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ABSTRACT 
This paper presents a comprehensive, domain-driven framework 
for software development. It consists of a meta-programmable 
domain-specific modeling environment and a model 
transformation generator toolset based on graph transformations. 
The framework allows the creation of custom, domain-oriented 
programming environments that support end-user 
programmability. In addition, the framework could be considered 
an early, end-to-end implementation of the concepts advocated by 
the OMG’s Model Driven Architecture initiative. 
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1. INTRODUCTION 

1.1 Classifying Programming 
Languages 

Programming languages can be broadly divided into two 
categories: (1) General-purpose languages (GPLs), such as 
assembly, C, C++, Java and (2) Domain-specific languages 
(DSLs), such as Matlab/Simulink [24]. Tools for general-purpose 
languages are generally less expensive as a larger community 
absorbs the cost, whereas DSLs are more expensive, though they 
can increase productivity by bringing power programming to 
domain users via familiar specialized notations and languages. It 
is well know that GPLs have been more prevalent and successful 
compared to DSLs, even though claims about DSLs’ capabilities 
to increase productivity are widely accepted[26]. The primary 
reasons behind the limited success of DSLs have historically been 
the following: 
• DSLs are more expensive to develop as the development cost 

and time is borne by a small user community 
• Since there is a small user base, tools and support for a DSL 

is not at par with GPLs and 
• The wide user base and longer life of GPLs helps make the 

language implementations robust and reliable. 
Another view of languages divides them into textual and graphical 
categories. Graphical languages are usually impractical for 
general-purpose programming but can be useful in a limited 
context, in specific domains. One of the most successful recent 
examples of graphical, domain-specific languages is 
Matlab/Simulink [24] for simulation and control engineering. We 

believe that a mixed textual and graphical notation can be helpful 
in limited domains. For example, in the software development 
domain, the UML [3] specification has both textual (Object 
Constraint Language) and graphical (Use-Case Diagram, Class 
Diagram, etc.) notations. In hardware development domain, tool 
vendors [27] are now providing a graphical notation for the 
structural description of hardware while the behavioural 
description is still textual.  
For DSLs to become more popular the three hurdles mentioned 
above must be addressed. A key limiting factor is the cost of 
development (in terms of time and effort), which we conjecture 
can be reduced by creating a framework for developing DSLs. 
This approach has several advantages. First, the framework can be 
used to develop many languages, and thus the cost and time of 
development is reduced and can be absorbed by a larger 
community. Second, the framework can be the focal point for a 
wider user base, thus making it profitable for industries to provide 
support and tools. Within the framework there will be a 
development cost for a given DSL, which should be minimized in 
order for the framework to be effective. 

1.2 Requirements of a Domain-
Driven Software Development 
Framework 

A useful framework for developing domain-specific graphical 
languages should have a basic set of features. The features can be 
divided into the following two categories: 

• Meta framework tools that will be used to describe the 
syntax, semantics and visualization of DSLs.  The meta 
framework must provide support for the specification of a 
language, which is defined by its abstract syntax, concrete 
syntax, static semantics, dynamic semantics, and 
visualization. The syntax of a programming language 
describes the structure of programs without consideration of 
their meaning. The abstract syntax of the language captures 
the abstract concepts and their relationships used in the 
language. Issues such as type-compatibility are captured in 
the static semantics of the language; hence, there should be 
support for this. Dynamic semantics is defined as the relation 
of the abstract syntax to a model of computation. In other 
words, it can be considered as a mapping from one language 
to another (provided the model of computation is captured in 
a linguistic framework). 

• Language framework tools that will be used for the creation, 
visualization and verification of sentences in a domain-
specific language. The language framework should allow the 



use of the language in an integrated environment, which 
includes creating, editing, and deleting sentences of the 
language; visualization of the sentences; etc. Apart from 
editing of the sentences, the framework needs to enforce the 
concrete syntax and static semantics of the language using 
some mechanisms. The final requirement of the framework is 
to be able to use transformation tools that map sentences of 
the language into sentences of some model of computation 
[20]. Examples of such models of computation are stack 
machines, process networks, finite state machines, etc. Often, 
although not always, sentences expressed in target the model 
of computation are executable, hence they are called 
“executable models”. 

