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Abstract. The ever increasing popularity of model-based system- and
software engineering has resulted in more and more systems—and more
and more complex systems—being modeled. Hence, the problem of man-
aging the complexity of the models themselves has gained importance.
This paper introduces three abstractions that are specifically targeted at
improving the scalability of the modeling process and the system models
themselves.
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1 Introduction

Model Driven Engineering (MDE) and a related technique called Model Inte-
grated Computing (MIC) are begin applied in more and more domains. MIC
advocates the use of domain specific modeling languages (DSML) relying on a
tool infrastructure configured automatically by metamodels [22]. The MIC open
source toolsuite centered on the Generic Modeling Environment (GME) [11] has
been applied successfully in a broad range of domains by Vanderbilt [14, 8, 15,
10, 12] and others [1, 2, 4, 6, 19, 23]. Design space exploration of embedded sys-
tems [16] and the seamless integration of multiple complex simulators [7] are
some of the most compelling examples of the power of MIC.

The recent trend in computing is to move away from desktop tools to cloud-
and web-based architectures for better scalability, maintainability and seamless
platform support. The latest generation MIC toolsuite called WebGME follows
this trend. It is a web-based software infrastructure to support the collaborative
modeling, analysis, and synthesis of complex, large-scale information systems.
The number one design goal of WebGME was to better support the modeling
of complex systems. This includes features targeted specifically for an enhanced
modeling process including collaborative editing similar to Google Docs and a
git-like database backend supporting model version control. WebGME also in-
troduced a number of novel abstractions to support the scalability of the models
of complex systems which themselves are necessarily complex. The focus of this
paper is exactly these abstractions: crosscuts, model libraries, and mixins.
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Cross-cutting concepts are always difficult to model and visualize. WebGME
introduces the concept of a crosscut that is a collection of objects that the
modeler wishes to view together independent of where they are located in the
hierarchical model structure. As a simple example, consider a system with soft-
ware and hardware models. A crosscut is a straightforward way to capture the
assignment of software components to hardware units even though they reside
in disjoint model hierarchies.

A unique feature of GME has been its support for prototypical inheritance.
Each model at any point in the composition hierarchy is a prototype that can be
derived to create an instance model. Derivation creates a copy of the model (and
all of its parts recursively, i.e., a deep copy), but it establishes a dependency re-
lationship between the corresponding objects. Any changes in the prototype au-
tomatically propagate to the instance. WebGME extended this concept to merge
metamodels with models. Meta-information, that is language specification, can
be captured anywhere in the model composition and inheritance hierarchies.
It is exactly the mechanism of inheritance that enforces the language rules by
propagating it down the inheritance hierarchy. Consequently, metamodels and
models are tightly integrated and any changes in the former are immediately
propagated to the latter.

However, the combination of the model composition hierarchy and prototyp-
ical inheritance introduces quite interesting inter-dependencies among models.
For this reason, GME only allowed multiple-inheritance for metamodels. Since
WebGME merged metamodels and models and since multiple inheritance for
metamodels proved to be a highly valuable feature, WebGME introduces mixins
that provide the useful attributes of multiple inheritance for metamodels, but
avoid its pitfalls.

The rest of the paper is organized as follows. Section 2 describes the main
ideas behind WebGME and its architecture. Section 3 describes the crosscut
abstraction. Section 4 covers model libraries. Section 5 is dedicated to the mixin
concept. Finally, a brief overview of related work and conclusions are presented.

2 Overview

The metamodel specifies the domain-specific modeling language. The metamod-
eling language consists of a set of elementary modeling concepts. These are the
basic conceptual building blocks of any given approach and corresponding tools.
It is the meta-metamodel that defines these fundamental concepts. These may
include composition, inheritance, a variety of associations, attributes, and other
concepts. Which of these concepts to include, how to compose them, what edit-
ing operations are to operate on them and which are the most important design
decisions that affect all aspects of the infrastructure and the domain modelers
who will use it.

Hierarchical decomposition is the most widely used technique to handle com-
plexity. This is the fundamental organization principle in WebGME, too. Copy-
ing, moving, or deleting a model will copy, move, or delete its constituent parts.
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To help manage the complexity of any one model, aspects are also supported. An
aspect is a view of a model where only a certain subset of its children are visible.
For example, the model of a car can have separate aspects for the mechanical,
electric and hydraulic components.

Prototypical inheritance is a unique feature that lets the modeler reuse and
refine models. Just as there is a single composition tree, there is a single inher-
itance tree with a single object at its root. Rules specified by the metamodel,
as well as actual model parts, propagate down this tree. Deleting a model will
delete all of its descendants in the inheritance hierarchy too.

