̂(k+1), . . . , x̂(k+N) with
minimum cumulative cost is obtained. The first control
input u∗(k) along the path to x̂(k + N) is applied to
the system while the rest are discarded. The above con-
trol action is repeated each sampling step.

The OLC algorithm exhaustively evaluates all pos-
sible operating states within the prediction horizon to
determine the best control input. Therefore, the size of
the search tree grows exponentially with the number of
inputs; if |U | denotes the size of the input set, and N
the prediction depth, then the number of explored states
is given by

∑N
j=1 |U |j . Consequently, the proposed ap-

proach is most suitable for systems having a small num-
ber of control inputs.

OLC(x(k)) /* x(k) := current state measurement */
sk := {x(k)}; Cost(x(k)) = 0
for all k within prediction horizon of depth N do

Forecast environment parameters for time k + 1
sk+1 := ∅

for all x ∈ sk do
for all u ∈ U do

x̂ = Φ(x, u) /* Estimate state at time k + 1 */
Cost(x̂) = Cost(x) + J(x̂)
sk+1 := sk+1 ∪ {x̂}

end for
end for
k := k + 1

end for
Find xmin ∈ sN having minimum Cost(x)
u∗(k) := initial input leading from x(k) to xmin

return u∗(k)

Figure 2. The online control algorithm

Finally, since control actions are taken after explor-
ing only a limited number of operating states, we must
guarantee the stability of the underlying system. Briefly,
a system is stable under online control, if for any state,
it is always possible to find a control input that forces it
closer to the desired state or within a specified neighbor-
hood of it. This implies that the controller can eventu-
ally achieve the desired QoS goal. The interested reader
is referred to [24] for a detailed exposure to the stabil-
ity problem.

3. Case Study: Power Management

This section uses the concepts introduced in Section 2
to develop an online controller managing the power con-
sumed by a processor under a time-varying workload.

Processor Model. Figure 3(a), shows a simple queu-
ing model for processor P where λ(k) and µ(k) denote
the arrival and processing rates, respectively, of the data
stream {di}, and q(k) is the queue size at time k [11].
We do not assume an a priori arrival-rate distribution
for {di} and P does not idle if the queue contains data
items; queue utilization is given by ρ(k) = q(k)/qmax

where qmax is the maximum queue size.
Processor P may be treated as a switching hybrid sys-

tem and its operation represented using the hybrid au-
tomaton model in Figure 3(b) [3]. Transitions between
operating modes may be triggered by events or the pas-
sage of time. For example, when the queue is empty,
P is idled to save power; when new events arrive, P is
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Figure 3. (a) A queuing model of the pro-
cessor and (b) a hybrid automaton repre-
sentation of processor operating modes

switched back to the active state with little time over-
head. If the processor stays idle beyond some threshold
duration, it is placed in the sleep state for a specified time
period. In this state, however, P does not register exter-
nal events, and consequently, they are simply dropped.
The processor transitions back to the active state at the
end of the sleep period.

We assume P can be operated at multiple frequen-
cies. Therefore, its active state is a bounded collection
of discrete sub-states, each with a specific frequency set-
ting fi. In this state, power consumption can be mini-
mized by scaling fi appropriately. Power consumption
relates quadratically to supply voltage which can be re-
duced at lower frequencies [7]. Consequently, energy
savings can be quite significant.

We denote the time required to process di while op-
erating at the maximum operating frequency fmax by
ci. Then the corresponding processing time while oper-
ating at some instantaneous frequency f(k) ∈ {fi} is
ci/α(k) where α(k) = f(k)/fmax is the appropriate
scaling factor. The energy consumed by P while oper-
ating at f(k) is given by α(k)2 [22] and this simple en-
ergy model has been shown to provide reasonably accu-
rate estimates [10].

This section develops a controller to address P ’s
power consumption in the active state. It can, however,
be readily integrated with techniques such as predictive

shutdown [23] to affect the other mode transitions in
Figure 3(b).