1.3 A Domain Driven Development 
Framework 

The Generic Modeling Environment (GME) [2], GME’s 
metamodeling language, Graph Rewriting and Transformation 
(GReAT): a model transformation specification language and the 
GReAT Execution Engine (GReAT-E) combine to form such a 
framework. Figure 1 shows how the different technologies fit in to 
form an end-to-end framework for domain driven development. 
The metamodeling language is used for the specification of syntax 
static semantics and visualization of a DSL. The metamodel 
interpreter can convert this specification (a metamodel) into an 
internal representation. This internal representation is then used to 
configure GME to behave like the specified domain-specific 
language. GReAT is a graphical language used to specify the 
semantics for the DSL. GReAT-E can execute GReAT 
specifications on sentences of the DSL to produce executable 
models. 

 
Figure 1 A Domain Driven Development Framework 

1.4 Paper Organization 
This paper showcases a domain-driven software development 
framework and demonstrates how it achieves the goals outlined in 
Section 1.2.  The remainder of this paper is organized as follows: 
Section 2 describes the meta framework and how GME itself was 
used to develop the meta framework; Section 3 describes the 
language framework; Section 4 presents an example that 
illustrates the specification of a simple language; Section 5 
presents some preliminary results; Section 6 discusses the 
conclusions and proposals for future research. 

2. THE META FRAMEWORK 

2.1 Infrastructure: The Generic 
Modeling Environment (GME) 

The GME framework consists of a meta-programmable tool that 
can be customized to support various visual domain-specific 
modeling languages. GME is a highly configurable visual 
modeling tool that uses direct manipulation techniques for editing 
complex models. The direct manipulation front-end is comprised 
of the “editing engine” that operates on data structures 
representing the domain-specific models. How these data 
structures are organized, what objects and relationships are 
allowed, what attributes objects have, etc. are captured in an 
internal metamodel. The internal metamodel is a read-only, static 
data structure that GME uses at run-time to connect the model 
data structures to the visualization and direct manipulation tools. 
It connects to a database backend to provide persistence services 
and to validate the editing operations. This internal metamodel is 
created from an external metamodel, which is built by the 
designer of the domain-specific modeling language [2]. 
The external metamodel is just another model for the GME 
framework. Hence, the GME has been configured to support a 
specific modeling language, called the metamodeling language, 
which allows the creation of metamodels, as described in Section 
2.2. GME also provides a special model transformation tool that 
transforms an external metamodel into an internal metamodel [2]. 

2.2 Abstract and Concrete Syntax 
The external metamodel captures the abstract and concrete syntax 
of the modeling language supported by the GME. The abstract 
syntax is expressed in the form of UML [3] class diagrams that 
introduce domain concepts (classes), their attributes, and their 
relationships. These UML class diagrams describe all the possible 
models that can be built via the modeling language, similar to 
how Extended Backus-Naur Form (EBNF) describes all the 
possible sentences in a textual language. In other words, we use 
UML class diagrams to represent generative grammars  for 
models. 
The concrete syntax is expressed by coupling the domain 
modeling entities (classes and associations) to specific 
visualization features available in GME. This coupling happens in 
two ways:  

• Using specific stereotypes for classes. GME defines a set of 
stereotypes, and when these are assigned to classes in the 
metamodel they determine how the visualization should 
happen. For example, <<Model>>-s are visualized as 
containers shown as icons with connection ports, 
<<Atom>>-s as (user-defined) icons, <<Connection>>-s as 
straight lines, etc. 

• Using specific idioms in the metamodel. GME’s 
metamodeling tool uses a number of predefined idioms: 
patterns over classes that carry special meaning. For 
example, a <<Reference>> class associated with an 
<<Atom>> class via an association labeled as  “refersTo” 
means that (in a context) one can use reference objects that 
point to atomic objects of the selected kind.   

The GME has a number of visualization techniques (e.g., 
container objects), and there is a set of well-defined stereotypes 
that allow relating the domain entities to GME visualization 



concepts. Some visualization techniques require multiple, 
cooperating domain classes, and in this case specific idioms are 
used in the GME to make the connection. For details, please see 
the GME documentation [2]. 

