

Institute for Software Integrated Systems
Vanderbilt University

Nashville Tennessee 37235

TECHNICAL REPORT

TR #: ISIS-03-401
Title: Interpreter Writing Using Graph Transformations
Authors: Aditya Agrawal, Gabor Karsai and Feng Shi

 1

Interpreter Writing Using Graph Transformations
Aditya Agrawal

aditya.agrawal@vanderbilt.edu
Gabor Karsai

gabor@vuse.vanderbilt.edu
Feng Shi

feng.shi@vanderbilt.edu

Institute for Software Integrated Systems
Vanderbilt University

Nashville, TN 37235, USA
+1(615) 343-7567

ABSTRACT

This paper introduces a UML-based approach for
specifying model transformations. The technique is based
on graph transformations, where UML class diagrams are
used to represent the graph grammars of the input and the
output of the transformations, and the transformations are
represented as explicitly sequenced elementary rewriting
operations. The paper discusses the visual language
designed for the representation of transformation programs
and the graph transformation execution engine which
implements the semantics of the language.

Keywords

Model transformation, UML, graph transformation, graph
rewriting, model-driven architecture.

1. INTRODUCTION
Graph grammars and graph transformations (GGT) have
been recognized as a powerful technique for specifying
complex transformations that can be used in various
situations in a software development process
[13][14][15][16]. Many tasks in software development can
be formulated using this approach, including weaving of
aspect-oriented programs [24], application of design
patterns [15], and the transformation of platform-
independent models into platform specific models [6]. A
special class of transformations arises in Model Integrated
Computing (MIC) [1]. MIC is an approach in which a
domain-specific modeling language and generator tools are
developed and then the domain-specific language is used
for creating and evolving the system through modeling and
generation. During the last decade, MIC has gained
acceptance through various fielded systems [25][26], and it
is recognized in both academia and industry today. In the
MIC approach, a crucial point is the generation, where
design time models are transformed into execution models
and analysis models. Execution models are used to
configure a run-time platform (e.g. a component
framework), while analysis models are used to verify the
system using simulation and various other verification
techniques. The development of the model transformation
tools is the cornerstone of MIC: the model transformation
tools (also called model interpreters) establish a bridge

between the domain specific models and their execution-
time and analytical equivalents. In a larger context, model
transformations are essential in many systems and
development practices, not only MIC. Here, we will use
MIC as the software development process, but the same
motivation applies to OMG’s Model-Driven Architecture
as well.
In this paper we propose to use GGT techniques to provide
an infrastructure for model transformations. We will use
the MIC software process as the context, in which we
present our results, but they easily generalize to universal
model transformations.
Section 2 briefly introduces Model Integrated Computing
(MIC), and reviews graph grammars and transformations.
Section 3 describes the solution to the model
transformation problem. Section 4 provides details of the
implementation, while Section 5 shows a few selected
applications and results. Section 6 discusses the
conclusions and proposals for future research. .

2. Background and Related Work
2.1 Model Integrated Computing (MIC)
MIC is a software and system development approach that
advocates the use of domain specific models to represent
relevant aspects of a system. The models capturing the
design are then used to synthesize executable systems,
perform analysis or drive simulations. The advantage of
this methodology is that it speeds up the design process,
facilitates evolution, helps in system maintenance and
reduces the cost of the development cycle [1].
The MIC development cycle (see Figure 1) starts with the
formal specification of a new application domain. The
specification proceeds by identifying the concepts, their
attributes, and relationships among them through a process
called metamodeling. Metamodeling is enacted through the
creation of metamodels that define the abstract syntax,
static semantics and visualization rules of the domain. The
visualization rules determine how domain models are to be
visualized and manipulated in a visual modeling
environment. Once the domain has been defined, the
specification of the domain is used to generate a Domain
Specific Design Environment (DSDE). The DSDE can then

 2

mailto:aditya.agrawal@vanderbilt.edu
mailto:gabor@vuse.vanderbilt.edu

be used to create domain specific designs/models; for
example, a particular state machine is a domain specific
design that conforms to the rules specified in the
metamodel of the state machine domain. However, to do
something useful with these models such as synthesize
executable code, perform analysis or drive simulators, we
have to convert the models into another format like
executable code, input format of some analysis tool or
configuration files for simulators. This mapping of models
to a more useful form is called model interpretation and is
performed by model interpreters. Model interpreters are
programs that convert models of a given domain into
another format. For mapping each domain to output format
a unique model interpreter is required. The output can be
considered as another model that conforms to a different
metamodel and thus these model interpreters can be
considered to be mappings between models [1].

Figure 1 The MIC Development Cycle [2]

The premier MIC implementation is built around a
metaprogrammable toolkit called Generic Modeling
Environment (GME) developed at the Institute for
Software Integrated Systems (ISIS), Vanderbilt University.
It provides an environment for creating domain-specific
modeling environments [2]. The metamodeling
environment of GME is based on UML class diagrams [3].
It is used to describe a domain specific modeling language
and a corresponding environment by capturing the syntax,
semantics and visualization rules of the target environment.
A tool called the meta-interpreter interprets the metamodels
and generates a configuration file for GME. This
configuration file acts as a meta-program for the (generic)
GME editing engine, so that it makes GME behave like a
specialized modeling environment supporting the target
domain. Thus the core of GME is used both as the
metamodeling environment and the target environment.
GME has both a metamodeling environment and
metamodel interpreter that generates a new modelling
environment from the metamodels. However there are no
generic tools or methods to automatically generate domain

specific model interpreters. Each model interpreter is
written by hand and this is the most time consuming and
error prone phase of the MIC approach. There is a need to
develop methods and tools to automate and speed up the
process of creating model interpreters.
The MIC approach described above is gaining a lot of
attention recently with the advent of the Model Driven
Architecture (MDA) by Object Management Group
(OMG) [4]. The MDA is a particular application of the
MIC approach where the domain language will be UML
2.0. However, a more general approach to the MDA
problem will be to achieve domain specific model driven
software development. [6]

2.2 Graph Grammars and Transformations
On analysing the problem of how to speed up the
development of model interpreters we perceive the need for
a way to specify the operation of model interpreter. The
specification can then be used to generate the model
interpreter code. However, this task is non-trivial as a
model interpreter can be required to work with two
arbitrarily different domains and perform fairly complex
computations. Hence, the specification language needs to
be powerful enough to cover diverse needs and yet be
simple and usable.
Note that the metamodels, which are UML class diagrams,
define the abstract syntax of a visual modeling language. In
fact, GME creates and manipulates object structures that
are compliant with those UML class diagrams. The objects
edited in GME are called models, and the metamodels
determine how model objects are composed, what
attributes they have, what semantics are imposed on them,
etc.
From a mathematical viewpoint one can recognize that
models in MIC are graphs, to be more precise: vertex and
edge labelled multi-graphs, where the labels are denoting
the corresponding entities (i.e. types) in the metamodel.
Thus, the model transformation problem can be converted
into a graph transformation problem. We can then use the
mathematical concepts of graph transformations to
formally specify the intended behaviour of a model
interpreter.
There are a variety of graph transformation techniques
described in [7][8][9][10][11][12][19]. The prominent
among these are node replacement grammars, hyper edge
replacement grammars, algebraic approaches and
programmed graph replacement systems. The next few
paragraphs will discuss each approach and show why they
cannot be used directly to solve the model interpretation
problem [7].
Node replacement grammars are a class of graph grammars
that are based primarily upon the replacement of nodes in a
graph. The basic production of every node replacement