Model Dynamics. The following equations describe
the dynamics of the processor in the active state:

q̂(k + 1) = q(k) +
(

λ̂(k + 1) − α(k + 1)
ĉ(k + 1)

)
.T (2)

ρ̂(k + 1) = q̂(k + 1)/qmax (3)

Ê(k + 1) = α(k + 1)2 (4)

Given the observed queue length dynamic q(k) at time
instant k, Equation 2 estimates its length at time k + 1
where λ̂(k + 1) and ĉ(k + 1) denote the estimated
data arrival rate and execution time, respectively, and
α(k + 1) = f(k + 1)/fmax is the scaling factor; the ex-
ecution time is obtained with respect to the maximum
processor frequency fmax. The sampling time of the
controller is denoted by T . Equation 3 estimates the cor-
responding queue utilization while Equation 4 gives the
energy consumed by the processor.

Returning to Equation 2, a good estimator of future
system inputs (outputs) is crucial to model accuracy.
Here, we use ARMA filters to estimate environment pa-
rameters such as future data arrival rate λ̂(k+1) and ex-
ecution time ĉ(k + 1) [6]. Given the arrival rate λ(k) at
time k and the mean λ̄ of past observations over a spec-
ified history window, the estimated rate for k + 1 is:

λ̂(k + 1) = βλ̄ + (1 − β)λ(k) (5)

where the gain β determines how the estimator tracks
variations in the observed arrival rate; a low β bi-
ases the estimator towards the current observation
while larger values favor past history. Rather than stat-
ically fix β, an adaptive estimator described in
[12] can be used. It tracks large arrival-rate (execu-
tion time) changes quickly while remaining robust
against small variations. When the estimated val-
ues match the observed ones, those estimates are given
more weight with a higher β. If, however, the esti-
mator does not accurately match the observed val-
ues, β is decreased to improve convergence. A second
ARMA filter is used to adapt the gain β(k) dynami-
cally as follows:

∆(k) = γ∆̄ + (1 − γ)|λ̂(k − 1) − λ(k)| (6)

where ∆(k) denotes the error between the observed and
estimated arrival rates at time k and ∆ the mean error
over a certain history window; γ is empirically deter-
mined. Then, β(k) = 1−∆(k)/∆max where ∆max de-
notes the largest error seen in the history window.
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Figure 4. Performance of power manage-
ment system

Problem Formulation. During any time interval k, the
controller on processor P must select the proper fre-
quency settings to operate the P as close as possible to
the desired performance criterion. Therefore, it must si-
multaneously minimize both the queue utilization ρ(k)
and energy consumption E(k); lower ρ(k) values are
desirable since the processing delay incurred by a newly
arrived data item is inversely proportional to 1 − ρ(k).
The OLC algorithm in Figure 2 is suitably modified to
minimize the following cost function to obtain the re-
quired operating frequency f(k):

Ĵ(k + 1) = a1|ρ̂(k + 1)|2 + a2|Ê(k + 1)|2 (7)

where a1 and a2 are user-specified weights denoting the
relative importance of ρ̂(k) and Ê(k), respectively.

We evaluated the performance of the above con-
troller using a synthetic workload and Figure 4 sum-
marizes its performance for one simulation run. We as-
sume a processor capable of operating between (200,
600) Mhz in 25 Mhz increments and a supply voltage
ranging from (1.4, 2.0) V depending on the operating
frequency. The request arrival rates in Figure 4 exhibit
cyclical variations characteristic of most HTTP and e-
commerce workloads [5]. The execution times of these
requests were randomly chosen from a uniform distribu-
tion between (4, 8) ms. The prediction depth of the con-
troller was set to 2 time steps in our experiments, and the
weights a1 and a2 in the objective function (see Equa-
tion 7) were set to 0.65 and 0.45, respectively. These
values emphasize system responsiveness slightly more
than power consumption. As seen from the frequency re-

sponses, the controller tracks the arrival rate well. The
increase in queue size during the time interval (500,
600) corresponds to a sustained high request arrival rate.
Note, however, that the controller operates the proces-
sor at its maximum frequency during this duration.

4. Distributed Control

This section extends the online control approach pro-
posed in Section 2 to distributed systems comprising
several hardware (software) components, each having
its own QoS specification. Typically, these components
must interact to achieve a desired global objective—
given as a QoS requirement for the overall system. This
suggests a multi-level decentralized control structure
where components have independent local controllers,
and the interaction between these components is man-
aged by a global controller that addresses system-wide
QoS requirements. Figure 5 shows such a structure.