2.3 Static Semantics 
The GME metamodels discussed above only allow 

description of the abstract syntax, i.e., they do not support 
semantic constraints on the models. These constraints define the 
well-formedness rules for the models, i.e., the static semantics. 
We have used OCL [19] to express these rules in the GME 
metamodels. One can couple OCL expressions to model elements, 
and the GME editing engine evaluates these expressions at run-
time. If constraint violations are found, the user is warned about 
the specific rule that has been violated. While a user is editing the 
models it could be annoying to receive these notifications, so 
there is fine-grain control over when and how the constraints are 
evaluated.  

2.4 Semantics via Transformation 
Specification 

Most textual languages have either (1) a direct one-to-one 
mapping from the source to the target model of computation or (2) 
have no formal specification for the transformation, rather this 
transformation specification is buried in the code generator. The 
process of writing generators is time consuming and costly and 
therefore a better approach is necessary to support a domain-
driven software development framework.  If a higher-level 
specification for the model transformations is available, it can 
presumably be used to generate the code for the model translator.  
From a mathematical viewpoint, one can recognize that domain-
specific models are graphs, to be more precise: vertex and edge 
labeled multi-graphs, where the labels are denoting the 
corresponding entities (i.e., types) in the metamodel. Thus, the 
model transformation problem can be converted into a graph 
transformation problem. We can then use the mathematical 
concepts of graph transformations to formally specify the 
intended behaviour of model transformers.   
Graph grammars and graph transformations (GGT) have been 
recognized [11][12][13][14] as a powerful technique for 
specifying complex transformations that can be used in various 
situations in a software development process. Many tasks in 
software development can be formulated using this approach, 
including weaving of aspect-oriented programs [23], application 
of design patterns [13], and the transformation of platform-
independent models into platform specific models [4].  
A variety of graph transformation techniques are described in 
[5][6][7][8][9][10][17]. These techniques include node 
replacement grammars, hyperedge replacement grammars, 
algebraic approaches, and programmed graph replacement 
systems. Most of these techniques have been developed for 
specifying and recognizing graph languages, and performing 
transformations within the same “domain” (i.e., graph), while we 
need a graph transformer that works on two different kinds of 
graphs.  Moreover, these transformation techniques rarely use 
UML class diagrams for specifying their graph schema. In 
summary, the following features are required in the 
transformation language: 
� The language should use UML for the specification of the 

data model (abstract syntax) and integrity constraints.  

� There should be support for transformations that create an 
entirely different graph based upon a given graph. The two 
graphs may have different data model and integrity 
constraints.  

� The new approach should be expressive enough to specify 
model transformers that convert models of high-level 
graphical languages to low-level implementations, with no or 
minimal textual coding.  

� The new language should have efficient implementations of 
its programming constructs, i.e., the implementation should 
have efficiency comparable to equivalent hand-written code. 

� The new language should be “user friendly” and increase 
programmer productivity. 

2.5 Language for Graph Rewriting 
and Transformations  

The transformation language we have developed to address 
the needs discussed above is called the Graph Rewriting and 
Transformation (GReAT) language. This language can be divided 
into 3 distinct parts: (1) Pattern specification language, (2) Graph 
transformation language, and (3) Control flow language, which 
we discuss below. 

