
An End-to-End Domain-Driven
Software Development Framework

Aditya Agrawal Gabor Karsai Akos Ledeczi
Institute for Software Integrated Systems,

Vanderbilt University
Nashville, TN, 37235

{aditya.agrawal, gabor.karsai, akos.ledeczi}@vanderbilt.edu

ABSTRACT
This paper presents a comprehensive, domain-driven framework
for software development. It consists of a meta-programmable
domain-specific modeling environment and a model
transformation generator toolset based on graph transformations.
The framework allows the creation of custom, domain-oriented
programming environments that support end-user
programmability. In addition, the framework could be considered
an early, end-to-end implementation of the concepts advocated by
the OMG’s Model Driven Architecture initiative.

General Terms
Design.

Keywords
Software Development, Model-Driven Architecture, Model-
Integrated Computing, Graph Transformations,

1. INTRODUCTION

1.1 Classifying Programming
Languages

Programming languages can be broadly divided into two
categories: (1) General-purpose languages (GPLs), such as
assembly, C, C++, Java and (2) Domain-specific languages
(DSLs), such as Matlab/Simulink [24]. Tools for general-purpose
languages are generally less expensive as a larger community
absorbs the cost, whereas DSLs are more expensive, though they
can increase productivity by bringing power programming to
domain users via familiar specialized notations and languages. It
is well know that GPLs have been more prevalent and successful
compared to DSLs, even though claims about DSLs’ capabilities
to increase productivity are widely accepted[26]. The primary
reasons behind the limited success of DSLs have historically been
the following:
• DSLs are more expensive to develop as the development cost

and time is borne by a small user community
• Since there is a small user base, tools and support for a DSL

is not at par with GPLs and
• The wide user base and longer life of GPLs helps make the

language implementations robust and reliable.
Another view of languages divides them into textual and graphical
categories. Graphical languages are usually impractical for
general-purpose programming but can be useful in a limited
context, in specific domains. One of the most successful recent
examples of graphical, domain-specific languages is
Matlab/Simulink [24] for simulation and control engineering. We

believe that a mixed textual and graphical notation can be helpful
in limited domains. For example, in the software development
domain, the UML [3] specification has both textual (Object
Constraint Language) and graphical (Use-Case Diagram, Class
Diagram, etc.) notations. In hardware development domain, tool
vendors [27] are now providing a graphical notation for the
structural description of hardware while the behavioural
description is still textual.
For DSLs to become more popular the three hurdles mentioned
above must be addressed. A key limiting factor is the cost of
development (in terms of time and effort), which we conjecture
can be reduced by creating a framework for developing DSLs.
This approach has several advantages. First, the framework can be
used to develop many languages, and thus the cost and time of
development is reduced and can be absorbed by a larger
community. Second, the framework can be the focal point for a
wider user base, thus making it profitable for industries to provide
support and tools. Within the framework there will be a
development cost for a given DSL, which should be minimized in
order for the framework to be effective.

1.2 Requirements of a Domain-
Driven Software Development
Framework

A useful framework for developing domain-specific graphical
languages should have a basic set of features. The features can be
divided into the following two categories:

• Meta framework tools that will be used to describe the
syntax, semantics and visualization of DSLs. The meta
framework must provide support for the specification of a
language, which is defined by its abstract syntax, concrete
syntax, static semantics, dynamic semantics, and
visualization. The syntax of a programming language
describes the structure of programs without consideration of
their meaning. The abstract syntax of the language captures
the abstract concepts and their relationships used in the
language. Issues such as type-compatibility are captured in
the static semantics of the language; hence, there should be
support for this. Dynamic semantics is defined as the relation
of the abstract syntax to a model of computation. In other
words, it can be considered as a mapping from one language
to another (provided the model of computation is captured in
a linguistic framework).

• Language framework tools that will be used for the creation,
visualization and verification of sentences in a domain-
specific language. The language framework should allow the

use of the language in an integrated environment, which
includes creating, editing, and deleting sentences of the
language; visualization of the sentences; etc. Apart from
editing of the sentences, the framework needs to enforce the
concrete syntax and static semantics of the language using
some mechanisms. The final requirement of the framework is
to be able to use transformation tools that map sentences of
the language into sentences of some model of computation
[20]. Examples of such models of computation are stack
machines, process networks, finite state machines, etc. Often,
although not always, sentences expressed in target the model
of computation are executable, hence they are called
“executable models”.