 3

grammar has a LHS subgraph (called mother graph) that
produces an RHS subgraph (called daughter graph).
Usually the LHS subgraph consists of only one node
making this class of grammars context free. The
productions can be applied whenever there is a mother
node in the host graph and if there are two productions that
can be applied then the order of application is non-
deterministic. This can cause different production
application sequences to yield different resulting graphs
[7].
A property called confluence is defined as follows: a graph
transformation system is confluent if and only if the
production application sequence does not affect the final
result of the transformation. In order to satisfy this property
there are many restricted node replacement grammars that
satisfy confluence [7].
Node replacement grammars are suitable for defining and
identifying graphical language but are not suitable for
defining transformation algorithms. The primary reason is
that these languages are context free and have no
production sequencing, and hence difficult to represent
algorithms in them.
Hyperedge replacement grammars deal with the
productions that replace hyper edges by subgraphs. Each
production has a hyperedge on the LHS, which is replaced
by a subgraph on the RHS. Hyperedge replacement by
definition is confluent, associative and parallelizable. But
its shortcomings are similar to the node replacement
grammars. These too are context free and do not provide
sequencing and conditional application of productions [7].
The next approach to graph grammars is the algebraic
approach, developed at the University of Berlin. The
approach is based on a generalization of Chomsky
grammars from strings to graphs. The main goal was to
generalize the string concatenation to a gluing construction
of graphs. The approach is algebraic because graphs are
considered as special kinds of algebra and the gluing is
defined by algebraic constructions called pushouts. The
pushout approach has been taken from a more general field
of category theory and has been applied to the more
specific field of algebraic theory of graph grammars. There
are two basic algebraic approaches (a) Double PushOut
(DPO) and (b) Single PushOut (SPO). Significant research
has been done on pushouts and how productions can be
parallelized. The algebraic approach is more powerful and
has concepts for sequencing and parallelizing the rules
[7][20].
However, the sequencing of rules is limited only to
sequential and parallel execution of the rules. It lacks high-
level sequencing constructs such as conditional branching
of productions, loping and recursion. The lack of high-level
sequencing means that the user cannot represent and/or
choose between depth-first search or breadth-first search.

The last approach to be discussed is that of programmed
replacement systems, which are the most practical of all the
approaches discussed so far. The leading research result is
the PROgrammed GRaph REplacement System
(PROGRES)[8][19]. The major breakthrough of
PROGRES is that they concentrate equally on productions
and sequencing of the productions. Thus the system has a
graph replacement language that defines the productions
and also programming constructs that define the order of
application of the productions. The PROGRES system
consists of two parts - the first is a logic based structure
replacement system that describes graph transformation
productions of the language and the second is a collection
of programming constructs such as recursion, non-
deterministic application of productions, conditions and
loops. Apart from these PROGRES can also specify static
integrity constraints on the graphs. This is done with a
language called schemas that define the graph domain.
However, PROGRESS is also not suitable for specifying
model-interpreters because: (1) schemas are powerful but
not as powerful or as widely used as UML class diagrams
to specify integrity constraints, (2) PROGRESS deals
mainly with transformations on a single graph and do not
produce a new graph that conforms to a different
schema/metamodel, and (3) PROGRESS is mainly a
programming language with graphical productions and thus
not at the level of abstraction desired for specifying model-
interpreters [7][8].
Apart from these mathematical approaches there is another
dimension to graph transformation systems. Namely, how
the productions are specified. Is the specification syntax
and semantics easy to use and readable? Some of the
prominent notations are the Y [9], X [10], and Delta [11]
notation. However, there are few diagrammatic and
graphical notations for the specification of the control flow
of these productions [12].
One can recognize the existing GGT approaches are not
well suited for specifying and implementing model
interpreters. Hence, a new approach targeted for model-to-
model transformation is required. The new approach
should have the following features:
1. As UML is a widely used and accepted standard for

specification of classes and objects. It should use UML
for specification of static structure (i.e. that data
model) and integrity constraints.

2. There should be support for transformations that create
an entirely different graph based upon a given graph.
The two graphs may have different static structure and
integrity constraints.

3. The new approach should be expressive enough to
specify model interpreters that convert models of high-
level graphical languages to low-level
implementations, with no or minimal textual coding.

 4

4. The new language should have efficient
implementations of its programming constructs. The
implementation should have comparable efficiency to
its equivalent hand written code.

5. The new language should be “user friendly” and
increase programmer productivity.

The new language should be usable and suited for
addressing the needs of mapping graphical languages to
their low-level implementation. It should drastically
shorten the time taken to develop a new graphical
language, allowing a large number of domain specific high-
level graphical languages to be developed and used.
Many papers in recent times have shown how graph
transformation techniques can be used for (1) specification
of program transformations [13], (2) defining the semantics
of a hierarchical state machine [14], (3) supporting design
patterns [15] and (4) tool integration [16]. The new
language should be able to implement the ideas presented
in these papers.

3. A Language for Graph Rewriting and
Transformations
The transformation language we have developed to address
the needs discussed above is called Graph Rewriting and
Transformation language, or GreAT for short.
This language can be divided into 3 distinct parts.

1. Pattern Specification language.
2. Graph transformation language.
3. Control flow language.

Before we discuss the language we should spend some time
to define the basic concepts.

3.1 Graph Definition
The graphs used in the GreAT language are typed and
attributed multi-graphs and are defined below.

3.1.1 Vertex
A vertex is 3-tuple (name, type, attributes), where

and . Name is a set of all names
in the system, Type is a set of all types in the system and
attributes is set of attribute that are defined as (name, type,
value), where and Value is the set of all
values in the system. The functions defined on vertices are:

Namename∈ Typetype∈

Value∈value

(1) Name: VÆString,
)}attributes,type,name(v|name{()Name.v,Vv ==∈∀

(2) Type: VÆString,
.)}attributes,type,name(v|type{()Type.v,Vv ==∈∀

3.1.2 Edge
An edge is a 4-tuple (name, type, src, dst), where both src
and dst are elements of V, the set of all vertices. The
functions on edges are

(1) Name: EÆString,
)}dst,src,type,name(e|name{()Name.e,Ee ==∈∀ ,

(2) Type: EÆString,
)}dst,src,type,name(e|type{()Type.e,Ee ==∈∀ ,

(3) Src: EÆV,
)}dst,src,type,name(e|src{()Src.e,Ee ==∈∀

(4) Dst: EÆV,
)}dst,src,type,name(e|dst{()Dst.e,Ee ==∈∀

3.1.3 Graph
A graph is an ordered pair (GV, GE), Where GV ⊆ V, GE
⊆ E and GVeDstGVeSrcGEe ∈∧∈∈∀)()(, .

3.2 The Pattern Specification Language
The heart of a graph transformation language is the pattern
specification language and pattern matching. The pattern
specification found in graph grammars and transformation
languages [7][8][9][10][17][18][19][20] are not sufficient
for our purposes, as they do not follow UML concepts.
This paper introduces an expressive yet easy to use pattern
specification language, which is tightly coupled to the
UML class diagrams. String matching will be used to draw
analogies.
Recall that the goal of the pattern language is to specify
patterns over graphs (of objects), where the objects belong
to specific classes. In the language, we will rely on the
assumption that a UML class diagram is available for the
objects. The UML class diagram can be considered as the
“graph grammar”, which specifies all legal (network)
constructs formed over the objects that are instances of
classes introduced in the class diagram.

