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Abstract: This paper presents an approach for robust diagnosis of switching
systems based on an extended version of the timed failure propagation graph
model. The extended failure propagation graph model is a labeled graph used for
the representation of failure conditions and their propagation modeled as causal
relations with timing properties for a general class of systems with both time-
based and event-driven dynamics such as hybrid and discrete event systems. We
introduce the extended model and describe the structure and main components of
the failure detection and isolation system based on the proposed model.
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1. INTRODUCTION

Large engineering systems such as manufacturing
systems, power networks, and chemical plants are
usually designed for autonomous operation. Au-
tomatic failure diagnosis forms a necessary part
of these systems. Accurate and speedy diagnosis
of faults is vital to their health and efficiency. In
general, the diagnostic component aims to detect,
isolate and predict possible failures by observing
signals and measurements from the system sen-
sors, comparing it with a mathematical model
representing relevant nominal and/or faulty be-
havior, and explaining the observed behavior in
terms of a hypothesis about possible abnormal
changes to the state of the system components.

Failure analysis and diagnosis procedures can be
classified into two main approaches. The first
approach, commonly referred to as model-based
diagnosis, compares the observed behavior of the
system with a nominal model that captures its
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normal behavior. The nominal model may also
contain information about faulty behavior. Cur-
rent state information can be extracted from the
available set of measurements and compared with
the nominal values to identify and isolate possi-
ble faults. Diagnosability properties can also be
formally defined and analyzed in this approach
Patton et al. (1989).

The model based approach, however, depends on
the availability of a precise mathematical model
which is difficult to obtain for most practical
real-life systems. Even when a precise model can
be obtained the computational requirements of
model-based diagnosis procedures are usually pro-
hibitive. Nevertheless, there has been considerable
research with many successful applications, par-
ticularly in the field of process engineering, for
using model-based methods to detect and isolate
system faults. Many of the developed techniques
in this approach are based on filtering and param-
eter estimation Li and Olson (1991); Watanabe
and Himmelblau (1983). In certain situations, an-
alytical redundancy can be exploited to allow the



detection of measurement errors (sensor failures)
Patton et al. (1989).

The other approach to system diagnosis is the
qualitative approach. This approach is based on
the causal relationship between observed signals
and failure sources. Sensors signals are used to
reason about possible failure based on the given
causal relationship. The qualitative approach is
more common in practice due its simplicity and
computational efficiency. In addition, the require-
ments for this approach are easier to handle
and usually do not require major changes to the
system design. The underlying fault propagation
model can be enriched to handle temporal, prob-
abilistic and dynamical specifications. Also, sup-
port for integrated diagnosis of hierarchical sys-
tems can be easily established.

There are two primary models used for qualitative
failure diagnosis - functional models and fault
models. The former describe the correct behavior
of the system with possible metrics added to
associate behavioral deviations with particular
fault patterns. Fault models on the other hand
describe the system behavior in the presence of
faults. Fault models have been used for diagnosis
in work done by many researchers Ishida et al.
(1985); Rao and Viswanadham (1987a,b). Timed
failure propagation graphs (TFPG) Misra (1994);
Misra et al. (1994) are causal models that describe
the system behavior in presence of faults. The
TFPG model is closely related to the fault model
presented in Padalkar et al. (1991); Karsai et al.
(1992) and used for an integrated fault diagnoses
and process control system.

In this paper, we present a qualitative approach to
failure diagnosis based on the timed failure prop-
agation graph. The extended structure, referred
to as hybrid failure propagation graph (HFPG)
captures the effect of the switching dynamics and
timing constraints on the propagation of failures
in typical discrete event and hybrid systems. The
HFPG model presented in this paper adds mode
dependency constraints on the propagation links
which can be used to handle failure scenarios in
hybrid and switching systems. The HFPG model
also supports both AND and OR node seman-
tics which can be used to build complex failure
propagation dependency situations. The proposed
extension also allow cyclic dependency between
signals (discrepancies) in the fault model.

The paper is organized as follows. Section 2 in-
troduces the syntax and semantics of the hybrid
failure propagation graph model. In section 3, we
introduce the diagnosis problem and the main
elements of the diagnostic system based on the hy-
brid failure propagation graph settings. In section
4 we present the diagnosis reasoning algorithm
together with complexity analysis of its main pro-

cedures. Section 5 contains the conclusions of the
paper and directions for future research.

2. HYBRID FAILURE PROPAGATION
GRAPHS

The hybrid failure propagation graph is a labeled
directed graph where the nodes represent either
failure modes - which are fault causes - or dis-
crepancies - which are off-nominal conditions that
are the effects of failure modes. A discrepancy can
either be monitored (attached to alarms) or silent,
and depending on the way it is triggered by the
incoming signals it is further classified as either
“AND” or “OR” discrepancy. Attributed edges
between nodes in the graph represent causality,
and the attributes specify the temporality of cau-
sation given by an upper and lower time bounds
on the propagation of failure between nodes.

