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ABSTRACT 

This paper presents a distributed, hierarchical control 
scheme for autonomous resource management in com-
plex embedded systems that can handle dynamic 
changes in resource constraints and operational re-
quirements. The developed hierarchical control structure 
handles the interactions between subsystem and sys-
tem-level controllers. A global coordinator at the root of 
the hierarchy ensures resource requirements for the du-
ration of the mission are not violated. We have applied 
this approach to design a three-tier hierarchical control-
ler for the operation of a lunar habitat that includes a 
number of interacting life support components.  

INTRODUCTION 

The increasing complexity of engineering systems and 
their use in safety- and mission-critical applications has 
imposed strict requirements on their reliability, robust-
ness, and availability. Achieving reliable and efficient 
performance will depend on the system's ability for 
online monitoring of processes to determine their per-
formance, and to respond to changing conditions in a 
manner that important functionalities are not degraded  

In this paper, we present a control-based approach for 
resource management in engineering systems. The pro-
posed approach uses a utility-based optimization 
scheme to maintain the best possible performance from 
the individual subsystems. The methodology developed 
targets a class of hybrid dynamic systems that have fi-
nite control sets [2]. The underlying model, referred to 
as a switching hybrid system model, can describe the 
dynamics of a wide variety of practical real-life systems. 
General hybrid systems can be described by a transition 
structure on a state space, which is a cross product of 
two domains: (i) discrete-event and (ii) continuous-time 
dynamics. The interaction of discrete-event and time-
based variables makes the behavior generation and 
analysis tasks challenging and computationally complex. 
Considerable research has been dedicated recently to 
the study of hybrid system dynamics [8]. 

The complex nonlinearities of switched systems and the 
underlying finite control set makes it hard to apply tradi-
tional optimal control techniques, and in most cases a 
closed expression for a feedback control map cannot be 
established. The situation is further complicated by the 
fact that in practical systems the model is usually impre-
cise and system parameters may change during run-
time due to component failures and degradations. 

To address the above challenges, we propose a limited-
lookahead online control policy for handling set-point 
specifications for switched systems. The controller di-
rects the system toward a desired state from a given set 
of initial states, and then ensures that the system re-
mains within a neighborhood of the desired state. The 
controller achieves this using a search technique that 
expands a limited set of successor states, and then 
chooses the action that will drive the system closer to 
the desired state based on a given distance metric. The 
control strategy proposed in this paper is conceptually 
similar to model predictive control [3,,10], where a lim-
ited time forecast of the process behavior at each state 
is optimized according to a given cost function over the 
set of inputs. Also, related to this work is the limited loo-
kahead supervision of discrete event systems [4]. 

This paper extends our earlier work on centralized su-
pervisory control [5] to distributed systems. To avoid the 
complexity of distributed systems, resource manage-
ment is handled using a hierarchical control structure, 
where the top-level controller manages the interaction 
between system-level units and maintains global opera-
tional requirements using extended forecasting of envi-
ronmental conditions and inputs. The lowest level is 
composed of a set of local control units that optimize the 
performance of the individual subsystems of the system, 
taking into account the resource constraints and desired 
output specified by the higher-level controllers. We im-
plement a control scheme, where predefined set-point 
specifications for system operation are used to derive 
optimizing utility functions for the subsystem controllers. 

The control scheme is applied to a two subsystem test-
beds designed to evaluate subsystem performance for 



the proposed NASA lunar habitat [6] with its correspond-
ing Advanced Life Support (ALS) System. The ALS it-
self comprises of a number of systems with interacting 
control loops, such as the fluid flow loop, the energy 
management loop, the bio-regeneration and gas transfer 
loop, and the chemical production loop. These loops 
cover multiple physical (energy) domains and operating 
regimes, and operate at multiple time scales. One of the 
key tasks in controller design is to build models of all of 
the systems that captured their continuous and discrete 
dynamics. 

THE LUNAR HABITAT 

A part of the lunar habitat, showing the crew chamber 
(this can house up to four astronauts) and two primary 
components of the ALS system, the ARS and the WRS, 
are illustrated in Fig. 1. We also include a Power gen-
eration system. Critical requirements for such systems 
are that they consume low power, minimize the use of 
consumable resources, and run in a fully autonomous 
closed loop for long periods of time. The rest of this sec-
tion briefly describes the four systems and the biological 
crew model.  