3.2.1 Simple Patterns
A simple pattern in string matching is the exact string that
is being searched for in a larger structure. For example, the
string “success” is a simple pattern to be matched in a
document. This class of patterns are represented as the
specific sub-graph in graph matching. For example, if we
were looking for a clique of size three in a graph, we would
draw up the clique as the pattern specification. These
patterns can be alternatively called single cardinality
patterns, as each vertex drawn in the pattern specification
needs to match exactly one vertex in the host graph.
Thus, we can define pattern vertices and pattern edges to be
the same as vertices and edges respectively. In order to find
and return matches from the matcher we have to define
matches. A match is a pair (MVB, MEB), where

and . VB and EB are the set of all
possible vertex and edge bindings. A vertex binding is
defined as a pair (v, pv), where v and pv

VBMVB ⊆ EBMEB ⊆

V∈ PV∈ and PV
is the set of all pattern vertices. An edge binging is also a

 5

pair (e, pe), where and and PE is the set of
all pattern edges.

Ee∈ PEpe∈

&2P,1P

These patterns are straightforward to specify; however,
ensuring determinism on such graphs is not. In this case
determinism means that given a graph and pattern the
match returned should be the same from one execution of
the pattern matcher to another and from one matching
algorithm to another. In string matching, the same string
can occur many times and can overlap. For example
consider the string “success” in a document containing the
sentence “A great successuccess”. It is not obvious which
of the two overlapping instances of success should be
returned. If an ordering is imposed, we can say that the first
occurrence of success should be used. However, in graphs
there is no obvious ordering of vertices and edges.
Consider the example in Figure 2(a). The figure describes a
pattern that has three vertices and for each
each P, Type(P) = T. The pattern can match with the host
graph shown in Figure 2(b) to return two valid results
{(T1,P1), (T3,P2), (T2,P3)} or {(T3,P1), (T5,P2),
(T4,P3)}. For sake of simplicity edge bindings have been
ignored as they can be inferred from the vertex bindings.
We see that the result of the matching depends upon the
staring point of the search and the exact implementation of
the algorithm.

V3P ∈

(a) Pattern (b) Host graph

Figure 2 Non-determinism in matching a simple pattern
The solution for this problem is to return a set of all the
valid matches for a given pattern. The set of matches will
always be the same for a given pattern and host graph.
An algorithm for matching such kinds of patterns is given
in Appendix 1. The algorithm takes as input the pattern,
host graph and a partial match and returns a set of matches.
The partial match must have at least one vertex of the
pattern bound to the host graph. It uses a recursive
approach to solving the matching problem and returns a set
of matches.

3.2.2 Fixed Cardinality Patterns
Consider an example from the domain of textual languages.
A string needs to be matched such that it starts with an ‘s’
and is followed by 5 ‘o’s. To specify such a pattern string
we could enumerate the ‘o’s and write “sooooo”. However,
this is not a scalable solution and thus a representation
format is required to specify such strings in a concise and

scalable manner. For strings we could write it as “s5o” and
use the semantic meaning that o needs to be enumerated 5
times assuming that ‘5’ is not part of the alphabet set of this
particular language.

(a) Pattern (b) The graph it will match

Figure 3 Pattern specification with cardinality
The same argument holds for graphs, and a similar
technique can be used. The pattern vertex definition can be
extended to a triple (name, type, cardinality), where
cardinality is an integer and vertex binding can be defined
as a pair (vs, pv), where . For example, Figure 3(a)
shows a pattern with cardinality on vertices. The pattern
vertex cardinality is specified in angular brackets and a
pattern vertex must match n host graph vertices where n is
its cardinality. In this case the match is {(T1,P1), ({T2, T3,
T4, T5, T6},P2)}.

Vvs ⊆

The fixed cardinality pattern and matching also have non-
determinism. Even in this case the issue can be dealt with
by returning all the possible matches. If all the possible
matches are returned there is a problem of returning a large
number of matches. For example in Figure 3, if the host
graph contained another vertex T7 adjacent to T1 then the
number of matches returned would be 6C5 (all
combinations of 5 vertices out of 6). Thus 6 matches will
be returned and each having only one vertex different from
the other.
A more immediate concern is how this notion of cardinality
truly extends to graphs. In text, we have the advantage of a
strict ordering from left to right, while graphs don’t. By
just extending the example in Figure 3 with another pattern
vertex we see that the specification is ambiguous.
In Figure 4 (a) we see a pattern having three vertices. There
are different semantics that can be associated with the
pattern. One possible semantic is to consider each pattern
vertex pv to have a set of matches equalling the cardinality
of the vertex. Then an edge between two pattern vertices
pv1 & pv2, implies that in a match each v1, v2 pair are
adjacent, where v1 is bound to pv1 and v2 is bound to pv2.
This semantic when applied to the pattern in Figure 4 (a)
gives the graph in Figure 4 (b).

(a) Pattern with three vertices

 6

(b) Set semantics

(c) Tree semantics

Figure 4 Pattern with different semantic meanings
The algorithm to search the host graph for a set of matches
according to the above-mentioned semantics is given in
Appendix 2. The algorithm is a direct extension of the
algorithm discussed in 3.2.1.
The set semantics will always return a match of the
structure shown in Figure 4 (b), and it doesn’t depend upon
the factors like the starting point of the search and how the
search is conducted. However, with the set semantics it is
not obvious how to represent a pattern to match the graph
shown in Figure 4 (c).
Another possible semantics could be the tree semantics: If
a pattern vertex pv1 with cardinality c1 is adjacent to
pattern vertex pv2 with cardinality c2, then the semantics
is, each vertex bound to v1 will be adjacent to c2 vertices
bound to v2. Let b1 = (V1, pv1) and b2 = (V2, pv2) be the
bindings for pv1 and pv2 respectively. Then

)v,v(e,2Vv1Vv n21n2

2c

1n1 ∧∈∃∈∀
=

… Relation 1

This semantics when applied to the pattern gives Figure 4
(c). The tree semantic is weak in the sense that it will yield
different results for different traversals of the pattern
vertices and edges. For the traversal sequence pa, pb, pc we
get a the graph shown if Figure 4 (c) while for the traversal
sequence pa, pb, pc we will get a different graph as shown
in Figure 5. Another problem with the tree semantics is that
graphs like the one shown in Figure 4 (b) cannot be
expressed in a concise manner.

Figure 5 Conflicting match for the tree semantics

Both the semantics discussed so far are incomplete in the
sense that certain graphs cannot be expressed with it.
Choosing either compromise the expressiveness of the
language. Furthermore, the tree semantics also brings in a
different form of non-determinism because different
traversal sequences yield different results.
Fortunately, there is a good solution that solves all the
problems. The solution is to use an extended set notation
that is more expressive.