This approach is markedly different from inheritance in OO programming
languages or in other modeling languages such as UML. First of all, it com-
bines composition and inheritance. Note that Smalltalk and JavaScript have
prototypical inheritance also, but that does not create new instances down the
composition hierarchy. Second, inheritance is a live relationship between mod-
els that is continuously maintained during the modeling process. That is, any
changes to a model propagate down the inheritance tree immediately.

The novel idea in WebGME is to blur the line where metamodeling ends and
domain modeling begins by utilizing inheritance to capture the metamodel/model
relationship. Every model in a WebGME project is contained in a single inher-
itance hierarchy rooted at a model called FCO, for First Class Object. Meta-
model information can be provided anywhere in this hierarchy. An instance of
any model inherits all of the rules and constraints from its base (recursively all
the way up to FCO) and it can further refine it by adding additional metamodel-
ing information. This is a form of multi-level metamodeling with a theoretically
infinite number of levels. As a result of this approach, 1) metamodel changes
propagate automatically to every model; 2) metamodels can be refined any-
where in the inheritance and composition hierarchies; 3) partially built domain
models can become first class language elements to serve as building blocks; and
4) different (meta)model versions can peacefully coexist in the same project.

Note that while the concept of inheritance and prototypical inheritance has
been developed in the context of OO languages, their use in the context of
domain-specific modeling is different. The purpose of the domain-specific model-
ing is to create domain models (that roughly correspond to the object instances
at run-time) that are based on metamodels (that roughly correspond to the
classes created at design-time) - but these are created and edited in the same
tool environment and coexist in the same database. Statically typed, compiled
OO languages often draw a distinction between classes and instances and in-
stances cannot be edited in the same editors as the one used for editing the
class definitions, although some dynamic OO languages (like Python) have some
capabilities that allow such operations.

Other important concepts in the meta-metamodel are pointers which are
one to one associations and sets which are one to many associations. A pair of
pointers can be visualized as a connection. For example, the default WebGME
editor takes any object with two pointers with the reserved names of src and
dst, displays the object as a connection and supports the customary editing op-
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erations. Otherwise, connections are ordinary models; they can contain children,
have other pointers and can be derived, etc. Therefore, the connection concept
as such is not part of the meta-metamodel. However, pointers may cut across the
hierarchy and hence, are not easily visualizable in an intuitive manner. The next
section will describe the crosscut abstraction that were designed to overcome
this problem.

Finally, textual attributes can be attached to models as well. Just as a simple
illustration of the power of inheritance, there is a textual attribute called name
added to the root object of the inheritance tree. The result is that every single
modeling object has a name attribute. So, the actual WebGME application code
does not need to have a specific concept for a model name.

3 Crosscuts

Cross-cutting concepts are always difficult to model. The typical way to capture
relationships between models in different branches and/or levels of the composi-
tion hierarchy is through pointers and sets. However, the visual depiction of such
associations is not intuitive at all since most tools display models according to
composition, that is, they usually show the children of one model in one window
(grandchildren may show up as ports). The target of a pointer can be indicated
by its name and navigation to it can be supported, for example, by a double
click operation, but an intuitive visual depiction of such relationships is sorely
missing. For example, a connection between far away objects is supported by
the meta-metamodel, yet there is no way to actually show it. To address this
problem, WebGME introduces the concept of crosscuts.

A crosscut is a collection of objects that the modeler wishes to view together.
The selection can be manual, that is, the user can drag objects into a crosscut
view. Alternatively, a script can be provided that executes a one-time query to
collect models from anywhere in the composition hierarchy. Existing associations
between objects in a crosscut are depicted by various lines between the objects.
For example, inheritance is shown similar to UML class diagrams, while pointers
are visualized with lines and arrows. In addition to visualization, the main utility
of crosscuts is that they serve as association editors. The target of pointers and
set membership can be edited here. Deleting a model from a crosscut does not
delete the object from the project, it simply removes it from the given crosscut.

Each crosscut has a context model, the designated container for new model
elements created in the crosscut. (Note that it is atypical to create new models
since a crosscut is meant to be a collection of already existing models. How-
ever, a connection is a model with two pointers, so allowing new connections in
crosscuts was the motivation behind this design decision.) The default context is
the root of the composition hierarchy called the ROOT. As ROOT can contain
anything, crosscuts can be freely constructed. However, if the modeler chooses
a context different from ROOT, the composition rules of the metamodel apply
(even though crosscut containment is not composition). This is actually a great
way to control and manage crosscuts. On the flip side, if one wants a crosscut
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Fig. 1. Hierarchical Signal Flow Graph

with no constraints, but wants to avoid creating too many crosscuts in ROOT,
one can simply create a model and specify that it can contain First Class Ob-
jects (FCO) which is the root of the inheritance hierarchy. Any instance of such
a model can now serve as the context for unconstrained crosscuts.