Figure 1: The Advanced Life Support (ALS) system 

THE WATER RECOVERY SYSTEM - This system re-
cycles urine and wastewater into potable water. The 
WRS, shown in Fig. 2, is comprised of the Biological 
Waste Processor (BWP) that removes organic 
compounds including ammonia, the Reverse Osmosis 
(RO) system that removes particulate matter after the 
BWP, the Air Evaporation System (AES) that purifies 
the concentrated brine that is purged from the RO 
system, and a post processing system (PPS) to remove 
the trace organic and trace inorganic compounds by 
ultra-violet treatment to bring the water to potable limits. 
The combination of the BWP and RO subsystems 
produce about 85% of the clean water. The remaining 
15% is produced by an evaporation and condensation of 
concentrated brine that is passed to the AES from the 
RO subsystem.  

Figure 2: The Water Recovery System 

The RO subsystem, shown in Fig. 3 is the linchpin sub-
system in the WRS loop. It pulls water from the GLS 
(gas liquid separator) of the BWP and pushes it through 
a cylindrical membrane that acts like a molecular sieve 
at high speed. The clean water permeate is passed on 
to the PPS.  

 

Figure 3: RO system schematic 

The RO is designed to go through six modes of opera-
tion. The primary mode draws water into a coiled section 
of pipe that acts like a reservoir, while processing per-
meate in the outer loop. When the brine concentration 
increases above a preset level, the system is switched 
to a secondary mode, where the brine is circulated 
faster in the smaller inner loop with the recirculation 
pump, to push it harder against the membrane. This 
keeps the clean water production at a reasonable rate, 
but the concentration of brine in the inner loop continues 
to increase. At some point, the concentration of brine 
becomes high enough to reduce the output from the RO 
system significantly, so the brine is purged into the AES, 
a new batch of water is drawn in from the GLS, and the 
primary cycle starts again. Periodically, however, as 
particulate matter accumulates in the membrane, it 
needs to be cleaned by running the water backwards in 
the inner loop.  

The AES subsystem contains a reservoir to collect the 
brine. The brine is absorbed onto a wick and evaporated 
using hot air. The evaporated water is condensed by 
passing it through a heat exchanger, and collected in a 
tank before it is sent to the PPS system.  

THE AIR REVITALIZATION SYSTEM (ARS) - The pur-
pose of this subsystem is to replenish the oxygen that 
the crew consumes, and remove excess carbon dioxide 
before the air is circulated back to the crew chamber. 
This task is performed by the Carbon Dioxide Removal 
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Assembly (CDRA). A second task is to recover the oxy-
gen from the carbon dioxide exhaled by the crew. This 
is done in two steps. First, hydrogen and oxygen are 
generated by electrolysis of water using an Oxygen 
Generation Assembly (OGA). The oxygen goes into a 
storage tank, and the hydrogen is fed into a reactor 
(CRS) to reduce the carbon dioxide to water and meth-
ane. In the current configuration, the water is sent back 
to the WRS for purification, and the methane is vented. 
Fig. 4 shows the main components of the ARS systems 
and their interaction with other ALS subsystems.  

 

Figure 4: Components of the ARS 

 The CDRA subsystem uses an adsorption-based device 
known as a “four-bed molecular sieve” to remove CO2 
exhaled by the crew. There are two primary operations 
in this subsystem. At any time two of the beds are ad-
sorbing CO2, while the other two are releasing adsorbed 
CO2 as they are heated. When the adsorbing beds be-
come saturated, they are switched to the desorption 
mode, and the two desorbing beds are used for adsorp-
tion. This cycle occurs several times a day. A compres-
sor takes the desorbed CO2 and stores it in a tank be-
fore it is passed on to the reduction system. 

The CRS uses a Sabatier reactor with a catalyst to react 
the CO2 and H2. Optimal reaction performance is main-
tained by controlling the temperature, pressure, and the 
molar ratio of the gases.  