1.3 A Domain Driven Development
Framework

The Generic Modeling Environment (GME) [2], GME’s
metamodeling language, Graph Rewriting and Transformation
(GReAT): a model transformation specification language and the
GReAT Execution Engine (GReAT-E) combine to form such a
framework. Figure 1 shows how the different technologies fit in to
form an end-to-end framework for domain driven development.
The metamodeling language is used for the specification of syntax
static semantics and visualization of a DSL. The metamodel
interpreter can convert this specification (a metamodel) into an
internal representation. This internal representation is then used to
configure GME to behave like the specified domain-specific
language. GReAT is a graphical language used to specify the
semantics for the DSL. GReAT-E can execute GReAT
specifications on sentences of the DSL to produce executable
models.

Figure 1 A Domain Driven Development Framework

1.4 Paper Organization
This paper showcases a domain-driven software development
framework and demonstrates how it achieves the goals outlined in
Section 1.2. The remainder of this paper is organized as follows:
Section 2 describes the meta framework and how GME itself was
used to develop the meta framework; Section 3 describes the
language framework; Section 4 presents an example that
illustrates the specification of a simple language; Section 5
presents some preliminary results; Section 6 discusses the
conclusions and proposals for future research.

2. THE META FRAMEWORK

2.1 Infrastructure: The Generic
Modeling Environment (GME)

The GME framework consists of a meta-programmable tool that
can be customized to support various visual domain-specific
modeling languages. GME is a highly configurable visual
modeling tool that uses direct manipulation techniques for editing
complex models. The direct manipulation front-end is comprised
of the “editing engine” that operates on data structures
representing the domain-specific models. How these data
structures are organized, what objects and relationships are
allowed, what attributes objects have, etc. are captured in an
internal metamodel. The internal metamodel is a read-only, static
data structure that GME uses at run-time to connect the model
data structures to the visualization and direct manipulation tools.
It connects to a database backend to provide persistence services
and to validate the editing operations. This internal metamodel is
created from an external metamodel, which is built by the
designer of the domain-specific modeling language [2].
The external metamodel is just another model for the GME
framework. Hence, the GME has been configured to support a
specific modeling language, called the metamodeling language,
which allows the creation of metamodels, as described in Section
2.2. GME also provides a special model transformation tool that
transforms an external metamodel into an internal metamodel [2].

2.2 Abstract and Concrete Syntax
The external metamodel captures the abstract and concrete syntax
of the modeling language supported by the GME. The abstract
syntax is expressed in the form of UML [3] class diagrams that
introduce domain concepts (classes), their attributes, and their
relationships. These UML class diagrams describe all the possible
models that can be built via the modeling language, similar to
how Extended Backus-Naur Form (EBNF) describes all the
possible sentences in a textual language. In other words, we use
UML class diagrams to represent generative grammars for
models.
The concrete syntax is expressed by coupling the domain
modeling entities (classes and associations) to specific
visualization features available in GME. This coupling happens in
two ways:

• Using specific stereotypes for classes. GME defines a set of
stereotypes, and when these are assigned to classes in the
metamodel they determine how the visualization should
happen. For example, <<Model>>-s are visualized as
containers shown as icons with connection ports,
<<Atom>>-s as (user-defined) icons, <<Connection>>-s as
straight lines, etc.

• Using specific idioms in the metamodel. GME’s
metamodeling tool uses a number of predefined idioms:
patterns over classes that carry special meaning. For
example, a <<Reference>> class associated with an
<<Atom>> class via an association labeled as “refersTo”
means that (in a context) one can use reference objects that
point to atomic objects of the selected kind.

The GME has a number of visualization techniques (e.g.,
container objects), and there is a set of well-defined stereotypes
that allow relating the domain entities to GME visualization

concepts. Some visualization techniques require multiple,
cooperating domain classes, and in this case specific idioms are
used in the GME to make the connection. For details, please see
the GME documentation [2].

2.3 Static Semantics
The GME metamodels discussed above only allow

description of the abstract syntax, i.e., they do not support
semantic constraints on the models. These constraints define the
well-formedness rules for the models, i.e., the static semantics.
We have used OCL [19] to express these rules in the GME
metamodels. One can couple OCL expressions to model elements,
and the GME editing engine evaluates these expressions at run-
time. If constraint violations are found, the user is warned about
the specific rule that has been violated. While a user is editing the
models it could be annoying to receive these notifications, so
there is fine-grain control over when and how the constraints are
evaluated.