The HFPG model allows for the representation
of failure propagation in multi-mode (switching)
systems in which the failure propagation relations
depend on the current mode of the system. To
this end, edges in the graph model can be con-
strained to a subset of the set of possible operation
modes of the system. Formally, a hybrid failure
propagation graph model is represented as a tuple
G = (F,D,E,M,ET,EM,DC,DS), where:

• F is a nonempty set of failure nodes,
• D is a nonempty set of discrepancy nodes,

with F ∩ D = ∅
• E ⊆ V × V is a set of edges connecting

the set of all nodes V = F ∪ D. We will
write src(e) and dst(e) for the source and
destination nodes of the edge e, respectively.

• M is a nonempty set of system modes. At
each time instance t the system can be in
only one mode.

• ET : E → I is a map that associate ev-
ery edge in E with a time interval in I =
{[tmin, tmax] | tmin ∈ R+, tmax ∈ R+ ∪
{∞}, tmin ≤ tmax}; where I is the set of
all time intervals,

• EM : E → P(M) is a map that associate
every edge in E with a set of modes in M (we
assume that EM(e) 	= ∅ for any edge e ∈ E ),

• DC : D → {AND, OR} is a map defining the
class of each discrepancy as either AND or an
OR node,

• DS : D → {ON, OFF} is a map defining
the monitoring status of the discrepancy as
either ON for the case when the discrepancy is
monitored by an online alarm or OFF for the
case when the discrepancy is not monitored.

The set V contains n + m vertices, representing
n failure modes and m discrepancies. Some of
the discrepancies are monitored as defined by the



map DS. The set of monitored discrepancies will
be denoted Da. An edge e = (v, v′) ∈ E iff
the failure effect represented by the node v can
propagate and participate in causing the effect
represented by the node v′. The map ET associates
each edge e ∈ E with the minimum and maximum
time (given as interval) for propagation of failure
along the edge. We will write tmin(e) and tmax(e)
for the minimum and maximum time for failure
propagation along the edge e, respectively, so that
ET(e) = [tmin(e), tmax(e)]. The map EM asso-
ciates each edge e ∈ E with a subset of the system
modes at which the failure can propagate along
the edge. We assume the following assumptions
hold for the graph structure (V,E):

• (∀v ∈ V ) (v, v) 	∈ E
• (∀e ∈ E) dst(e) 	∈ F
• (∀d ∈ D)(∃v ∈ V ) (v, d) ∈ E

The first assumption states that the graph does
not contain self loops as the current version of
HFPG only deals with permanent faults. The sec-
ond assumption states that a failure node cannot
be a destination of any edge so in effect failure
nodes are the initial nodes of the graph. Finally,
we assume that every discrepancy must be the
destination of an edge, that is a discrepancy must
be caused by either another discrepancy or failure
mode.
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Fig. 1. A hybrid failure propagation graph

Figure 1 shows an example of a HFPG. In this
graph, rectangles represent the failure modes
while circles and squares represent OR and AND
discrepancies, respectively. Monitored discrepan-
cies are shown with bold lines. The arrows be-
tween the nodes represent failure propagation
links. Propagation edges are parameterized by the
corresponding interval, [tmin, tmax], and the set of
modes for which the edge is active. The above fig-
ure also shows a sequence of alarm signals, which
are identified by shaded discrepancies. The time
at which the alarm is observed is shown above the
corresponding discrepancy.

3. THE DIAGNOSIS PROBLEM

The diagnostic system operates on the HFPG
model described in the previous section and char-
acterizes the fault status (actual current state) of
the system by hypothesizing the faults in compo-
nents and sensors based on the signals received
from the sensors and the current mode of the sys-
tem. The diagnoser uses the HFPG model and the
timed sensor/mode-switching signals to generate
a set of logically valid hypotheses of the current
state of the system. The hypotheses are then
ranked according to certain criteria that is gen-
erally based on the number of supporting alarms
versus the number of inconsistent ones. A more
advanced ranking that takes into account the rela-
tive significance/accuracy of the sensor signals can
also be established. The set of hypotheses with the
highest rank will be selected as the most plausible
estimations of the current state of the system.

The diagnoser is implemented as a reactive mod-
ule that is triggered by signals from the set of
active sensors as well as mode-switching signals.
Formally, a diagnoser input signal is represented
by an event tuple (e, t), where e ∈ Da ∪ M is
either a monitored alarm (e ∈ Da) or a mode-
switching signal (e ∈ M) and t is the time at
which the signal is observed. The timed event (e, t)
is triggered whenever the state of a discrepancy is
changed or the system changes mode. When the
event (d, t) is triggered with d ∈ Da, we say that d
is an active discrepancy and write ta(d) to denote
the time when d becomes active. The diagnostic
system keep a record of the sequence of all timed
events from the system initial state to the current
time.