THE CREW HABITAT – This is the crew living and 
working quarters. The goal of the controller is to main-
tain the air quality (29% oxygen with nitrogen as the di-
lutent gas) and temperature in the habitat. We assume 
the crew consumes O2, H2O, and food, and the habitat 
provides these resources, while removing waste water 
and solid wastes. The lunar mission [11] assumes that 
the chamber is occupied by a team of four crew mem-
bers. A biological model for a typical crew member de-
termines the amount of resources consumed by the 
crew while performing different activities. 

During the mission the crew engage in a pre-defined set 
of activities, which includes a two-shift schedule, where 
each schedule involves 8 hours of work, 8 hours of 
sleep, and the remaining time divided into eating, exer-

cising, maintenance and leisure activity. In general, the 
crew can either be in the habitat or outside on an EVA 
(Extra Vehicular Activity) mission. The difference be-
tween the main habitat and EVA environment is that the 
main crew habitat is in the ALS loop, whereas resources 
produced/consumed in EVA are considered losses from 
the system. 

THE POWER SYSTEM – A simplistic generation and 
storage model patterned after International Space Sta-
tion (ISS) technology is employed. An array of solar 
cells generates the required energy to sustain all of the 
ALS systems and provide the thermal energy to keep 
the crew chamber at 298oK, while also generating ex-
cess energy that is stored in Ni-Cd batteries for use dur-
ing the night (dark) periods when no power can be gen-
erated by the solar array. The day-night cycle on the 
lunar surface is assumed to be 28 earth days with 14 
days of sunlight and 14 days of night. 

MODELING THE ALS SYSTEM   

Building models at the right level of detail is a critical 
first step in the success of a model-based fault-adaptive 
control scheme. Our approach is to build physics-based 
models that capture subsystem dynamics, and use pa-
rameter estimation techniques to identify the model pa-
rameters so that the model matches observed system 
behavior. The model of the RO system was derived by 
decomposing the system into three principal domains of 
operation. The mechanical and fluid domains are the 
primary energy domains that define the flow behavior in 
the system. However, the effect of time-varying impuri-
ties in the water on the flow process is accounted for by 
explicitly modeling the fluid conductivity domain and its 
interactions with the flow process. The model for the 
AES consists of three domains: hydraulic, pneumatic 
and thermal. The hydraulic domain models the amount 
of vapor being generated in the wick and the amount of 
vapor condensed in the heat exchanger. The pneumatic 
domain is modeled simply with a blower pushing air 
through a pipe modeled as a resistance. The thermal 
domain defines the primary behavior of the AES, and 
uses capacities to model the heat capacity in the AES 
loop.  

The CDRA system involves complex spatial-temporal 
dynamics. In this work, we build a simplified lumped 
parameter model in MatLab/Simulink, with multiple 
lumps to capture the spatial dynamics. The input pa-
rameters for CDRA include system pressure, cycle time, 
airflow rate, temperature, and the inlet CO2 level. The 
key outputs for this unit are CO2 concentration and flow 
rate. The CRS (Sabatier) model simulates the behavior 
of one primary reactor zone and two secondary reactor 
zones. For this subsystem, the input parameters are: 
system pressure, temperatures and inlet H2/ CO2 Molar 
Ratio. The key simulated steady state output parameters 
are at the end mass (percentages) of each component 
involved in the reaction which show the conversion 
situation of CO2 and H2. 



The crew habitat model encapsulates activity schedul-
ing, resource utilization based on that activity level, and 
the interaction between the resource consump-
tion/production and the environment where the crew 
member resides. It includes the main crew habitat and 
the EVA habitat. In the developed model, each crew 
activity has an intensity level associated with it. This 
intensity level is mapped on a heart-rate value and in 
turn the heart-rate value is used to compute the oxygen 
consumption and CO2 production. This approach mimics 
that taken in the BioSim simulation engine [11]. The 
habitat model has the amount of each gas as a state 
variable. The state variables are updated by the gas 
flow through the habitat that is imposed by the ARS, and 
the gases consumed/produced by the crew. Similarly, 
both the potable water consumed and waste-water pro-
duced are coupled to the WRS system.  

The power generation model is implemented as a dy-
namic process with constant production rate during the 
day and no power generation at night. Excess power 
generated during the day cycle charges up the Ni-Cd 
cells to their maximum capacity. At night, the batteries 
discharge linearly. 