2.5.1 The Pattern 
Specification Language 

The heart of a graph transformation language is the pattern 
specification language and the related pattern matching 
algorithms. The pattern specifications found in graph grammars 
and transformation languages [5][6][7][8][15][16][17][18] are not 
sufficient for our purposes, as they do not follow UML concepts. 
This paper briefly introduces an expressive – yet easy to use – 
pattern specification language that is tightly coupled to the UML 
class diagrams. String matching will be used to illustrate 
representative analogies. 
Patterns can represent more than just the exact sub-graph. 
Consider an example from the domain of textual languages where 
a string to match starts with an ‘s’ and is followed by 5 ‘o’s. To 
specify such a pattern string we could enumerate the ‘o’s and 
write “sooooo”. Since this is not a scalable solution, however, a 
representation format is required to specify such strings in a 
concise and scalable manner. One can use regular expressions: for 
strings we could write it as “s5o” and use the semantic meaning 
that o needs to be enumerated 5 times. The same argument holds 
for graphs, and a similar technique can be used. Cardinality can be 
specified for each pattern vertex with the semantic meaning that a 
pattern vertex must match n host graph vertices, where n is its 
cardinality. However, it is not obvious how the notion of 
cardinality truly extends to graphs. In text, we have the advantage 
of a strict ordering from left to right, whereas graphs do not 
possess this advantage.  
In Figure 2 (a) we see a pattern having three vertices. One 
possible meaning could be tree semantics, i.e., if a pattern vertex 
pv1 with cardinality c1 is adjacent to pattern vertex pv2 with 
cardinality c2, then the semantics are that each vertex bound to v1 
will be adjacent to c2 vertices bound to v2.  These semantics 
when applied to the pattern gives Figure 2 (b). The tree semantic 
is weak in the sense that it will yield different results for different 
traversals of the pattern vertices and edges and hence it is not 
suitable for our purpose. 



 
(a) Pattern with three vertices 

   
(b) Tree semantics  (c) Set semantics 

Figure 2 Pattern with different semantic meanings 
Another possible unambiguous meaning could be set semantics: 
consider each pattern vertex pv to match a set of host vertices 
equaling the cardinality of the vertex. Then an edge between two 
pattern vertices pv1 & pv2 implies that in a match each v1, v2 
pair should be adjacent, where v1 is bound to pv1 and v2 is bound 
to pv2. This semantic when applied to the pattern in Figure 2 (a) 
gives the graph in Figure 2 (c). The set semantics will always 
return a match of the structure shown in Figure 2 (c), and it does 
not depend upon factors such as the starting point of the search 
and how the search is conducted. 
Due to these reasons, we use set semantics in GReAT and 
developed pattern-matching algorithms for both single cardinality 
and fixed cardinality. 

2.5.2 Graph Rewriting 
Transformation Language 

Pattern specification is an important part of any graph 
transformation language. Other important concerns are the 
specification of static structural constraint in graphs and to ensure 
that these are maintained through the transformations [6]. These 
problems have been addressed in a number of other approaches, 
such as [15][16].   
In model-interpreters, structural integrity is a primary concern 
because model-to-model transformations usually transform 
models from one domain to models that conform to another 
domain, which makes the problem two-fold. The first problem is 
to specify and maintain two different models conforming to two 
different metamodel (in MIC metamodels are used to specify 
structural integrity constraints). An even more important problem 
to address involves maintaining references between the two 
models. For example, it is important to maintain some sort of 
reference, link, and other intermediate values, which are required 
to correlate graph objects across the two domains.  
Our solution to these problems is to use the source and destination 
metamodels to explicitly specify the temporary vertices and 
edges. This approach creates a unified metamodel along with the 
temporary objects. The advantage of this approach is that we can 
then treat the source model, destination model, and temporary 
objects as a single graph. Standard graph grammar and 
transformation techniques can then be used to specify the 
transformation. The rewriting language uses the pattern language 

described above. Each pattern object’s type conforms to the 
unified metamodel and only transformations that do not violate 
the metamodel are allowed. At the end of the transformation, the 
temporary objects are removed and the two models conform 
exactly to their respective metamodels. Our transformation 
language is inspired by many previous efforts, such as 
[7][8][9][17][18].  
The graph transformation language of GReAT defines a 
production (also referred to as rule) as the basic transformation 
entity. A production contains a pattern graph that consists of 
pattern vertices and edges. These pattern objects conform to a 
type from the metamodel. Each pattern has another attribute that 
specifies the role it plays in the transformation. A pattern can play 
the following three different roles: 
1. Bind – used to match objects in the graph. 
2. Delete – also used to match objects in the graph, but after 