2.4 Semantics via Transformation
Specification

Most textual languages have either (1) a direct one-to-one
mapping from the source to the target model of computation or (2)
have no formal specification for the transformation, rather this
transformation specification is buried in the code generator. The
process of writing generators is time consuming and costly and
therefore a better approach is necessary to support a domain-
driven software development framework. If a higher-level
specification for the model transformations is available, it can
presumably be used to generate the code for the model translator.
From a mathematical viewpoint, one can recognize that domain-
specific models are graphs, to be more precise: vertex and edge
labeled multi-graphs, where the labels are denoting the
corresponding entities (i.e., types) in the metamodel. Thus, the
model transformation problem can be converted into a graph
transformation problem. We can then use the mathematical
concepts of graph transformations to formally specify the
intended behaviour of model transformers.
Graph grammars and graph transformations (GGT) have been
recognized [11][12][13][14] as a powerful technique for
specifying complex transformations that can be used in various
situations in a software development process. Many tasks in
software development can be formulated using this approach,
including weaving of aspect-oriented programs [23], application
of design patterns [13], and the transformation of platform-
independent models into platform specific models [4].
A variety of graph transformation techniques are described in
[5][6][7][8][9][10][17]. These techniques include node
replacement grammars, hyperedge replacement grammars,
algebraic approaches, and programmed graph replacement
systems. Most of these techniques have been developed for
specifying and recognizing graph languages, and performing
transformations within the same “domain” (i.e., graph), while we
need a graph transformer that works on two different kinds of
graphs. Moreover, these transformation techniques rarely use
UML class diagrams for specifying their graph schema. In
summary, the following features are required in the
transformation language:
� The language should use UML for the specification of the

data model (abstract syntax) and integrity constraints.

� There should be support for transformations that create an
entirely different graph based upon a given graph. The two
graphs may have different data model and integrity
constraints.

� The new approach should be expressive enough to specify
model transformers that convert models of high-level
graphical languages to low-level implementations, with no or
minimal textual coding.

� The new language should have efficient implementations of
its programming constructs, i.e., the implementation should
have efficiency comparable to equivalent hand-written code.

� The new language should be “user friendly” and increase
programmer productivity.

2.5 Language for Graph Rewriting
and Transformations

The transformation language we have developed to address
the needs discussed above is called the Graph Rewriting and
Transformation (GReAT) language. This language can be divided
into 3 distinct parts: (1) Pattern specification language, (2) Graph
transformation language, and (3) Control flow language, which
we discuss below.

2.5.1 The Pattern
Specification Language

The heart of a graph transformation language is the pattern
specification language and the related pattern matching
algorithms. The pattern specifications found in graph grammars
and transformation languages [5][6][7][8][15][16][17][18] are not
sufficient for our purposes, as they do not follow UML concepts.
This paper briefly introduces an expressive – yet easy to use –
pattern specification language that is tightly coupled to the UML
class diagrams. String matching will be used to illustrate
representative analogies.
Patterns can represent more than just the exact sub-graph.
Consider an example from the domain of textual languages where
a string to match starts with an ‘s’ and is followed by 5 ‘o’s. To
specify such a pattern string we could enumerate the ‘o’s and
write “sooooo”. Since this is not a scalable solution, however, a
representation format is required to specify such strings in a
concise and scalable manner. One can use regular expressions: for
strings we could write it as “s5o” and use the semantic meaning
that o needs to be enumerated 5 times. The same argument holds
for graphs, and a similar technique can be used. Cardinality can be
specified for each pattern vertex with the semantic meaning that a
pattern vertex must match n host graph vertices, where n is its
cardinality. However, it is not obvious how the notion of
cardinality truly extends to graphs. In text, we have the advantage
of a strict ordering from left to right, whereas graphs do not
possess this advantage.
In Figure 2 (a) we see a pattern having three vertices. One
possible meaning could be tree semantics, i.e., if a pattern vertex
pv1 with cardinality c1 is adjacent to pattern vertex pv2 with
cardinality c2, then the semantics are that each vertex bound to v1
will be adjacent to c2 vertices bound to v2. These semantics
when applied to the pattern gives Figure 2 (b). The tree semantic
is weak in the sense that it will yield different results for different
traversals of the pattern vertices and edges and hence it is not
suitable for our purpose.