The diagnoser responds to input signals by gen-
erating hypotheses. Each hypothesis is an eval-
uation of the status of a failure mode in the
HFPG model together with the corresponding
evidence. Formally, a hypothesis is a tuple h =
(f, te, tl, r, Sp, Ss, I, P ), where f ∈ F is the failure
mode for which the hypothesis stands, te and
tl are the estimated earliest and latest time of
occurrence of the failure mode f . The static rank,
r, of the hypothesis is a number associated with
a measure of belief in the hypothesis. The rank
is set to 0 when the hypothesis is generated, and
updated each time a new event is triggered. Hy-
potheses with negative ranks are not considered
during the reasoning process. The elements Sp,
Ss, I, and P are sets of discrepancies with special
relevance to the hypothesis h:

• Sp ⊆ Da is the set of primary active discrep-
ancies that supports the hypothesis h. These
are the active alarms that are triggered as a
direct consequence of f . These alarms pro-



vide the main justification of the hypothesis
h.

• Ss ⊆ Da is the set of secondary active
discrepancies that supports the hypothesis h.
These are the active alarms that are triggered
as a consequence an alarm connected to f
and is supporting the hypothesis h.

• I ⊆ Da is the set of active discrepancies
that are inconsistent with the hypothesis h.
These are the alarms that are connected to
the failure mode f but cannot be explained
based on the hypothesis h.

• P ⊆ Da is a set of pending discrepancies
where their status cannot be identified at the
current time.

The set of all supporting alarms for h will be
denoted by S. Note that the hypothesis h also im-
plicitly provides an estimation of the status of the
monitored alarms connected to the failure mode
f . That is h is also a hypothesis for monitored
alarms connected to f . Under the hypothesis h,
supported alarms are considered healthy (provid-
ing the correct signals) and inconsistent alarms
are faulty. In addition to generating and updating
hypotheses, the diagnoser also generates a list of
false alarms, namely those alarms that could not
be explained by any hypothesis based on the tim-
ing and structure of the failure propagation graph.
Based on the ranking scheme, the diagnoser can
identify observation (sensor) errors. Consequently,
the diagnosis process is robust against sensor fail-
ures and degrades gracefully as the number of
sensor failures increase.

Given a HFPG representing the failure propa-
gation in the system and a sequence of sensors
signals corresponding to monitored discrepancies
and possible mode switches, the task of the diag-
nosis system is to generate a failure report, which
consists of a set of hypothesis that explains all
the current signaling discrepancies. Figure 2 shows
a simplified UML diagram of the basic elements
of the HFPG diagnosis system and the relation
between them.
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Fig. 2. A simplified diagram of the HFPG diagno-
sis system

In composing the hypothesis structure h we con-
sider only those discrepancies that are reachable
from the underlying failure mode f . This al-
lows the diagnoser to deal with sensor signals
more efficiently by focusing on the nodes that
are connected to the corresponding discrepancy.
However, in general the HFPG structure may
contain several failure modes that can propagate
to certain common discrepancies. These mutual
dependencies can lead to a conflict between the
hypothesis of different failure modes, because as
mentioned above h, also implicity provides an es-
timation of the status of monitored discrepancies
connected to it.

Consider for instance the HFPG graph in Fig-
ure 1, assume h1 is a hypothesis about FM1 that
considers D1 as a primary supporting alarm and
h2 be a hypothesis about FM2 that considers
D1 as an inconsistent alarm. Then clearly both
hypotheses cannot be part of a consistent set
of hypothesis as one considers D1 healthy while
the other considers it faulty 2 . The diagnoser
eliminates those sets of hypotheses that contain
conflicting elements when generating the failure
report.

4. DIAGNOSTIC REASONING

The diagnosis system operates on the HFPG
model of the system to detect and isolate faults
by generating and selecting appropriate hypothe-
sis to explain the incoming signals from the sys-
tem. In reasoning about the faults the diagnoser
uses the principles of parsimony. In general, due
to possible structural redundancy in the HFPG
model, there can be several explanations of a
given sequence of sensor signals. The principle of
parsimony suggests that the simplest explanation
is the best. By simplest we mean the one that
involves the least number of faulty components.
In general, there may not be a unique simplest
explanation. In this situation, the diagnoser will
provide all the most simple plausible explanation
to the user.

At the occurrence of every event, the diagnoser
updates the set of hypotheses and the current set
of faulty components are identified. The diagnoser
updates the set of possible hypotheses about the
system state based on the causal and timing con-
sistency between the discrepancies. Consistency
between discrepancy nodes is calculated based on
a complex formula as it depends on the type of
the node and the current mode of the system. In
general, the relation between active node is identi-
fied as either consistent, inconsistent, or pending.