3.2.3 Extending the Set Semantics
For example we want to match the string “sxyxyxy”, we
see that “xy” is repeated 3 times. Extending the notation
used before we would express it as “s3(xy)”. Using
parenthesis we were able to represent the fact that the “xy”
sequence should occur 3 times. A similar notion can be
used in graphs as well. That is, to use the notion of
grouping vertices of a pattern to form a sub pattern and
then a larger pattern can be constructed using these sub
patterns as vertices. If a group consists of a sub graph and
has the cardinality n then the n sub graph need to be found.
Another important point here is that while in strings the
ordering of each element of the group is implicit in graphs
we have to specify the connectivity and thus edges can be
specified across groups.
To illustrate the point Figure 6 (a) shows the pattern that
would express the graph in Figure 4 (c) and Figure 6 (b)
shows the graph the expresses the graph in Figure 5. With
respect to the pattern P in Figure 6 (a) there will be exactly
one vertex PB that will connect to exactly 2 vertices of type
PC. The larger pattern will consist of the 3 sub patterns of
the type described by P. the resulting graph that will be
matched is shown in Figure 4 (c).
The above exercise illustrated two points. First, the set
semantics along with the grouping notion can express all
the graphs that the tree semantics can express and the
second point is that the semantics are still precise and map
to exactly one graph.

 7

(a) Pattern for Figure 4 (c)

(b) Pattern for Figure 5

 Figure 6 Hierarchical patterns using set semantics
At this point we see that we can express a large variety of
graphs in an intuitive, concise and precise way. However, a
large number of graphs are missing from the Grouped Set
Semantics (GSS) that we described above. This class of
graphs are those having more than one edge for the same
pair of vertices.

3.2.4 Cardinality For Edges
Adding cardinality to pattern edges helps us express a
larger number of graph patterns in a compact manner.
Another example is called for and is shown in Figure 7.
The figure shows a pattern with cardinality on the edge.
The semantic meaning is an extension of Relation 1. let
b1=(V1,pv1) and b2

)2v,1v(e,2V2v,1V1v n

C

1n=
∃∈∈∀ … Relation 2

The extension is that instead of having one edge between
each pair of vertices there can be C edges where C is the
cardinality of the pattern edge.

(a) Pattern (b) Matching Host graph
Figure 7 Pattern with cardinality on edge.

3.2.5 Variable Cardinality
Sometimes, the sub graph to be matched is not fixed but
part of a family of graphs. For example, again from the
string matching world, we want to match a string starting
with ‘s’ followed by 1 or more ‘b’s. Therefore, the pattern
specification represents a family of strings. This can be
expressed in terms of regular expressions as “s(b)+”. In the

general case the number of ‘b’s can be bound by two
number, the lower and upper bound. To extend the example
let us consider that 5 to 10 ‘b’s could follow the ‘s’. By
extending the regular expression notation slightly, we can
come up with a notation “s(5..10)(b)”.
Using a similar method for graphs, we can allow the
notation of cardinality to be variable of the form (x..y),
where the lower bound is x and the upper bound is y.
Hence a particular pattern vertex should match at least x
host graph vertices and not more that y host graph vertices.
The upper bound can however be *, representing no limit.
This approach can also be used to specify optional
components in a pattern by having the cardinality of
optional components as (0..1).

(a) Pattern (b) Family of graphs

Figure 8 Variable cardinality pattern and family of
graphs

In Figure 8 we see a variable cardinality example. The
pattern in Figure 8 (a) specifies that 3..10 P2s can be
connected to a P1, thus the family of graphs represented is
given in Figure 8 (b). The required portion must be present
while the optional part may or may not be present. We have
finally extended the specification language to express a
truly large set of graphs.
However, there are a few problems with variable
cardinality. Let us consider the pattern in Figure 8 (a) and
let us say that we have a graph having T2..T11 connected
to T1 in the host graph. Should the pattern-matching
algorithm return only one match namely the entire host
graph or all possible sub graphs with cardinality 3, 4 till
cardinality 10. The way we answer this question is that if
more than one match occurs; then both the matches will be
returned if and only if neither match is a proper sub set of
the other. Thus the matches returned would each be
maximal and consistent with respect to the pattern.

1m2m^2m1m,M2m,1m ⊄⊄∈∀ … Relation 3

Relation 3 states that from the set of matches that will be
returned there should not be any two matches such that one
is the subset of the other.
This construction yields a precise and consistent language,
which can be used to specify complex patterns in a concise
manner.

 8

3.3 Graph Rewriting Transformation
Language
Pattern specification is required and a very important part
of any graph transformation language. There are also some
other concerns such as specification of static structural
constraint in graphs and to ensure that these are maintained
through the transformations [8]. This problem has been
addressed in a number of other approaches such as
[17][18].
In model-interpreter structural integrity is a bigger concern
because model-to-model transformations usually transform
models from one domain to models that conform to another
domain. This makes the problem two fold. The first
problem is to specify and maintain two different models
conforming to two different meta-model (in MIC meta-
models are used to specify structural integrity constraints).
There is another, bigger problem: maintaining references
between the two models. It is important to maintain some
sort of reference, link and other intermediate data to store
temporary values and to correlate graph objects between
the two domains.
To illustrate the point let us consider a very simple
transformation that needs to transform models conforming
to one meta-model to another. For sake of simplicity we
consider that the source model has only one type on
vertices V1 and only one type of edges E1 and that the
destination has again only one type of vertices V2 and only
one type of edges E2. The transformation’s aim is to create
a vertex and edge in the target for each vertex and edge in
the source. The algorithm first creates a vertex for each
vertex in the source and then creates the edges. We see that
for the second phase of the transformation, that is when we
need to map the edges of the source to the destination we
need to know which vertex in the destination corresponds
to which vertex in the source. This is the problem of
maintaining references between the two models. There are
other examples where the referencing is not that easy, for
example, consider a transformation that takes a cross
product of a set of vertices to generate a new set of
vertices. Then two vertices in the source actually should
reference each destination vertex. Hence we need a method
to specify and used models of different domains as well as
references and other temporary objects.
Thus we needed a way to keep the models from different
domains different and still be able to define temporary
vertices and edges that belonged to the transformation and
could possibly be incident on or adjacent to the source
and/or destination models.
The solution to the problem is to use the source and
destination meta-models to specify the temporary vertices
and edges. This creates a unified meta-model along with
the temporary objects. The advantage of this approach is
that we can then treat the source model, destination model

and temporary objects as a single graph and then be able to
use standard graph grammar and transformation techniques
to specify the transformation. The rewriting language then
uses patterns described above, where each pattern object’s
type conforms to the unified metamodel and only
transformations that do not violate the metamodel are
allowed. At the end of the transformation the temporary
objects are removed that the two models again conform
exactly to their respective meta-models. The transformation
language is inspired by many previous efforts such
[9][10][11][19][20]. A production is defined to be a pattern
that consists of pattern vertices and edges. These pattern
objects each conform to a type from the metamodel. Apart
from this each pattern has another attribute that specifies
the role it plays in the transformation. There are three
different roles that a pattern can play. They are:

1. Bind – used to match objects in the graph.
2. Delete – also used to match objects in the graph

but after these objects are matches they are deleted
from the graph.

3. New – used to create objects after the pattern is
matched

The execution of a rule involves matching every pattern
object marked either bind or delete. If the pattern matcher
is successful in finding matches for the pattern, then for
each match the pattern objects marked delete are deleted
and then the objects marked new are created. Sometimes
the patterns by themselves are not enough to specify the
exact graph parts to match and we need other, non-
structural constraints on the pattern. An example for such a
constraint is: “an attribute of a particular vertex should be
within limits.” These constraints are described using Object
Constraint Language (OCL) [21] as it is a widely used
standard and is directly related to UML the metamodeling
language of GME. There is also a need to provide values to
attributes of newly created objects and/or modify attributes
of existing object, this need the “attribute mapping”. The
formal definition of a production is as follows. A
production p is a triple (pattern graph, guard, attribute
mapping), where

1. Pattern graph is a pair (Pv, Pe), where
the set of all pattern vertices and
 the set of all pattern edges.

PVPv ⊆
PEPe ⊆

2. Guard is a set of expressions that operate on the
vertex and edge attributes and evaluate to either
true of false. If the guard is false, then the
production will not execute any operations.