(a) Pattern with three vertices

(b) Tree semantics (c) Set semantics

Figure 2 Pattern with different semantic meanings
Another possible unambiguous meaning could be set semantics:
consider each pattern vertex pv to match a set of host vertices
equaling the cardinality of the vertex. Then an edge between two
pattern vertices pv1 & pv2 implies that in a match each v1, v2
pair should be adjacent, where v1 is bound to pv1 and v2 is bound
to pv2. This semantic when applied to the pattern in Figure 2 (a)
gives the graph in Figure 2 (c). The set semantics will always
return a match of the structure shown in Figure 2 (c), and it does
not depend upon factors such as the starting point of the search
and how the search is conducted.
Due to these reasons, we use set semantics in GReAT and
developed pattern-matching algorithms for both single cardinality
and fixed cardinality.

2.5.2 Graph Rewriting
Transformation Language

Pattern specification is an important part of any graph
transformation language. Other important concerns are the
specification of static structural constraint in graphs and to ensure
that these are maintained through the transformations [6]. These
problems have been addressed in a number of other approaches,
such as [15][16].
In model-interpreters, structural integrity is a primary concern
because model-to-model transformations usually transform
models from one domain to models that conform to another
domain, which makes the problem two-fold. The first problem is
to specify and maintain two different models conforming to two
different metamodel (in MIC metamodels are used to specify
structural integrity constraints). An even more important problem
to address involves maintaining references between the two
models. For example, it is important to maintain some sort of
reference, link, and other intermediate values, which are required
to correlate graph objects across the two domains.
Our solution to these problems is to use the source and destination
metamodels to explicitly specify the temporary vertices and
edges. This approach creates a unified metamodel along with the
temporary objects. The advantage of this approach is that we can
then treat the source model, destination model, and temporary
objects as a single graph. Standard graph grammar and
transformation techniques can then be used to specify the
transformation. The rewriting language uses the pattern language

described above. Each pattern object’s type conforms to the
unified metamodel and only transformations that do not violate
the metamodel are allowed. At the end of the transformation, the
temporary objects are removed and the two models conform
exactly to their respective metamodels. Our transformation
language is inspired by many previous efforts, such as
[7][8][9][17][18].
The graph transformation language of GReAT defines a
production (also referred to as rule) as the basic transformation
entity. A production contains a pattern graph that consists of
pattern vertices and edges. These pattern objects conform to a
type from the metamodel. Each pattern has another attribute that
specifies the role it plays in the transformation. A pattern can play
the following three different roles:
1. Bind – used to match objects in the graph.
2. Delete – also used to match objects in the graph, but after

these objects are matched they are deleted from the graph.
3. New – used to create objects after the pattern is matched
The execution of a rule involves matching every pattern object
marked either bind or delete. If the pattern matcher is successful
in finding matches for the pattern, then for each match the pattern
objects marked delete are deleted from the match and objects
marked new are created.
Sometimes the patterns by themselves are not enough to specify
the exact graph parts to match and we need other, non-structural
constraints on the pattern. An example for such a constraint is:
“the value of an attribute of a particular vertex should be within
some limits.” These constraints or pre-conditions are expressed in
a guard and are described using Object Constraint Language
(OCL) [19]. There is also a need to provide values to attributes of
newly created objects and/or modify attributes of existing object.
Attribute Mapping is another ingredient of the production: it
describes how the attributes of the “new” objects should be
computed from the attributes of the objects participating in the
match. Attribute mapping is applied to each match after the
structural changes are completed.
A production is thus a 4-tuple, containing a pattern graph,
mapping function that maps pattern objects to actions, a guard
expression (in OCL), and an attribute mapping.