these objects are matched they are deleted from the graph. 
3. New – used to create objects after the pattern is matched 
The execution of a rule involves matching every pattern object 
marked either bind or delete. If the pattern matcher is successful 
in finding matches for the pattern, then for each match the pattern 
objects marked delete are deleted from the match and objects 
marked new are created.  
Sometimes the patterns by themselves are not enough to specify 
the exact graph parts to match and we need other, non-structural 
constraints on the pattern. An example for such a constraint is: 
“the value of an attribute of a particular vertex should be within 
some limits.” These constraints or pre-conditions are expressed in 
a guard and are described using Object Constraint Language 
(OCL) [19]. There is also a need to provide values to attributes of 
newly created objects and/or modify attributes of existing object. 
Attribute Mapping is another ingredient of the production: it 
describes how the attributes of the “new” objects should be 
computed from the attributes of the objects participating in the 
match. Attribute mapping is applied to each match after the 
structural changes are completed.  
A production is thus a 4-tuple, containing a pattern graph, 
mapping function that maps pattern objects to actions, a guard 
expression (in OCL), and an attribute mapping.   

2.5.3 Controlled Graph 
Rewriting and 
Transformation 

To increase efficiency and effectiveness of GReAT, it is essential 
to have efficient implementations for the productions. Since the 
pattern matcher is the most time consuming operation, it needs to 
be as optimized. One solution adopted by us is to reduce the 
search space (and thus time) by starting the pattern-matching 
algorithm with an initial context. An initial context is a partial 
binding of pattern objects to input (host) graph objects. This 
approach significantly reduces the time complexity of the search 
by limiting the search space.  In order to provide initial bindings, 
the production definition is expanded to include the concept of 
ports. Ports are elements of a production that are visible at a 
higher-level and can then be used to supply initial bindings. Ports 
are also used to retrieve output objects from the production.  
The next concern is the application order of the productions. In 
graph grammars there is no ordering imposed on productions. If 
the pattern to be matched exists in the host graph and if the pre-



condition in met then the production will the executed. Although 
this technique is useful for generating and matching languages, 
they are unsuitable for model-to-model transformations that are 
algorithmic in nature and require strict control over the execution 
sequence. Moreover, a well-defined execution sequence can be 
used to make the implementation more efficient. 

There is a need for a high-level control flow language that 
can control the application of the productions and allow the user 
to manage the complexity of the transformation. The control flow 
language of GReAT supports the following features:  
� Sequencing – rules (in GReAT the productions are called 

rules) can be sequenced to fire one after another. This is 
achieved by attaching the output port of the first rule to the 
input port of the next rule. 

� Non-Determinism – when required parallel execution of a set 
of rules can be specified. The order of execution of these 
rules is non-deterministic. This construct is achieved in 
GReAT by attaching the output of one rule to the input of 
more than one rule.  

� Hierarchy – High-level rules have been introduced in the 
language. These are used for encapsulation and data 
abstraction. Compound rules can contain other compound 
rules or primitive transformation rules. 

� Recursion – A high level rule can “call” itself.  
� Test/Case – A conditional branching construct that can be 

use to choose between different control flow paths.  

3. THE LANGUAGE FRAMEWORK 

3.1 Infrastructure: The Generic 
Modeling Environment (GME) 

As noted above, the same GME is used to support domain 
modeling. However, this GME instance is configured by the 
internal metamodel to support and enforce the specific features of 
the domain-specific modeling language. A domain-specific 
instance of GME provides a tool with domain-oriented features 
and symbols for model editing and manipulation. Its capabilities 
have been discussed in detail elsewhere [2]. 

3.2 Run-time support for model 
transformations 

 
Figure 3 The GReAT Interpreter 

The model transformation language described above is supported 
through a Graph Rewiring and Transformation Execution Engine 
(GReAT-E). Figure 3 shows its architecture. The engine works as 
an interpreter: it takes the model transformation “program” in the 
form of a data structure, and it “executes” it on an input graph to 
produce an output graph. The engine uses generic API-s (using a 
model-driven reflection package called UDM [21] that we have 
developed), and is thus suitable to show all types of model 
transformations. Work is currently underway to translate the 
model transformation specifications into code that can be 
executed directly. 