2 Note that this situation is independent of the type of D1,
that is, the conflict between the two hypotheses remains if
D1 is either of type AND or OR.



These classes can be either absolute (independent
of any hypothesis) or relative based on certain
hypothesis. For instance, let (d, d′) ∈ E where
d, d′ ∈ Da and both are of OR type and currently
active. Then the pair d, d′ are absolute-consistent
if the time since the edge (d, d′) became active is
enough for the signal to propagate from d to d′.

The diagnoser is triggered by one of four events -
(1) a monitored discrepancy signaling alarm (2) a
monitored discrepancy becoming silent after sig-
naling for a while (3) a mode-switching signal (4)
a timeout occurring, i.e., a predicted alarm did
not ring. The reasoning algorithm uses two main
data structures, the failure report and the HFPG
model. The failure report consists of the highest
ranking (most plausible) set(s) of consistent hy-
pothesis. The HFPG model represents the dynam-
ics of failure propagation and is used to both de-
tect and isolate current faults and predicts future
alarm signals. The reasoning algorithm consists of
the following main steps.

Update the reachability information This step
is invoked when a mode switching signal is
detected. The mode switching signal indicates
that the structure of the HFPG model changed,
particularly, the connection between the nodes.
The reachability matrices of the HFPG will be
recalculated for each mode change, and activa-
tion time of each edge affected by the mode
change will be updated.

Update the hypotheses In this stage, the faulty
alarms are identified first. An alarm is consid-
ered faulty if it cannot be explained by one of
the currently valid hypothesis. If the alarm is
not faulty, then it is either incorporated into
the current set of hypothesis or, if it is not
consistent with any current hypothesis, a new
hypothesis will be initiated. If the alarm is con-
sistent with a hypothesis, the hypothesis timing
and rank will be updated based on the time and
state of the received alarm signal.

Find missing and pending alarms Silent mon-
itored discrepancies are examined with respect
to the current hypotheses set and their status
with respect to these hypothesis are identified
as either consistent, inconsistent or pending de-
pending on the current time and the reachabil-
ity information.

Generate the failure report In this stage, the
current set of hypotheses are examined for pos-
sible conflicts due to common paths and nodes
in the HFPG model. The ranks of consistent
hypotheses sets are updated counting into effect
mutual dependencies. The hypotheses set with
the highest ranking is used to generate the fail-
ure report which contains an estimation of the
current failure modes, their time of occurrence,
and any possible sensor failures.

Predict next alarms The estimated informa-
tion about the current failure modes and pos-
sible alarm failures is used to predict future
alarms by checking propagation time from all
to signalling alarms to non-signaling ones.

The total number of nodes in the HFPG model
is (n + m) where n is the number of failure
modes and m is the number of discrepancies. The
graph is implemented as an adjacency matrix,
and therefore both BFS and DFS searching al-
gorithms are O(n + m)2. The worst case number
of hypotheses is O(nm). However, the number of
hypotheses in typical practical situations is more
likely to be within O(n). Updating the hypotheses
set is done by updating the consistency relation
between nodes in the graph which is by search
the graph recursively until the set reach a settling
point (for the given hypothesis). This part is of
polynomial complexity on the size of the graph
and the current number of hypothesis. Resolving
the conflict between hypothesis is done by gener-
ating all possible combinations of hypothesis and
therefore is of exponential complexity with respect
to the number of hypothesis.

Fig. 3. The HFPG diagnostic tool

We have developed and tested a real-time diagno-
sis tool based on the hybrid failure propagation
graph. The HFPG diagnosis tool is shown above
in Figure 3. The reasoner engine in the HFPG
tool is based on a robust incremental diagnostics
algorithm described above. The tool can handle
observation errors (sensor failure) and multiple
fault scenarios. The tool also provides a simulation
interface to test and evaluate the HFPG model for
fault scenarios. The HFPG diagnosis algorithm is
currently used as a part of the diagnostic module
in a fault adaptive control structure aimed to
support integrated fault diagnostics and control
reconfiguration for large-scale and heterogeneous
systems.



5. CONCLUSION

In this paper we introduced an approach for ro-
bust diagnosis of switching systems based on an
extended version of the hybrid failure propagation
graph model. The model can be used for diagnosis
a general class of systems with mode switching
conditions. We presented the main elements of
the diagnostic system based on the hybrid fail-
ure propagation graph settings, and described the
main parts of the diagnosis reasoning algorithm.
In future work, we plan to enhance the efficiency
of the diagnosis algorithm by incrementally iden-
tifying conflicting hypotheses at each time the set
of hypotheses is updated.
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