2.5.3 Controlled Graph
Rewriting and
Transformation

To increase efficiency and effectiveness of GReAT, it is essential
to have efficient implementations for the productions. Since the
pattern matcher is the most time consuming operation, it needs to
be as optimized. One solution adopted by us is to reduce the
search space (and thus time) by starting the pattern-matching
algorithm with an initial context. An initial context is a partial
binding of pattern objects to input (host) graph objects. This
approach significantly reduces the time complexity of the search
by limiting the search space. In order to provide initial bindings,
the production definition is expanded to include the concept of
ports. Ports are elements of a production that are visible at a
higher-level and can then be used to supply initial bindings. Ports
are also used to retrieve output objects from the production.
The next concern is the application order of the productions. In
graph grammars there is no ordering imposed on productions. If
the pattern to be matched exists in the host graph and if the pre-

condition in met then the production will the executed. Although
this technique is useful for generating and matching languages,
they are unsuitable for model-to-model transformations that are
algorithmic in nature and require strict control over the execution
sequence. Moreover, a well-defined execution sequence can be
used to make the implementation more efficient.

There is a need for a high-level control flow language that
can control the application of the productions and allow the user
to manage the complexity of the transformation. The control flow
language of GReAT supports the following features:
� Sequencing – rules (in GReAT the productions are called

rules) can be sequenced to fire one after another. This is
achieved by attaching the output port of the first rule to the
input port of the next rule.

� Non-Determinism – when required parallel execution of a set
of rules can be specified. The order of execution of these
rules is non-deterministic. This construct is achieved in
GReAT by attaching the output of one rule to the input of
more than one rule.

� Hierarchy – High-level rules have been introduced in the
language. These are used for encapsulation and data
abstraction. Compound rules can contain other compound
rules or primitive transformation rules.

� Recursion – A high level rule can “call” itself.
� Test/Case – A conditional branching construct that can be

use to choose between different control flow paths.

3. THE LANGUAGE FRAMEWORK

3.1 Infrastructure: The Generic
Modeling Environment (GME)

As noted above, the same GME is used to support domain
modeling. However, this GME instance is configured by the
internal metamodel to support and enforce the specific features of
the domain-specific modeling language. A domain-specific
instance of GME provides a tool with domain-oriented features
and symbols for model editing and manipulation. Its capabilities
have been discussed in detail elsewhere [2].

3.2 Run-time support for model
transformations

Figure 3 The GReAT Interpreter

The model transformation language described above is supported
through a Graph Rewiring and Transformation Execution Engine
(GReAT-E). Figure 3 shows its architecture. The engine works as
an interpreter: it takes the model transformation “program” in the
form of a data structure, and it “executes” it on an input graph to
produce an output graph. The engine uses generic API-s (using a
model-driven reflection package called UDM [21] that we have
developed), and is thus suitable to show all types of model
transformations. Work is currently underway to translate the
model transformation specifications into code that can be
executed directly.

4. DEVELOPING A SIMPLE LANGUAGE
 This section develops an example language to demonstrate the
capabilities of GME as an end-to-end framework. We will call the
language being developed “MOLES,” which stands for Modeling
Language for Embedded Systems. The embedded system
community develops a large class of applications that are event
driven and use the data flow semantics. To develop these
applications, developers must first develop the basic data flow
components and then connect them together in different
configurations to achieve the desired application. The
requirements of the MOLES language therefore involves the
following capabilities:
� Design of component interface and behaviour
� Creating data flow graphs using the components
� Facility to have timer interrupts, queues and delay

elements.

4.1 Language Specification
The first step in the development of a new language in the

GME is to specify the syntax and the visualization using the GME
metamodeling environment. The metamodel for MOLES is
divided into two sheets; the first describes the internals of a
component while the second deals with developing packages or
applications based on the components.

Figure 4 Definition of a component

Figure 4 shows the metamodel for components. In the metamodel,
we can see that a Component can contain Ports, Behaviors, and
Attributes. Based upon whether they receive or send data the
Ports are specialized to be either Input or Output. Behavior can be
specified in two different ways: the first is to specify a piece of
code that implements the behavior, whereas the second is to
describe the behavior using a simple state machine. Attributes
capture data storage elements of the Component.
Figure 5 shows how these components can be put together in a
package. A package can contain components and component
references; they also contain ports and intermediate delay
elements. An important thing to note is that the Component and
Port are the same as in the previous sheet. Package and
Component have the same kind of ports and hence the connection
between ConnectionBase elements defines all the possible
dataflow connections. Package can contain other Packages; this
can be used for hierarchical decomposition of the dataflow. Ports
can not only connect to other Ports but also connect to Delays and
Timers. A Delay element in a dataflow path introduces a delay of
one time step. This means that the data passing through a delay
will be held for one time step at the delay before to moves
forward. Timers generate data at periodic intervals.