ONLINE CONTROL OF SWITICHING SYSTEMS 

Applying control techniques for resource management 
requires a suitable model of the underlying system that 
captures the relationship between the system variables, 
and the control inputs. In this section, we introduce the 
limited lookahead control approach, the underlying form 
of the mathematical models, and the extended hierar-
chical control structure. 

SWITCHING HYBRID SYSTEMS - The control ap-
proach proposed in this paper targets a special class of 
hybrid systems in which the controlled input takes on a 
finite set of values. The state space equation describing 
the continuous dynamics of this class of systems is: 

))(),(),(()1( kkukxfkx λ=+ , 

where k is the time index, x(k) ∈ X ⊆ ℜn is the sampled 
form of the continuous state vector, u(k) ∈ U ⊆ ℜm is the 
discrete valued input vector, and λ(k) ∈ ℜr is the envi-
ronment input at time k. The set U is finite. For exam-
ple, in the RO system, the recirculation pump may oper-
ate at one of four speeds.  

In practical systems, environmental inputs are typically 
uncontrollable and unobservable. For example, the flow 
rate of dirty water into the WRS system depends on a 
variety of factors that cannot be (or are not) explicitly 
modeled in our system. However, in most situations, 
they may be predictable within predefined bounds. 
Forecasting techniques, such as the Box-Jenkins 
ARIMA modeling approach [13] and Kalman filters [12] 
may be used to predict variations in the environmental 
inputs and conditions. In both approaches, a prediction 
model is devised through analysis or simulation of rele-

vant parameters of the underlying system environment. 
Formally, a prediction model for the environment input λ 
will have the form. 
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where λ(k+1) is the estimated value of the environment 
input, Λ(k) is the set of all previous measured values of 
environment inputs, and a(k) are the estimation parame-
ters. The estimator, in general, updates a(k) at each 
time step in order to minimize the estimation error e(k) = 
||λ(k) - λ(k)||. Given that the current value of the envi-
ronment input cannot be measured until the next sam-
pling instance, the next state cannot be computed pre-
cisely. Instead, we can estimate of the next state based 
on the following equation. 
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In many situations, a(k) is bounded. The bounds are 
obtained through simulation or analysis of the underlying 
environment.  

REQUIREMENT SPECIFICATIONS – Any system de-
signed for a particular purpose must achieve specific 
objectives, and, at the same time not violate resource 
constraints and interactions with the environment. For 
example, the WRS may be required to produce certain 
amount of clean, potable water per day to meet the 
needs of astronauts on a long mission. In other situa-
tions, the ratio of gray water (for plant use) to potable 
water (for human consumption) may follow a specified 
pattern over different parts of a mission. In general, cost 
optimization can be used to optimize a given perform-
ance measure represented as a function of system 
states and inputs. A weighted norm of the form, 

RQ kukrkxkJ ||)(||||)()(||)( +−=  

is typically used as a performance function in which a 
weighted sum of relevant variables is computed, with 
the weights reflecting their contribution to the system 
utility and operation cost. In this paper, we consider the 
case when r(k) is a point, say x*. This form of specifica-
tion is generally called a set-point specification. 

Operational requirements for distributed computation 
systems may involve additional strict and soft con-
straints on the system variables and control inputs. In 
general, strict constraints can be expressed as a feasi-
ble domain for the composite space of a set of system 
variables and control inputs, and they can be repre-
sented in general by a set of inequalities, h(x, u') ≤ 0 and 
a restricted set of inputs U’ ⊆ U.  

The optimizing component to safety control is intro-
duced ias a utility function, ∑i Vi(pi), where each Vi cor-
responds to a value function associated with perform-
ance parameter, Pi. The parameters, pi, can be continu-
ous or discrete-valued, and they are derived from the 



system state variables, i.e., Pi(t) = pi(x(t)). The value 
functions employed is a simple weighted functions of the 
form Vi(Pi) = wi Pi.   