One special use for crosscuts in WebGME is for metamodeling. Recall that
meta information can be specified anywhere in the composition hierarchy. There-
fore, there is no single model to show to edit the metamodel of the DSML. In
WebGME, a crosscut is created for the metamodel where the user drags in all
models that need to contain DSML specification. It is there and only there,
where meta information can be specified. Of course, the metamodel is a special
crosscut, because a new association created there does not actually create a new
instance of a pointer, for example, but instead specifies that the given kind of
pointer of a model can point to the selected model (and its instances).

Consider Figure 1 that depicts the metamodel of a simple hierarchical signal
flow graph (SF) on the left and an example SF domain model on the right. The
metamodel shows that Compute nodes, SignalPorts and Flows are all derived
from FCO. Note that unlike in any other tool we are aware of, this inheritance
relationship was not drawn explicitly by the user. Instead, when these models
were created in the first place, they were instantiated from a model, in this case,
FCO. The metamodel displays these already existing inheritance relationships
but they can be edited as well. On the other hand, the associations in Figure 1
were created in the meta crosscut. For example, the src and dst pointer specifi-
cations were drawn by the user specifying that a Flow represents a relationship
between two SignalPorts. The default WebGME editor, in turn, will show these
as connections (explained above) as expected in an signal flow graph.

The composition and inheritances trees of this simple example are shown
in Figure 2. The composition hierarchy on the left shows that Root has four
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Fig. 2. Composition and Inheritance Trees

children, Compute, SignalPort, Flow and System. The metamodel in the previous
figure only showed the first three. That is exactly because a metamodel is a
crosscut and we only needed to specify meta information for these models. The
System model is an instance of the Compute model (the inside of which is shown
on he right side of Figure 1 above). The inheritance hierarchy on the right side
of Figure 2 shows this as well as the four other instances of the Compute model
that are in turn contained by System.

Finally, we present a domain model example to illustrate the utility of cross-
cuts. The introduction outlined the use case of modeling a component based
software system and a simple parallel hardware architecture that uses multiple
compute nodes. If we want to explicitly model the assignment of software com-
ponent to hardware nodes, we need a placeholder for expressing that relation.
Since the hardware and software models should have their own model compo-
sition hierarchy, a crosscut is a straightforward way to specify the assignment.
Figure 3 shows the crosscut created for this purpose. Note the assignment con-
nections that connect software components to a hardware nodes. A crosscut is an
only place where they can be visualized since the source and destination models
as well as the connections themselves have different parents in the composition
hierarchy. Creating a modeling concept specifically for this purpose is feasible,
but it would unnecessarily complicate the metamodel.

4 Libraries

The concept of software libraries have been used widely for decades because of its
utility in code reuse and evolution. There is a similar need for reusing models and
modeling languages. Since the concepts of the metamodel and model are merged
in WebGME, that is, the modeling language specification is embedded in the
actual domain models, it is even more important to support model libraries for
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Fig. 3. Software to Hardware Assignment Example

reuse and language evolution. Hence, WebGME supports model libraries in a
seamless and intuitive manner.

Creating a library is as easy as identifying a subset of a project and export-
ing it. A library is defined along the composition hierarchy. This means that
any meta- or domain model can be designated as a library and its complete
containment sub-tree will be included automatically. The library, in turn, can
be imported into another project. Pointers and sets that refer to models in the
library from outside of it are not affected at all. Instances of models contained
in a library that reside outside of the library cause no problems either. However,
what happens when a prototype of a model in the library is not part of the
library? Or if a pointer or set refer from inside to the outside of the library? The
design decision was made to allow this situation, but importing such a library
would only work where the container project also has the exact same models
so that these outward pointing relations can be restored. In other words, this
works for very closely related projects. The recommended and most typical use
of model libraries are for cases when this does not happen. For example, ex-
porting a metamodel does not run into this problem because metamodels are
inherently self contained. The other most typical use is collecting a set of basic
domain models as a component library where the only external dependencies
are to the metamodels. In those cases, the metamodels are typically contained
in a library and domain models in another and they are updated at the same
time. Note that the ROOT and the FCO are present in all WebGME projects,
so external references to those are fine.

Library updates are not generating notifications automatically but users of
the library can request updates when the source of the library is updated. These
updates are automatically propagated through the whole project, so the new fea-
tures are available instantly for the existing instance models while the outdated
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features will be removed automatically. Any custom extensions of the library
will remain intact as long as their prototypes are still present in the library.

This style of model libraries provide a good basis for domain composition. It
can be seen, that as long as a metamodel library depends only on the FCO, any
other metamodel library becomes compatible with it allowing quick and easy
integration. Any associations between such metamodels in the target project are
transparently supported without losing the ability to evolve with the original
metamodels. Section 5 will present an example of how such metamodel compo-
sition works.