3. Attribute mapping is a set of assignment
statements that specify values for attributes and
can use values of other edge and vertex attributes.

In Figure 9 describes an algorithm that implements the rule.
The algorithm calls the pattern matcher described in

 9

Appendix 1 and 2. The “Effector” function performs
deletion and creation of objects and is described later in the
paper.
Function Name : ExecuteRule
Inputs : 1. Rule rule (rule to execute)

 2. List of Packets inputs
Outputs : 1. List of Packets outputs
outputs = ExecuteRule(rule, inputs)
{ List of Packets matches
 List of Packets outputs
 for each input in inputs
 { matches = PatternMatcher(rule, input)
 for each match in matches
 { if match doesn’t satisfy guard
 matches.Remove(match)
 }
 for each match in matches
 { Effector(rule, match)
 outputs.Add(match)
 }
 }
 return outputs
}

Figure 9 Algorithm for rule execution

3.3.1 Language Realization
The goal of the language is to transform models that belong
to one meta-model to another meta-model or to transform
models within a meta-model and to maintain the
consistency of the models with respect to their meta-
models. Hence, it is important that the language only allow
the user to draw patterns that conform to the meta-models.

Figure 10 An example rule with patterns, guards and

attribute mapping
To maintain consistency and provide usability in GreAT,
the following usage method is defined:

1. The user first attaches input and output
metamodels of the models to transform in the form
of libraries.

2. Then the users specify another metamodel that
defines all the temporary vertices and edges that
he/she will need for the transformation.

3. After attaching and specifying these metamodels
the user can then draw productions/rules that
specify patterns. Each object in the pattern refers
to a particular metamodel entity. The semantic
meaning of the reference is that the pattern object
should match with a graph object that is an
instance of the class represented by the metamodel
entity.

Thus, GReAT uses UML metamodels as the basic entities
for defining patterns. Furthermore, the patterns are also
specified in UML syntax and since the modeler uses UML
for metamodeling, it is more intuitive to describe the rules
also in UML. By making the user reference each pattern
object we can enforce the consistency of the patterns and
thus the consistency of the transformations.

3.4 Controlled Graph Rewriting and
Transformation
In order to increase efficiency and effectiveness of the
transformation language it is essential to have efficient
implementations for the productions. The pattern matcher
being the most time consuming operation needs to be made
as effective as possible. In order to make the search
algorithm less time consuming the pattern is not searched
in the entire graph but is searched within a context. The
context is specified by an initial set of bindings for some
pattern vertices and edges. This helps to greatly reduce the
time complexity of the search. This initial set of bindings
is established by using Port objects in the rewriting rules
that form the interface of the rewriting rule.

Figure 11 UML class diagram of the expression

hierarchy
The next concern is the application order of rewriting
productions. Classical graph grammars apply any
production that is feasible. This technique is good for
generating and matching languages but model-to-model
transformations need to follow an algorithm that requires a
more strict control over the execution sequence of rules.
Furthermore, by specifying a rule execution sequence the
implementation can be made more efficient.
In order to provide manageability and mitigation of
complexity it is important to have higher-level constructs,
like hierarchy of rules in the graph rewriting language. For
this reason, we allow nesting of rules and control
structures. This latter feature allows modularization and
abstraction through the encapsulation of algorithms in
blocks. The common base abstraction for the language is
“Expression”, as shown Figure 11, and all other constructs
like Rules and Blocks are derived from it. The derivation
implies a shared base semantics: these constructs represent
graph transformations.

 10

Figure 12: UML class diagram of the expression

interface
 Figure 11 and Figure 12 show the expression hierarchy in
the controlled graph rewriting language, and the input-
output interfaces available on the expressions.
Each expression has the same interface and it allows the
outputs of one expression to be the input of another
expression, in a dataflow-like manner. This is used to
sequence expression and allow the expression to be used as
black boxes.
A compound rule can contain other compound rules, tests
and primitive rules. The primitive rules of the language are
to express primitive transformations. A test is a special
expression and is used to choose different paths for control
flow. Figure 13 describes a high-level algorithm that
shows all the rules to be the same from outside were each
one has a different implementation but the same interface.
Function Name : Execute
Inputs : 1. List of Packets inputs
 2 expr
Outputs : List of Packets tputs

. Expression ession
 1. ou

outputs = Execute(expression, inputs)
{ if(expression is a for block)
 return ExecuteForBlock(expression, inputs)
 if(expression is a block)
 return ExecuteBlock(expression, inputs)
 if(expression is a test)
 return ExecuteTest(expression, inputs)
 if(expression is a rule)
 return ExecuteRule(expression, inputs)
}

Figure 13 The expression execution algorithm
The control flow language has the following basic control
flow concepts.

1. Sequencing – rules can be sequenced to fire one
after another

2. Non-Determinism – rules can be specified to be
executed “in parallel”, where the order of firing of
the parallel rules is non deterministic.

3. Hierarchy – CompoundRules can contain other
CompoundRules or Expressions

4. Recursion – A high level rule can call itself.

5. Test/Case – A conditional branching construct that
can be use to choose between different control
flow paths.

3.4.1 Sequencing of Rules
If a rule is coupled to another rule they will execute
sequentially. Thus, in Figure 14 rule 1 will fire first to
consume all its tokens and produce a number of output
tokens. Then rule 2 will fire to consume all its input tokens
to produce a number of output tokens.

(a)

(b)

(c)

Figure 14 Firing of a sequence of 2 rules

3.4.2 Hierarchical Rules
Function Name : ExecuteBlock
Inputs : 1. List of Packets inputs
 2 bloc
Outputs : List of Packets tputs

. Expression k
 1. ou

outputs = ExecuteBlock(block, inputs)
{ List of Packets outputs
 Stack of Rules ready_rules
 For Each next_rule of block.next_rules()
 { if(next_rule equals block)
 { outputs.Add(inputs)
 }
 else
 { ready_rule.Push(next_rule,inputs)
 }
 }
 while(ready_rules.NotEmpty())
 { current, arguments = ready_rules.Pop()
 return_arguments = Execute(current,
 arguments)
 For Each next_rule of current.next_rules()
 { if(next_rule equals block)
 { outputs.add(inputs)
 }
 else
 { ready_rule.Push(next_rule,inputs)
 }
 }
 }

return outputs
}

Figure 15 Block execution algorithm

 11

There are two types of hierarchical container rules: (1)
Block, and (2) For Block. Both Block and For Block have
the same semantics with respect to rules connected to and
from it. Thus if in Figure 14 the rules 1 and 2 were
hierarchical even then they would have has the same action
as described there. Only the semantics within a hierarchical
rule differs.

(a)

(b)

(c)

(d)

(e)

Figure 16 Rule execution of a Block
A block is a container that encapsulates a number of rules.
The block has the following semantics: it will push all its
incoming packets through to the first internal rule (i.e. it is
same as the regular rule semantics). The input interface of
the block can be attached to the input interface of any
internal block or the output interface of the block. In other
words the block can send output packets from any internal
rule or pass its input packets as output. However, the
output interface of a block must be attached to exactly one
interface and it cannot be attached to two different
interfaces. Figure 16 illustrates the execution of rules
within a block.
Figure 17 illustrates the case when the output interface of a
block is connected to the input interface of the same block.