THE LOOKAHEAD CONTROL APPROACH – The ob-
jective of the control algorithm is to achieve the desired 
set-point specifications, maintain the system stable at 
the desired value, and optimize the given performance 
function while satisfying a set of constraints. In general, 
there is no closed-form solution for such non-linear op-
timization problems. We propose an approximate solu-
tion approach based on limited-lookahead. To this end, 
the control problem is defined as  
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Given that the control set is finite, the above control 
problem is clearly solvable. In general, it may not pro-
duce the optimal trajectory solution for the original con-
trol problem. However, in many practical situations, the 
main concern is the feasibility of the online controller, 
namely, its ability to drive the system towards the de-
sired operation domain ”quickly" and maintain it in this 
region under typical variations in the system or envi-
ronmental conditions. The feasibility of the online control 
approach is discussed briefly in the next section. 

Based on the above settings, the online controller aims 
to satisfy the desired set-point specifications by continu-
ously monitoring the current system state and selecting 
the inputs that best satisfy them. In this setting, the con-
troller is simply considered an agent that applies a given 
sequence of events in order to achieve a certain objec-
tive. The controller explores only a limited forward hori-
zon, N time steps, in the system state space. The con-
troller then selects the trajectory that minimizes the cost 
function while satisfying the constraints, h. The input at 
the first look-ahead step in this trajectory is chosen as 
the next input, and this process is repeated at each sub-
sequent time step. 

The above control policy takes into account the effect of 
possible variations in the environment inputs by requir-
ing that the selected input satisfy a worst case scenario 
constraint with respect the estimation bounds. Figure 5 
shows the components of the look-ahead controller. 
Relevant parameters of the operating environment are 
estimated and used by the system model to forecast 
future behavior over a limited look-ahead horizon. The 
controller optimizes the system behavior by selecting 
the best control inputs while making sure the specified 
constraints are not violated. 

CONTROL STABILITY - Giving the limited exploration 
nature of the online algorithm, it is important to obtain a 
measure of feasibility to determine if the online control 
will be able to reach the desired region in a finite time. 

The controller is feasible for a given set-point and toler-
ance domain containing the set-point if it can drive the 
system (in finite time) from any initial state in a given 
operation region to a neighborhood (contained in the 
tolerance domain) of the set-point and maintain the sys-
tem within this neighborhood. In [1], the feasibility of the 
proposed online control approach is formulated as a 
joint containability and attraction problem. A novel com-
putational procedure based on nonlinear programming is 
presented to compute a containable region. 

 

Figure 5: The online control structure 

MULTILEVEL ONLINE CONTROL  

This section extends the control approach to distributed 
systems comprising of multiple systems, each having its 
own specification. Typically, these systems must interact 
to achieve a desired global objective. This suggests a 
multi-level distributed control structure where systems 
have independent controllers, and system interaction is 
managed by a global controller that addresses overall 
requirement specifications. Figure 6 shows the multi-
level control structure.  

 

Figure 6: A Multi-level Control Structure 
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Since a detailed behavioral model of the underlying dis-
tributed system may be very complex, the global con-
troller uses an abstract (simplified) model to describe 
the composite behavior of the system components that 
is relevant to the overall requirements and operational 
constraints. The abstract model uses a set of global 
variables that are related by the input-output interactions 
between the individual systems. Moreover, the global 
controller’s decisions are based on aggregate behaviors, 
which are determined over longer time frames com-
pared to the individual systems. We assume here that 
these time-frames are harmonically related, i.e., Tg = 
MTl where Tg and Tl are the global and local time steps, 
respectively. Consequently, for a set of systems, the 
global state vector, y(kg), at global time instance k can 
be represented as, 

y(kg) =  Ω(x1(kl,M), … , xL(kl,M)), 

where kl = M kg and M is a positive integer, and xj(kl,M) 
= {xj(kl - M + 1), …, xj(kl)} is the set of states for the ith 
system, and Ω is the abstraction map defining the rela-
tionship between the global state vector y at the global 
time instance kg and the local state variables over the 
local time instances spanning [kg-1 kg]. Similarly, we can 
define the global environment inputs,  µ(kg), for the 
global controller at time kg as an aggregation of the local 
environment inputs λj(kl), over the global time frame, 
namely, µ(kg) =  Γ(λ1(kl;M), … , λL(kl;M)), where λj(kl;M) 
= {λj(kl-M +1), … , λj (kl)}. The global model is repre-
sented by  