Since a detailed behavioral model of the underlying
distributed system may be very complex, the global con-
troller typically uses a corresponding abstract (simpli-
fied) model to describe component interactions. Such
an abstract model may include only those local vari-
ables directly affecting global QoS objectives such as
the operating modes of local controllers and their aggre-
gate (or average) behavior over some time interval. Fur-
thermore, the model describes how these variables re-
spond to relevant changes in environment inputs, oper-
ating constraints, etc., as seen by the global controller.
Decisions made by the global controller are communi-
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Abstract
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Figure 5. A multi-level control structure for
distributed systems



cated to the local ones, that then aim to optimize com-
ponent performance using local utility functions while
ensuring that the conditions imposed by the global con-
troller are not violated.

Since the global controller makes decisions using the
aggregate behavior of local controllers, it typically oper-
ates on a longer time frame compared to the local ones.
Under this scenario, the high-level commands can be
viewed as a set of long-term restrictions on the local
controllers directed towards satisfying a global objec-
tive. The local controller then acts to optimize the un-
derlying component subject to the high-level restriction.

5. Case Study: Signal Detection System

This section describes the design of a multi-level con-
trol structure for a distributed signal detection appli-
cation developed by Southwest Research Institute, San
Antonio, Texas.

System Model Figure 6 shows the detection applica-
tion comprising multiple components processing dig-
ital signals to extract features such as human voice
and speech from them. Incoming signals are stored in
a global buffer and distributed to individual detectors
where they are locally queued. Each detector then ex-
amines a chunk of these signals to identify specific fea-
tures. Clearly, detection accuracy improves with chunk
size at the cost of increased computational complexity.
Therefore, a global controller addresses the trade-off be-
tween accuracy and responsiveness is to optimize over-
all system performance. We assume that the local con-
trollers on individual detectors can operate in the follow-
ing (user-defined) qualitative modes: (1) low mode, used
when the arrival rate is low and large signal chunks may,
therefore, be processed; (2) medium mode which applies
to medium arrival rates; and (3) high mode used when
signals arrive at a high rate and processing must be done
in small chunks. Based on the overall signal arrival rate,
the global controller selects the appropriate modes of op-
eration for local controllers as well as their share of the
incoming signals to satisfy the system-level QoS goals.

Global Controller Design. The global controller in
Figure 6 receives signal arrival rate forecasts as well as
average queue size and detection accuracy information
from each component over the past sampling time pe-
riod. It then uses this information to distribute a fraction
of the new arrivals to each detector and set its operat-
ing mode. New signals are distributed to the ith compo-
nent using ν = { νi ∈ Ω | i ∈ [1, n]} where Ω is a finite
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Figure 6. Signal detection system

set of positive reals in [0, 1] and
∑

i νi = 1. The next op-
erating mode is given by m = {m ∈ M | i ∈ [1, n]}
where M is the set of possible modes. For the ith com-
ponent, its average processing rate and accuracy under
the current operating mode depends on the incoming sig-
nal arrival rate, and is specified by functions pi(mi, λi)
and yi(mi, λi), respectively.

The global controller decides on an appropriate con-
trol action using the average estimated queue size and
detection accuracy of the system components. The esti-
mated queue size during time k + 1 is given by:

q̂(k + 1) = q(k) + [λ̂(k)−
n∑

i=1

pi(mi(k), νi(k)λ̂(k)]Tg

where Tg is global sampling period and λ̂(k) the esti-
mated signal rate obtained using the ARMA model pre-
viously described in Section 2. The parameters of this
model are updated at each sampling time instant. The av-
erage accuracy of the overall system ŷ(k) is the sum of
yi(mi(k), νi(k)λ̂(k)). Initially, the functions pi, yi are
obtained via simulation and their parameters updated
during system operation using feedback from the local
components. The global controller aims to maximize the
cost function given by:

Ĵ(k + 1) =
Ng∑

i=k+1

a1 [q̂(i)]2 + a2 [ŷ(i)]2 (8)

where Ng is the lookahead depth of the global controller
and weights a1 and a2 specify the relative importance of
system responsiveness and accuracy, respectively.