(a)

(b)

(c)

(d)

Figure 17 Sequence of execution within a block
The “For Block” has different semantics for execution
within the block. If we have n incoming tokens in a “For
Bock” then the first packet will be pushed through thru all
its internal rules to produce output packets and then the
next packet will be taken. The semantics are illustrated
with the help of an example in Figure 18.

(a)

(b)

(c)

(d)

(e)

 12

(f)

(g)

(h)

Figure 18 Rule execution sequence of a "for block"
Similar to the block the input interface of the “for block”
can also be associated with the input interface of any
internal rule or the output interface of itself.

Function Name : ExecuteForBlock
Inputs : 1. List of Packects inputs
 2 forbl
Outputs : List of Packects

. Expression ock
 1. outputs

outputs = ExecuteForBlock(forblock, inputs)
{ List of Packects outputs
 for each input in inputs
 { returns = ExecuteBlock(forblock, input)
 outputs.Add(returns)
 }
 return outputs
}

Figure 19 For block execution algorithm

3.4.3 Branching using test case
There are many scenarios where the transformation to be
applied is conditional and a “branching” construct is
required. We support a branching construct called test/case.
The external semantics of a test/case is similar to any other
rule. When fired or executed it consumes all its input
packets to produce some output packets. In Figure 20 a test
is shown that has two cases. The Test has one input
interface and two output interfaces ({OR1, OP1} and
{OR2, OP2}). When the test is fired each incoming packet
is tested and placed in the corresponding output interface.

 (a) (b)
Figure 20 Execution of a test case construct

The test must contain at least one case. Each case is a rule
with no output pattern and no actions. It contains an LHS

pattern a guard condition and an input and output interface.
If the LHS pattern has a match then the case succeeds and
the input packet to the case is passed along. If the pattern
has no matches then the test fails. Also, if the match
doesn’t satisfy the guard condition, the case fails.

(a) (b)

Figure 21: Execution of a case

Figure 21 shows a case with a successful execution. The
input packet has a valid match and so the packet it allowed
to go forward.

(a) (b)

(c) (d)

(e)

Figure 22 Execution of a test condition
When a test has many cases then each input packet is
checked with each case to see which cases are satisfied for
the particular packet and the packet is placed in the output
interface of each satisfied case. The order of testing cases is
derived from the physical placement of the case within the
test, in the graphical model. The cases are evaluated from
top to bottom. If there is a tie in the y co-ordinate then the x
co-ordinate is used from left to right. The case also has
another attribute called the cut. When enabled, it means

 13

that if the case succeeds for a given packet then the packet
should not be tested with the remaining cases.
In Figure 22 the execution of a test is shown. An input
packet is replicated for each case. Then the input packet is
tried with the first case, it succeeds and is copied to the
output of the case. Then the packet is tried with the second
case, this time it fails and the packet is removed. Finally
after all input packets have been consumed the output
interfaces have the respective packets.
Function Name : ExecuteTest
Inputs : 1. List of Packects inputs
 2 test
Outputs : List of Packects outputs

. Expression
 1.

outputs = ExecuteTest(test, inputs)
{ List of Packects outputs
 List of Cases cases = test.cases_in_sequence()
 for each input in inputs {
 for each case in cases {
 returns = ExecuteCase(case, input)
 outputs.Add(returns)
 if(case has a cut and returrns exist)
 break
 }
 }
 return outputs
}

Figure 23 Test execution algorithm

3.4.4 Non-deterministic Execution
When a rule is connected to more than one following rule
or when there is a test condition with more than one path
then it is called non-deterministic execution. The non-
deterministic execution semantics is defined such that any
of the different paths can be chosen for execution first.
Once a path is chosen it is executed completely before the
next path is chosen.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 24 A non-deterministic execution sequence
Figure 24 shows a non-deterministic execution sequence.
Here the non-deterministic execution is caused because of a
test condition but it could also have been a rule connected
to more than one other rule. After the branch there are
packets at both the output interfaces of the test. Thus both
rule 2 and rule 4 are ready to fire, in this case rule 2 is
chosen and fired, followed by the execution of following
rules. This ends at rule 3. Then rule 4 & 5 are fired.

3.4.5 Termination
Finally termination of a transformation needs to be
discussed. A rule sequence is terminated either when a rule
has no output interface or when a rule having an output
interface does not producing any output packets.
Thus if the firing of a rule produces zero output packets
then the rules following it will not be executed. Hence in
Figure 24 if rule 4 produced zero output packets then rule 5
would not have been fired. However, the there should be a
construct to sequence rules without having to bind the
ports.

 14

4. The Implementation
The language is currently implemented using an interpreter.
This interpreter is supplied with the transformation rules
and the starting input packets.

4.1.1 The UDM Package
The technology used for the implementation of GReAT is
Universal Data Model (UDM) [22]. The Universal Data
Model (UDM) is a meta-programmable package [22] that
includes a development process and a set of supporting
tools to generate C++ accessible interfaces from UML class
diagrams of data structures. The generated APIs can use a
variety of data storage formats such as XML, GME model
databases and memory-based objects. The data storage
format is transparent to the user and the same API can be
used to access and store data to any format.
UDM provides a convenient programmatic access and can
be used to build generators or translators for different data
structures described in UML class diagrams. Note that the
programmer has two different interfaces: one of them is a
domain-specific one, which is generated based on the UML
class diagrams, and another, generic one, which allows
manipulating objects using symbolic names (class names,
attribute names, association role names, etc.). The typical
process of using the UDM is as follows:
� A UML class diagram (metamodel) is created in either

of the two supported modeling tools (Visio or GME).
The UML class diagram is then converted into an
XML representation with the help of a UDM tool.

� The XML file is then used to generate a C++ API (pair
of a source and a header file) specific to the particular
class diagram, as well as an XML DTD (to be used in
the XML backend). The generated C++ files are then
compiled and linked with the generic UDM library and
one of the implementation specific UDM libraries. The
user can easily create, modify and traverse object
graphs described by the class diagram.

� Alternatively, the generated XML file can be directly
used to create, modify and traverse object graphs
corresponding to the particular metamodel using the
generic UDM API.

The Tool chain in the UDM process is described below.
Figure 25 shows a simplified UDM based development
scenario. Note that UDM includes a reflection package, as
the meta-models (obtained from the UML class diagram)
are explicit in the form of initialized data structures.