y(k + 1) = g(y(k), v(k), µ (k)), 

where v(k) ∈ V and V is the set of global control inputs, 
which represents a set of local control  settings for the 
local modules. We assume that the set of such local 
control settings that can be manipulated by the system 
controller is finite. The map g defines how the global 
state variables respond to relevant changes in environ-
ment inputs with respect to the global control inputs. 
This abstract behavior can be obtained analytically (in 
case of simple local dynamics) or more likely through 
simulation where the arguments are the input set V and 
a quantized approximation of the domain of µ. It is typi-
cal that an initial model is built through simulation and 
then adjusted through continuous observation of the ac-
tual system behavior. The objective of the system con-
troller is to minimize a given cost function Jg(y,v) over 
the operation span of the system. We also assume that 
Jg takes the form of the set point specification described 
earlier for local controllers. Based on the assumption 
that global specification is of higher priority than local 
ones, the outcome of the system controller is communi-
cated to local modules. The local controllers then try to 
optimize the performance of the local components while 
ensuring that conditions imposed by the system control-
ler are not violated. To summarize, in the hierarchical 
control scheme, the system controller performs the fol-
lowing functions: 

• Forecasts long-term trends of the environment and 
based on the abstract system model examines the 
effect on the overall performance of the system.  

• Optimizes the system performance by changing the 
operational settings of local module, or the distribu-
tion of loads and resources among these modules 

• Obtains performance feedback from local modules, 
which then used to identify the current global state. 

Figure 7 shows the distributed online control algorithm. 
The algorithm is composed of two main procedures: 
global and local. The global control is invoked at each 
global time instant kg, it accepts the current local states 
and environment inputs and returns the best operation 
setting for local modules v*(kg) to apply at kg.  

 

Figure 7: The multilevel control algorithm 



THE ALS CONTROL STRUCTURE 

We have applied the hierarchical control approach pre-
sented in the previous section to the ALS system. The 
developed computational structure, shown in Figure 9, is 

a tree of controllers arranged in three levels each ad-
dressing different aspects of the overall system behav-
ior. In the following we will describe the control structure 
at different levels and discuss the relationship between 
different control modules and the system components. 

 

Figure 9: The ALS Control Structure 

LOCAL CONTROLLERS – At the first level of the con-
trol structure a set of local controllers manage the indi-
vidual subsystems of the systems. Each subsystem has 
an individual optimizing controller, which does not di-
rectly interact with other subsystems.  Interactions are 
handled by the system controller and by placing physical 
buffers between subsystems. The local controllers re-
ceive commands in the form of input-output require-
ments and resource constraints from the system-level 
controllers at periodic intervals. These requirements and 
constraints are specified as modes of operation, which 
have accompanying control objectives and system pa-
rameters, such as control input restrictions.  

SYSTEM CONTROLLERS – These controllers are re-
sponsible for managing the interactions between con-
trolled subsystems by managing their interactions 
through the intervening buffers, and by distributing re-
sources, such as power, in a manner that all of the sub-
systems can produce their desired output in an efficient 
way. The controllers at this level use an abstract model 
defining the average behavior of the subsystems and 
how they affect the level at the connected buffers. Note 
that system controllers target only the buffer quantities 

and not the dynamics of subsystem operation. The main 
objective is to maintain buffer levels based on mass 
flow predictions considering the crew schedules. 

Like local controllers, the function of the system-level 
controllers is influenced by the global controller. The 
global controller chooses from among a finite number of 
options to adjust the behavior of these controllers. The 
habitat controller features the WRS, ALS, and crew 
chamber controllers. 

GLOBAL CONTROLLER – This controller ensures the 
mission success by balancing resource consumption 
with the available level of resources.  The daily crew 
schedule is computed based on the constraints and per-
formance goals determined by the global controller. 
Specifically, the global controller allocates resources for 
maintenance, exercise, and EVA activities.  

EXPERIMENTS 

We present a set of simulation experiments based on a 
90 day challenge scenario that was developed at NASA 
JSC to illustrate multi-level online control of the system. 
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The scenario assumes four crew members on the habi-
tat. The crew members use 9 liters of water and 1 kg of 
O2 on the average, while producing 1 kg of CO2 per day. 