Local Controller Design. At each time step, local de-
tectors remove a chunk of enqueued signals, store it in a
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temporary buffer, and process this buffer to extract fea-
tures. If this chunk is sufficient to correctly classify the
signal then those signals are removed from the queue.
Otherwise, more signals from the queue are added to ex-
isting ones in the temporary buffer and detection is reat-
tempted. A typical end result of this process is the esti-
mated symbol rate, the computation time required, and
a confidence measure. Figure 7 shows the signal detec-
tion system integrated with the local controller.

The controller shown in Figure 7 adjusts the feature
level (or chunk size) in a closed loop to maximize the
utility of the local detector. It operates at a sampling rate
Tl where Tg = RTl and R > 1 is a positive integer.
The ith detector in Figure 6 receives signals from the
distributor at a rate λi(k) (estimated several local time
steps ahead using an ARMA model) and stores then in
a queue where the current size is denoted by qi(k). De-
pending on the switch vi(k) set by the controller, new
signals are retrieved from the queue, stored in a tempo-
rary buffer, and a chunk ri(k) dispatched to the signal
detector from this buffer; alternatively, a fraction of only
the temporarily buffered signals may be sent to the de-
tector without removing any from the queue. Once de-
tection is preformed on the signal chunk delivered by the
buffer, the component outputs yi(k), estimating its con-
fidence in the detection process.

The utility of a detector depends both on the quality
of the results as well as the detection latency (in terms
of response time or queue size). The local queue size at
k + 1 is estimated using its current size and predicted
signal arrival rate:

q̂i(k + 1) = qi(k) + [λ̂i(k)ci(ri) − vi(k)] (9)

where ci(ri) is the estimated processing time for a given
chunk of signals ri. The corresponding instantaneous
confidence measure yi(k) depends on the size of the
chunk ri(k) and wether or not the signal is new vi(k).

The objective of the local controller is to maximize the
following utility function:

Ĵi(k) =
Ni∑

i=k+1

b1 [q̂i(i)]2 + b2 [ŷi(i)]2 (10)

where Ni is the lookahead depth. The tuple (b1, b2) ∈
M defines the current mode of the system as assigned
by the global controller at each global time step.

Performance Analysis. We evaluated the performance
of the multi-level controller using a synthetic workload
generated by a proprietary application simulating mul-
tiple signal sources. Figure 8 shows the mode switch-
ing affected by the global controller on local detectors
in response to the time-varying arrival rate. Figure 9
shows the the performance of one local controller when
the signal arrival rate is low. Under this scenario, larger
chunks of signal data are processed as evidenced by the
achieved feature level (Note that the feature level is an
inverse function of chunk size).

6. Conclusions

We have presented a generic online control frame-
work to design self-optimizing computer systems. In
the proposed approach, control actions governing sys-
tem operation are obtained by optimizing its behavior,
as forecast by a mathematical model, over a limited time
horizon. As specific applications of our approach, we
presented two case studies. First, we developed an on-
line controller to efficiently manage power consumption

0 50 100 150 200 250 300 350 400 450 500
4

8

12

16

20

A
rr

iv
al

 r
at

e

Actual arrival rate
Estimated arrival rate

0 50 100 150 200 250 300 350 400 450 500

Low

Normal

High

M
od

e 
(1

st
 d

et
ec

to
r)

0 50 100 150 200 250 300 350 400 450 500

Low

Normal

High

Time

M
od

e 
(2

nd
 d

et
ec

to
r)

Figure 8. Global controller response to
time-varying signal arrival rates



0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0
1
2
3
4
5
6

S
ig

na
l A

rr
iv

al
 R

at
e

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0
1
2
3
4
5
6
7
8

Q
ue

ue

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0

2

4

F
ea

tu
re

 L
ev

el

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
0

20

40
 

60
 

80

Time

U
til

ity

Figure 9. Performance of a local controller
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in processors under a time-varying workload. We then
extended the online control method to distributed sys-
tems and applied it to a signal detection application.