Figure 25 Tool chain for generation of UDM API

The GreAT interpreter is an experimental testbed
developed for testing the transformation language and to
validate that the language is powerful enough to express
most common transformation problems. The interpreter
takes the input graph, applies the transformations to it, and
generates the output graph. Inputs to the GreAT interpreter
are (1) the UML class diagrams for the input and output
graphs (also known as meta-models), (2) the transformation
specification and (3) the input graph. The GRE traverses
the rules according to the sequencing and produces an
output graph based upon the actions of the rules.
The architecture of the run time system is shown in Figure
26. The interpreter accesses the input and output graph
with the help of a generic UDM API that allows the
traversal of input and output graph. The rewrite rules are
stored their own language format and can be accessed
using the language specific UDM API.
The GRE is composed of two major components, (1)
Sequencer, (2) Rule Executor (RE). The Rule Executor is
further broken down into (1) Pattern Matcher (PM) and (2)
Effector (or “Output generator”). The Sequencer
determines the order of execution for the rules using the
‘Execute’ function described above and for each rule it
calls the ExecuteRule. The rule executor internally calls the
PM with the LHS of the rule. The matches found by the
PM are used by the Effector to manipulate the output graph
by performing the actions specified in the rules.
The Pattern Matcher finds the subgraph(s) in the input
graph that are isomorphic to the pattern specification.
When a pattern vertex/edge matches a vertex/edge in the
input graph, the pattern vertex/edge will be bound to that
vertex/edge. The matcher starts with an initial binding
supplied to it by the Sequencer. Then it incrementally
extends the bindings till there are no unbound
edges/vertices in the pattern. At each step it first checks
every unbound edge that has both its vertices bound and
tries to bind these. After it succeeds to bind all such edges
it then finds an edge with one vertex bound and then binds
the edge and its unbound vertex. This process is repeated
till all the vertices and edges are bound. The recursive
algorithm for the matches is shown in Appendix 1 & 2.

 15

Figure 26 The GReAT interpreter

5. Examples and Results
To test GReAT and to measure its functionality we chose
some challenge problems that would accurately reflect the
needs of the model-to-model transformation application
area. The challenge problems chosen are
1. Generate a non-hierarchical Finite State Machine

(FSM) from a Hierarchical Concurrent State Machine
(HCSM). This problem introduces interesting
challenges. To map concurrent state machines to a
single machine there is a need for complex operations
that include Cartesian production of the parallel state
space. The evaluation of the this particular
transformation requires a depth-first, bottom up
approach and will also test whether the system can
allow different traversal schemes.

2. Reachability analysis and deletion of unreachable
states is the next challenge problem. This problem is
chosen to check weather the language can be used to
express and implement algorithms seamlessly.

3. The next example is to generate the equivalent Hybrid
System from a given Matlab Simulink and Stateflow
model. This is another non-trivial example as the
mapping is not a straightforward one-to-one mapping.
It is not even obvious if the problem can be solved in
the most general case. The algorithm used to solve this
problem converts a restricted Simulink-Stateflow
model to its equivalent hybrid system. This algorithm
has some complex steps such as state splitting,
reachability analysis and special graph walks that
make it another interesting problem to try.

4. The final example is to build a pre-processor for
domain specific extensions to a language. The problem
is to build a pre-processor that will convert Aspect-
Java code to its equivalent Java code. This example is
chosen because it is not a toy problem and should be
able to test that system thoroughly and see if the
system can be used to solve real world problems.

The diversity of the example problems chosen above gives
confidence that if the new language can actually solve all
the above-mentioned problems using easy to use concepts
and if the system can generate efficient implementations
from the specification then it should be able to solve a large
number of non-trivial real world problems.
Out of the challenge problems described above the first
three have been solved along with other simple example
problems using the GReAT language and interpreter.
Flattening the state machine example is implemented using
a recursive depth-first bottom up algorithm that first calls
flattening on its children before flattening itself. The
reachability analysis problem uses the mark and sweep
algorithm [23].
Table 1 shows the examples that have been implemented
using GReAT and the lines of code required to hand code
them. The ratio between hand code and the number of rules
is between 1:10 and 1:30. Thus, we see that GReAT can be
used for significant speed up in the development time of
model-to-model interpreters.
Table 1 Comparison of GReAT implementation vs code

GReAT Hand
Code

Problem Primitive
Rules #

Compound
Rules # LOC

Mark and sweep
algorithm on Finite
State Machine (FSM)

7 2 100

Hierarchical Data
Flow (HDF) to Flat
Data Flow (FDF)

11 3 200

Hierarchical
Concurrent State
Machine (HCSM) to
Finite State Machine
(FSM)

21 5 500

Matlab Simulink/
Stateflow to Hybrid
System

25 9 1000

5.1 HCSM to FSM example
The algorithm used to generate an equivalent FSM from a
HCSM and how it is defined in GReAT is described in this
section. The algorithm is a depth first bottom up algorithm.
The top-most rule is a recursive rule that takes as input
either an or-state, and-state or a simple state. The rule then
tests to find out the type of the input. If the input is an-and
state it passes the input to a sub rule that flattens the and-
state, if the input is an or-state is then passes it to another
sub rule that deals with the flattening the or state and if the
input is a simple state then the rule simply returns the state.
For the sake of simplicity and clarity let us consider that
the state machine has only or-states and thus only the rule
with or-state is described here. The rules for flattening the

 16

or-state first call the top-level rule on all the states
contained in the or-state.

Figure 27 The top-level rule

It then proceeds with flattening all the or-states within it.
Thus the algorithm will first act upon an or-state that only
contains simple states or other or-states that contain simple
states. At this state the next rule is to elevate all the states
contained in the child or-states. Let the or-state being
flattened be Or1 and let it have child or-states named Or11
to Or1n. Then for each Or1x, where 1 and for each
child state of Or1x there will be a new state created as the
child of Or1. The next rule maps the init transition of Or1
to an or-state to the correct child of the or-state. After this
the next rule creates a corresponding transition for each
transition that existed within the child or-states Or11 to
Or1n. The next rule then creates the transitions that existed
between Or1x states within Or1 and creates the
corresponding transition between the elevated states. The
final rule then deletes the Or11 to Or1n.

nx ≤≤

Figure 28 The or-state rule

Figure 29 The elevation rule

6. Conclusion and Future Work
This paper has shown a technique for model
transformations based on graph transformations. The
transformations are represented in the form of explicitly
sequenced transformation steps, which use graph patterns
and actions like new, bind, and delete to capture an
elementary action. The transformation models are tightly
coupled to the concepts of UML, and are based on the
notion that UML class diagrams define meta-models that

are graph grammars for the graph of objects. We have
shown the syntax and semantics of the graph
transformation language, and its implementation and
illustrated its use.
There are a number of open questions that we would like to
address in our ongoing research. Although the current
language is powerful enough for writing complex
transformation programs, we need to verify it on more
complex examples. The execution engine is not efficient,
and we need to develop a technique for generating
executable code from the transformation programs, in order
to be competitive with other approaches. From practical
experience we learned that there is a need for a debugging
tool that allows the developer the tracking of the execution
of the transformations. We plan to address these issues in
further research.

7. Acknowledgements
The DARPA/IXO MOBIES program and USAF/AFRL has
supported under contract F30602-00-1-0580, in part, the
activities described in this paper.

8. References
[1] J. Sztipanovits, and G. Karsai, “Model-Integrated

Computing”, Computer, Apr. 1997, pp. 110-112
[2] A. Ledeczi, et al., “Composing Domain-Specific

Design Environments”, Computer, Nov. 2001, pp. 44-
51.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified
Modeling Language Reference Manual”, Addison-
Wesley, 1998.

[4] “The Model-Driven Architecture”,
http://www.omg.org/mda/, OMG, Needham, MA,
2002.

[5] “Request For Proposal: MOF 2.0
Query/Views/Transformations”, OMG Document:
ad/2002-04-10, 2002, OMG, Needham, MA.

[6] Agrawal A., Levendovszky T., Sprinkle J., Shi F.,
Karsai G., “Generative Programming via Graph
Transformations in the Model-Driven Architecture”,
Workshop on Generative Techniques in the Context of
Model Driven Architecture, OOPSLA , Nov. 5, 2002,
Seattle, WA.