4. DEVELOPING A SIMPLE LANGUAGE 
 This section develops an example language to demonstrate the 
capabilities of GME as an end-to-end framework. We will call the 
language being developed “MOLES,” which stands for Modeling 
Language for Embedded Systems. The embedded system 
community develops a large class of applications that are event 
driven and use the data flow semantics. To develop these 
applications, developers must first develop the basic data flow 
components and then connect them together in different 
configurations to achieve the desired application. The 
requirements of the MOLES language therefore involves the 
following capabilities: 
� Design of component interface and behaviour 
� Creating data flow graphs using the components 
� Facility to have timer interrupts, queues and delay 

elements. 

4.1 Language Specification 
The first step in the development of a new language in the 

GME is to specify the syntax and the visualization using the GME 
metamodeling environment. The metamodel for MOLES is 
divided into two sheets; the first describes the internals of a 
component while the second deals with developing packages or 
applications based on the components. 

 

 
Figure 4 Definition of a component 



Figure 4 shows the metamodel for components. In the metamodel, 
we can see that a Component can contain Ports, Behaviors, and 
Attributes. Based upon whether they receive or send data the 
Ports are specialized to be either Input or Output. Behavior can be 
specified in two different ways: the first is to specify a piece of 
code that implements the behavior, whereas the second is to 
describe the behavior using a simple state machine. Attributes 
capture data storage elements of the Component.  
Figure 5 shows how these components can be put together in a 
package. A package can contain components and component 
references; they also contain ports and intermediate delay 
elements. An important thing to note is that the Component and 
Port are the same as in the previous sheet. Package and 
Component have the same kind of ports and hence the connection 
between ConnectionBase elements defines all the possible 
dataflow connections. Package can contain other Packages; this 
can be used for hierarchical decomposition of the dataflow. Ports 
can not only connect to other Ports but also connect to Delays and 
Timers. A Delay element in a dataflow path introduces a delay of 
one time step. This means that the data passing through a delay 
will be held for one time step at the delay before to moves 
forward. Timers generate data at periodic intervals. 

 
Figure 5 Package definition and dataflow 

After defining the syntax, we can define static semantics using an 
OCL constraint. For example, a timer component cannot be the 
destination of a data flow component. Such a constraint can be 
specified in OCL and attached to the timer (as shown in  Figure 
6). These constraints are checked by GME when the user is 
creating domain models. This guarantees that constraints will not 
be violated by the user.  

 
Figure 6 OCL constraint 

4.2 Transformation Specification 
After the abstract syntax, concrete syntax, and static semantics 
have been defined, the next step is to define the semantics of the 
language using GReAT. To define a transformation, we first 
identify a mapping from the language to the appropriate model of 
computation. We have chosen synchronous data flow [25]. In 
synchronous data flow the number of tokens consumed and 
produced on each port of a component is fixed and predefined. 
For the sake of brevity we have fixed the token size on each Port 
to be one. Synchronous data flow is a simple and efficient model 
of computation, and an algorithm exists that can compute the 
static schedule for node invocations from a synchronous dataflow 
network. If there is a cyclic dependency in the data flow the 
algorithm can also report such problem. A cycle in MOLES that 
contains a delay doesn’t represent a cyclic data dependency 
assuming the delay component is initialized with a token. A delay 
with a dataflow connection to an input port of a component 
signifies that input port has an initial token on the port and thus 
can run once without requiring a token on that port.  Since every 
dataflow path will have one token each after one cycle, the 
component will never be short of tokens on the delay edge. Thus 
the delay edge can be ignored for solving the scheduling problem. 
In order to find a static schedule for the dataflow components a 
topological sort needs to be performed. The topological sort will 
produce a scheduling order and if a cycle exists it will fail and 
report that a cycle was found. The target model of computation 
can be considered a line graph that represents one periodic 
admissible sequential schedule (PASS) [25].  
The transformation rules are shown in Figure 7, at the top level, 
we have a rule that encapsulates the topological sort and the one 
after it checks to see if the sort was successful or if it detected a 
cycle. The topological sort itself is a series of simple 
transformation rules. The component with no incoming dataflow 
connections is chosen; this component is added to the PASS and 
deleted from the input (deletion can be performed on a local copy 
of the input model). This process is continued until we have 
exhausted all the components in the input or we find a cycle. 