References

[1] S. Abdelwahed, G. Karsai, and G. Biswas. Online safety
control of a class of hybrid systems. In 41st IEEE Confer-
ence on Decision and Control, pages 1988–1990, 2002.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Performance
guarantees for web server end-systems: A control theo-
retic approach. IEEE Trans. Parallel & Distributed Syst.,
13(1):80–96, January 2002.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

[4] P. Antsaklis, editor. Special Issue on Hybrid Systems.
Proceedings of the IEEE. July 2000.

[5] M. F. Arlitt and C. L. Williamson. Web server work-
load characterization: The search for invariants. In Proc.
ACM SIGMETRICS Conf., pages 126–137, 1996.

[6] G. P. Box, G. M. Jenkins, and G. C. Reinsel. Time Series
Analysis: Forecasting and Control. Prentice-Hall, Upper
Saddle River, New Jersey, 3 edition, 1994.

[7] T. D. Burd and R. W. Brodersen. Energy efficient CMOS
microprocessor design. In Proc. Hawaii Intl Conf. Syst.
Sciences, pages 288–297, 1995.

[8] A. Cervin, J. Eker, B. Bernhardsson, and K. Arzen.
Feedback-feedforward scheduling of control tasks. J.
Real-Time Syst., 23(1–2), 2002.

[9] S. L. Chung, S. Lafortune, and F. Lin. Limited looka-
head policies in supervisory control of discrete event sys-
tems. IEEE Trans. Autom. Control, 37(12):1921–1935,
December 1992.

[10] Z. Lu et al. Control-theoretic dynamic frequency and
voltage scaling for multimedia workloads. In Intl Conf.
Compilers, Architectures, & Synthesis Embedded Syst.
(CASES), pages 156–163, 2002.

[11] R. Jain. The Art of Computer Systems Performance Anal-
ysis. John Wiley & Sons, New York, 1991.

[12] M. Kim and B. Noble. Mobile network estimation.
In Proc. ACM Conf. Mobile Computing & Networking,
pages 298–309, 2001.

[13] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: Online
data migration with performance guarantees. In Proc.
USENIX Conf. File Storage Tech., pages 219–230, 2002.

[14] C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback con-
trol real-time scheduling: Framework, modeling and al-
gorithms. Journal of Real-Time Systems, 23(1/2):85–
126, 2002.

[15] S. Mascolo. Classical control theory for congestion
avoidance in high-speed internet. In Conf. Decision &
Control, pages 2709–2714, 1999.

[16] M. Morari and J. Lee. Model predictive control: Past,
present and future. Computers and Chemical Engineer-
ing, 23:667–682, 1999.

[17] K. Ogata. Modern Control Engineering. Prentice Hall,
Englewood Cliffs, NJ, 1997.

[18] J. Zaytoon P. Antsaklis, X. Koutsoukos. On hybrid con-
trol of complex systems: a survey. European Journal of
Automation, 32:1023–1045, 1998.

[19] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury,
T. Jayram, and J. Bigus. Using control theory to achieve
service level objectives in performance management. In
Proc. IFIP/IEEE Int. Symp. on Integrated Network Man-
agement, 2001.

[20] S. Qin and T. Badgewell. An overview of industrial
model predictive control technology. Chemical Process
Control, 93(316):232–256, 1997.

[21] T. Simunic and S. Boyd. Managing power consumption
in networks on chips. In Proc. Design, Automation, &
Test Europe (DATE), pages 110–116, 2002.

[22] A. Sinha and A. P. Chandrakasan. Energy efficient real-
time scheduling. In Proc. Intl Conf. Computer Aided De-
sign (ICCAD), pages 458–463, 2001.

[23] M. B. Srivastava, A. P. Chandrakasan, and R. W. Broder-
sen. Predictive system shutdown and other architectural
techniques for energy-efficient programmable computa-
tion. IEEE Trans. VLSI Syst., 4(1):42–55, 1996.

[24] R. Su, S. Abdelwahed, and S. Neema. A practical stabil-
ity problem in switching systems. Submitted to the 43rd
IEEE Conference on Decision and Control, 2004.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