The effect of the global control schedule is shown in 
Figure 10. This figure shows the evolution of levels of 
waste water tank and potable water tank for the 90 days. 
The maximum value of waste tank is never more than 
25 liters. This not only demonstrates the controller's ef-
fectiveness, but also provides a good reference for the 
selection of water buffer size.  
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Figure 10: The level of waste and potable water 
tanks during the 90 mission 

As discussed in the previous section, controllers at the 
subsystem-level use the following information to com-
pute their control actions: (i) estimated crew activities; 
e.g., for the WRS, according to the daily schedule, the 
waste water created per hour and potable water spent 
per hour can be estimated, and for ARS, the CO2 level 
can be estimated; (ii) average production and treatment 
rates and corresponding average power consumed for 
each preset modes; and (iii) values of relevant buffers. 
The derived performance index for the WRS is  
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c
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ff ,  and ro
mi

P  are average production and 

waste water treatment flow rates and power consumed 

for the preset modes of WRS, c
iλ and w

iλ are the potable-

water-consumption and the waste-water-creation flow 
rates by the crews, respectively, N is the number of ho-
rizons, and c1, c2 and c3 are the weights for relevant 
terms. Here c1 is negative as more clean water is better 
than less, and the other two are positive as J, the cost 
function, has to be minimized. An important design is-
sue can be addressed by the choice of the cost function, 
i.e., pick a cost function that minimizes buffer size of 
waste water and potable water while keeping perform-
ance at required levels. Figure 11 shows the modes of 

the WRS, estimated average waste water creation rate 
and potable water consummation rate over 20 cycles 
each of which lasts approximately 4 hours. Mode 1 
represents the mode in which the WRS is off and col-
lecting waste water. Modes 2, 3 and 4, respectively rep-
resent the low, the normal and the high production 
modes of the WRS when the AES is off. Mode 5 repre-
sents the mode in which the AES is on and the BWP 
and the RO are both off.  
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Figure 11: Modes and the associated water levels in 
the WRS 

At the WRS subsystem level, the BWP and AES oper-
ate only in the on/off mode. The utility associated for 
both modes are obtained through simulation. The RO 
has 6 modes, and the system operates according to the 
utility function: 
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[aK, af, aS, aP] are the parameters of the utility function, 
and they take on different values for the different modes 
of operation. Those modes are determined by the aver-
age flow rate and power consumed, which according to 
the potable water production level, are partitioned to 
{high, middle, low, off} modes. Ki is conductivity value, fi 
is production outflow rate, Sv is a binary switching value 
and Pi is power value. Fig. 12 shows the changes to key 
variables of WRS subsystems. Note that the utility of 
the WRS is the composition of the utility associated with 
its local subsystems. Such composite utility clearly de-
pends on the local mode of each subsystem. The com-
posite utility at each composite mode of the WRS is ob-
tained through simulation. Also, it is important to note 
that, the choice of different operation modes is a design 
choice depending on the system requirements. The pro-
posed multi-level control approach can accommodate 
any form of operational modes as long as the number of 
modes are finite and the correspondence with the over-



all system objective can be established (analytically or 
by simulation.) 
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Figure 12: Controlled local variables in the WRS 

A similar technique was applied to design the controllers 
for the ARS subsystems. Fig. 13 shows changes to three 
key variables in the CDRA adsorption process over four 
hours. Dashed lines and solid lines represent the input 
and output variables, respectively. The adsorption cycle 
time is roughly 2.4 hours. 
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Figure 13: Controlled variables in the ARS system 

Fig. 14 shows the O2 and CO2 buffer levels. With the 
controller they can be maintained within a preset range. 

CONCLUSIONS 

In this paper, we demonstrated a successful scheme for 
hierarchical control of complex embedded closed-loop 
systems to ensure resource constraints are not violated 
over long-duration missions. Resource management at 
the global level is successfully combined with optimizing 
individual subsystem behavior at the local level. This 

work shows a lot of promise in achieving smaller buffer 
sizes, as well as autonomy, robustness and reliability 
through model-driven fault adaptive control. 
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Figure 14: O2 and CO2 levels in the ALS buffers. 
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