[7] Grzegorz Rozenberg, “Handbook of Graph Grammars
and Computing by Graph Transformation”, World
Scientific Publishing Co. Pte. Ltd., 1997.

[8] Blostein D., Schürr A., ”Computing with Graphs and
Graph Rewriting”, Technical Report AIB 97-8,
Fachgruppe Informatik, RWTH Aachen, Germany.

[9] H. Gottler, “Attributed graph grammars for graphics”,
H. Ehrig, M. Nagl, and G. Rosenberg, editors, Graph

 17

http://www.omg.org/mda/

Grammars and their Application lo Computer Science,
LNCS 153, pages 130-142, Springer-Verlag, 1982.

[10] H. Göttler, "Diagram Editors = Graphs + Attributes +
Graph Grammars," International Journal of Man-
Machine Studies, Vol 37, No 4, Oct. 1992, pp. 481-
502.

[11] J. Loyall and S. Kaplan, "Visual Concurrent
Programming with Delta-Grammars," Journal of
Visual Languages and Computing, Vol 3, 1992, pp.
107-133.

[12] D. Blostein, H. Fahmy, and A. Grbavec, “Practical
Use of Graph Rewriting”, 5th Workshop on Graph
Grammars and Their Application To Computer
Science, Lecture Notes in Computer Science,
Heidelberg, 1995.

[13] U. Assmann, “How to Uniformly specify Program
Analysis and Transformation”, Proceedings of the 6
International Conference on Compiler Construction
(CC) '96, LNCS 1060, Springer, 1996.

[14] A. Maggiolo-Schettini, A. Peron, “A Graph Rewriting
Framework for Statecharts Semantics”, Proc.\ 5th Int.\
Workshop on Graph Grammars and their Application
to Computer Science, 1996.

[15] A. Radermacher, ``Support for Design Patterns
through Graph Transformation Tools'', Applications of
Graph Transformation with Industrial Relevance,
Monastery Rolduc, Kerkrade, The Netherlands, Sep.
1999.

[16] A. Bredenfeld, R. Camposano, “Tool integration and
construction using generated graph-based design
representations”, Proceedings of the 32nd ACM/IEEE
conference on Design automation conference, p.94-99,
June 12-16, 1995, San Francisco, CA.

[17] H. Fahmy, B. Blostein, “A Graph Grammar for
Recognition of Music Notation”, Machine Vision and
Applications, Vol. 6, No. 2 (1993), 83-99.

[18] G. Engels, H. Ehrig, G. Rozenberg (eds.), “Special
Issue on Graph Transformation Systems”, Fundamenta
Informaticae, Vol. 26, No. 3/4 (1996), No. 1/2, IOS
Press (1995).

[19] G.Schmidt, R. Berghammer (eds.), “Proc. Int.
Workshop on Graph-Theoritic Concepts in Computer
Science”, (WG ’91), LNCS 570, Springer Verlag
(1991).

[20] H.Ehrig, M. Pfender, H. J. Schneider, “Graph-
grammars: an algebraic approach”, Proceedings IEEE
Conference on Automata and Switching Theory, pages
167-180 (1973).

[21] Object Management Group, Object Constraint
Language Specification, OMG Document formal/01-9-
77. September 2001.

[22] A. Bakay, “The UDM Framework,”
http://www.isis.vanderbilt.edu/Projects/mobies/.

[23] J. McCarthy “Recursive functions of symbolic
expressions and their computation by machine – I”,
Communications of the ACM, 3(1), 184-195, 1960.

[24] Uwe Assmann, “Aspect Weaving by Graph
Rewriting”, Generative Component-based Software
Engineering (GCSE), p. 24-36, Oct 1999.

[25] G. Karsai, S. Padalkar, H. Franke, J. Sztipanovits, ”A
Practical Method For Creating Plant Diagnositics
Applications”, Integrated Computer-Aided
Engineering, 3, 4, pp. 291-304, 1996.

[26] E. Long, A. Misra, J. Sztipanovits, “Increasing
Productivity at Saturn”, IEEE Computer Magazine,
August 1998.

 18

http://www.isis.vanderbilt.edu/Projects/mobies/

9. Appendices
9.1 Appendix 1 – Pattern matching algorithm using simple patterns

Function Name : PatternMatcher
Inputs : 1. Pattern Graph pattern
 2. Match p_match (a partial Match)
Outputs : 1. List of Matches matches

matches = PatternMatcher (pattern, p_match)
{
 for each pattern edge that has both Src and Dst vertices having valid binding
 { if(corresponding graph edge doesn’t exists between graph vertices)
 { return an empty match list
 Bind pattern and host graph edge and add binding to p_match
 Delete the pattern edge from the pattern
 }
 }
 Edge edge = get pattern edge with one vertex bound to host graph
 If(edge exists)
 { vertices = vertices of the host graph adjacent to the bound vertex
 make a copy of pater in new_pattern
 Delete edge from new_pattern
 For each vertex v in vertices)
 { new_match = p_match + new binding(unbound pattern vertex, vertex)
 ret_match = PatternMatcher(new_pattern, graph, new_match)
 Add ret_match to matches
 }
 Return matches
 }

 If(all patern edges are bound)
 { Add p_match to matches
 Return matches
 }
 else
 Return empty list
}

 19

9.2 Appendix 2 – Pattern matching algorithm with fixed cardinality

Function Name: PatternMatcher

Inputs: 1. Pattern Graph pattern

Outputs: 1. List of Packects matches

2. Match p_match (a partial Match)

matches = PatternMatcher (pattern, p_match)
{ new_pattern = copy of Pattern.

for each pattern edge with both Src and Dst vertices bound
{ if(corresponding edge doesn’t exists between host graph vertices)
 return false.
 Add edge binding to p_match
 Delete edge from new_pattern.
}

Edge edge = pattern edge with one vertex bound to host graph
If(edge exists)
{ Delete edge from new_pattern.
 For each vertex v in bound vertices of edge
 { peer_vertices[v] = vertices adjacent to vetrex bound to v
 }
 Intersect all the peer_vertices to form new list peer
 If(cardinality of peer Ci >= Cd cardinality of corresponding pattern vertex)
 { For(Each combination of Cd from Ci)
 { peer_c is the unique combination
 new_match = p_match + new binding(pattern vertex, peer_c)
 ret_match = PatternMatcher(new_pattern, new_match)

 Add ret_matches to Matches
 }
 Return matches.
 }
}

If(all patern matches are bound)
{ Add p_match to matches.
 Return matches.
}
else
 reutrn enpty list.

}

 20

	INTRODUCTION
	Background and Related Work
	Model Integrated Computing (MIC)
	Graph Grammars and Transformations

	A Language for Graph Rewriting and Transformations
	Graph Definition
	Vertex
	Edge
	Graph

	The Pattern Specification Language
	Simple Patterns
	Fixed Cardinality Patterns
	Extending the Set Semantics
	Cardinality For Edges
	Variable Cardinality

	Graph Rewriting Transformation Language
	Language Realization

	Controlled Graph Rewriting and Transformation
	Sequencing of Rules
	Hierarchical Rules
	Branching using test case
	Non-deterministic Execution
	Termination

	The Implementation
	
	The UDM Package

	Examples and Results
	Problem
	Hand Code

	HCSM to FSM example

	Conclusion and Future Work
	Acknowledgements
	References
	Appendices
	Appendix 1 – Pattern matching algorithm using sim
	Appendix 2 – Pattern matching algorithm with fixe