5 Mixins: Multiple Inheritance for Metamodels

To enhance the overall re-usability of modeling concepts, WebGME implements
a mixin feature as an extension to prototypical inheritance. Mixins augment the
desirable features of single inheritance, but they only apply to metamodels. Mix-
ins allow metamodels to share specifications, be derived from multiple sources,
or extend each other’s behavior. Mixins provide a tradeoff to successfully address
the problems inherent to multiple inheritance [18] when it comes to prototypi-
cal inheritance between object models while keeping the end result as simple as
possible.

We can extend the specifications of a metamodel by assigning multiple mixin
nodes to it. The resulting node will not only inherit its definitions from its
prototype, but from its mixins as well. However, as opposed to prototypical
inheritance, the metamodel will not inherit any actual children of the mixins.

The mixin definition is an ordered array of nodes, so if a given meta rule could
be derived from multiple sources, the first occurrence will always be used. Also,
the specification inherited from the prototype has priority over the specifications
obtained from the mixins. Hence, prototypical inheritance is not affected by
mixins. It also takes care of the problem of repeated inheritance as any data can
only be inherited from a single base, so even if the mixin nodes define colliding
properties, the source of every rule remains clear. Furthermore, as metamodels
are never pre-compiled in WebGME, the tool is able to give immediate feedback
if a rule collision happens as a result of a change in the mixin definitions or the
mixins themselves.

Mixins support combining existing domains to model complex systems in a
seamless manner. Take the example language of a hierarchical signal flow graph
shown in Figure 1. If we want to combine this language with a hierarchical state
machine language—shown in Figure 4—where the behavior of a State can be
modeled by a signal flow graph, we just need to import the two languages as
libraries into a new project and define the mixin relation among the elements of
the two domains as shown in Figure 5.

As we can see in Figure 5, the mixin relation is visualized similarly to the in-
heritance relation, but with a dashed line to make a distinction. These relations
can be freely added or removed at any point with the following two exceptions.
No node can be in a mixin relation of itself or any of its ancestors in the pro-
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Fig. 4. Hierarchical Finite State Machine

Fig. 5. Combining two languages

totypical inheritance tree, as that kind of relation will not add anything to the
already existing rule-set. On the other hand, cycles among the mixin relations
are allowed, even though they are not necessarily meaningful, because even with
these loops, the order of definitions remains unambiguous and consistent.

Figure 6 shows a simple domain model for the combined state machine-signal
flow graph DSML. There is a state machine model on the left side, while on the
right, the inside of the state Processing is shown that contains the example signal
flow from Figure 1. So mixins enabled the composition of the two domains by
performing a few simple steps.

6 Related Work

AToMPM [21], a web-based metamodeling and transformation tool, is the most
closely related to our work. While many of the design decisions that guided the
development of the tool are similar to ours, the fusion of metamodeling and
prototypical inheritance, mixins, and crosscuts are unique to WebGME.

To the best of our knowledge, very little work is being done on abstractions
to handle model complexity beyond the traditional hierarchical decomposition.
Collaborative editing also helps in building large complex models and there is rel-
evant work in the technical literature on this aspect. Various collaborative tools
are used in specific domains such as mechanical engineering [13], automotive in-
dustry [9], and UML [3]. SLIM [24] is a prototype of a collaborative environment
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Fig. 6. SF with SM together

executed in a web browser. The Connected Data Objects (CDO) [20] is a model
repository and a run-time persistence framework for EMF. It supports locking,
offline scenarios, various persistence backends, such as Hibernate, and pluggable
fail-over adapters to multiple repositories. CAMEL [5] is also an eclipse plugin
that supports collaborative interaction via modeling, drawing, chatting, poster-
boards, whiteboards, and it is capable of replaying online meetings. Its focus is
on collaborative communications rather than versioning and collaborative use of
domain-specific languages.

7 Conclusions

The paper presented three abstractions specifically designed to support the man-
agement of complexity of large system models. When the modeling language
itself has hundreds of concepts and domain models reach tens of thousands of
objects [17], traditional methods such as hierarchical decomposition are no longer
sufficient to ensure a manageable modeling process. The purpose of crosscuts is
to provide an intuitive way to capture and visualize relations between models
in different parts of the composition hierarchy. Model libraries are extremely
helpful in managing metamodels, i.e., modeling languages, and support reusable
repositories of component models. Combined with prototypical inheritance, they
enable modeling language and model evolution in a seamless fashion. The mixin
feature presents a trade off between full-scale multiple inheritance and single
inheritance. Essentially it enables multiple inheritance for metamodels which is
where it is needed most. This novel feature allows combining existing DSMLs to
support the modeling of truly complex systems.
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