 
Figure 7 Snapshot of the rules for performing the topological 

sort 
The transformation specification can then be executed using 
GReAT-E on any MOLES model to generate a PASS.  



4.3 Using the language 

 
Figure 8 Example models in the MOLES Language 

We have seen in previous sections that GME can be used for 
different models. It can be used to specify the syntax and 
semantics of the language, as well as used to create sentences in 
the specified language. In this case the user will use GME in the 
MOLES mode, where MOLES is the language we just developed. 
The user can create data flow graphs in the language and generate 
a static schedule or find out if there are cycles in the graph. 
Figure 8 shows an example dataflow graph developed in the 
MOLES language using GME. GME provides editing, 
visualization, syntax and static semantic checking, and safety of 
the language. For example, the constraint specified in the 
metamodel of MOLES about timer being only source is enforced 
by GME in Figure 9. 

 
Figure 9 An OCL constraint violation message box 

5. PRELIMINARY RESULTS  
The goal of using a domain-specific development process is to 
increase the domain programmer’s productivity. The goal of using 
a metamodel driven development process to create domain-
specific development tools is to increase the productivity of the 
tool developer. Table 1 shows some preliminary results by 
comparing the size of and time taken to develop GreAT 

specifications for model transformation problems to estimated 
equivalent lines of procedural code. The primitive rules are rules 
that contain graph transformation specification while compound 
rules are higher-level control flow constructs. Some preliminary 
tests have shown that each primitive rule corresponds to 
approximately 30 lines of hand code. The corresponding hand 
code is fairly complex and not very natural to write. This makes 
us believe that the language can actually provide increase in 
productivity. However, better tests need to be designed and 
performed using more people to provide more precise results.  

Table 1: Comparison of GReAT specification VS hand code 

GReAT Hand 
code 

Problem Primitive/Com
pound Rules  

Time    
(man-hours) 

Est. 
LOC 

Mark and sweep 
algorithm on Finite 
State Machine 
(FSM) 

7/2 ~2 100 

Hierarchical Data 
Flow (HDF) to Flat 
Data Flow (FDF) 

11/3 ~3 200 

Hierarchical 
Concurrent State 
Machine (HCSM) 
to Finite State 
Machine (FSM) 

21/5 ~8 500 

Matlab Simulink/ 
Stateflow to 
Hybrid System  

66/43 ~20 3000 

6. CONCLUSIONS AND FUTURE WORK 
This paper has identified three reasons for the historical 
limitations of domain-specific languages (DSLs) and proposed a 
framework-based solution to counter it. The dominant reasons for 
the limitations of previous generations of DSLs are development 
cost and lack of tool support. Using a framework approach to 
domain driven development, we can push the development cost to 
a one-time investment in a framework and allow independent 
vendors to provide greater support for the framework. Such a 
framework needs to satisfy criteria (such as low cost of 
development of end-to-end domain languages and good tool 
support) at both the metamodel and language level. The 
framework presented in the paper that comprises of Generic 
Modeling Environment (GME), the metamodeling language, 
GReAT and GReAT-E has the required capabilities.  
In the framework, the abstract and concrete syntax of a language 
is captured using a UML-based approach called metamodeling. 
Likewise, static semantics are captured with the help of OCL 
expressions and the semantics of the language are captured with 
the help of a transformation specification in GReAT. The syntax, 
semantics, and transformations are converted to an executable 
form using the metamodeling interpreter, OCL expression 
checker, and the GReAT interpreter. At the language level, GME 
provides the user with editing, visualization, and consistency 
checks and GReAT is used to convert models to executable 
models of an appropriate model of computation.  
This paper illustrated the capabilities of the GME based 
framework using a simplified example. We have developed and 



tested a variety of small-to-medium-sized languages using this 
approach. Preliminary results demonstrate a speedup in the 
development time. 
There are a number of open questions that we plan to address in 
our ongoing research. Although we have addressed two problems 
plaguing the domain driven development community, we still 
must address the issue concerning language robustness. This issue 
can be approached if we can reason about the languages built in 
the framework and guarantee soundness properties. We envision 
that we can construct languages that are correct by construction, 
thereby ensuring robustness and correctness. 
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