Figure 5 Package definition and dataflow

After defining the syntax, we can define static semantics using an
OCL constraint. For example, a timer component cannot be the
destination of a data flow component. Such a constraint can be
specified in OCL and attached to the timer (as shown in Figure
6). These constraints are checked by GME when the user is
creating domain models. This guarantees that constraints will not
be violated by the user.

Figure 6 OCL constraint

4.2 Transformation Specification
After the abstract syntax, concrete syntax, and static semantics
have been defined, the next step is to define the semantics of the
language using GReAT. To define a transformation, we first
identify a mapping from the language to the appropriate model of
computation. We have chosen synchronous data flow [25]. In
synchronous data flow the number of tokens consumed and
produced on each port of a component is fixed and predefined.
For the sake of brevity we have fixed the token size on each Port
to be one. Synchronous data flow is a simple and efficient model
of computation, and an algorithm exists that can compute the
static schedule for node invocations from a synchronous dataflow
network. If there is a cyclic dependency in the data flow the
algorithm can also report such problem. A cycle in MOLES that
contains a delay doesn’t represent a cyclic data dependency
assuming the delay component is initialized with a token. A delay
with a dataflow connection to an input port of a component
signifies that input port has an initial token on the port and thus
can run once without requiring a token on that port. Since every
dataflow path will have one token each after one cycle, the
component will never be short of tokens on the delay edge. Thus
the delay edge can be ignored for solving the scheduling problem.
In order to find a static schedule for the dataflow components a
topological sort needs to be performed. The topological sort will
produce a scheduling order and if a cycle exists it will fail and
report that a cycle was found. The target model of computation
can be considered a line graph that represents one periodic
admissible sequential schedule (PASS) [25].
The transformation rules are shown in Figure 7, at the top level,
we have a rule that encapsulates the topological sort and the one
after it checks to see if the sort was successful or if it detected a
cycle. The topological sort itself is a series of simple
transformation rules. The component with no incoming dataflow
connections is chosen; this component is added to the PASS and
deleted from the input (deletion can be performed on a local copy
of the input model). This process is continued until we have
exhausted all the components in the input or we find a cycle.

Figure 7 Snapshot of the rules for performing the topological

sort
The transformation specification can then be executed using
GReAT-E on any MOLES model to generate a PASS.

4.3 Using the language

Figure 8 Example models in the MOLES Language

We have seen in previous sections that GME can be used for
different models. It can be used to specify the syntax and
semantics of the language, as well as used to create sentences in
the specified language. In this case the user will use GME in the
MOLES mode, where MOLES is the language we just developed.
The user can create data flow graphs in the language and generate
a static schedule or find out if there are cycles in the graph.
Figure 8 shows an example dataflow graph developed in the
MOLES language using GME. GME provides editing,
visualization, syntax and static semantic checking, and safety of
the language. For example, the constraint specified in the
metamodel of MOLES about timer being only source is enforced
by GME in Figure 9.

Figure 9 An OCL constraint violation message box

5. PRELIMINARY RESULTS
The goal of using a domain-specific development process is to
increase the domain programmer’s productivity. The goal of using
a metamodel driven development process to create domain-
specific development tools is to increase the productivity of the
tool developer. Table 1 shows some preliminary results by
comparing the size of and time taken to develop GreAT

specifications for model transformation problems to estimated
equivalent lines of procedural code. The primitive rules are rules
that contain graph transformation specification while compound
rules are higher-level control flow constructs. Some preliminary
tests have shown that each primitive rule corresponds to
approximately 30 lines of hand code. The corresponding hand
code is fairly complex and not very natural to write. This makes
us believe that the language can actually provide increase in
productivity. However, better tests need to be designed and
performed using more people to provide more precise results.

Table 1: Comparison of GReAT specification VS hand code

GReAT Hand
code

Problem Primitive/Com
pound Rules

Time
(man-hours)

Est.
LOC

Mark and sweep
algorithm on Finite
State Machine
(FSM)

7/2 ~2 100

Hierarchical Data
Flow (HDF) to Flat
Data Flow (FDF)

11/3 ~3 200

Hierarchical
Concurrent State
Machine (HCSM)
to Finite State
Machine (FSM)

21/5 ~8 500

Matlab Simulink/
Stateflow to
Hybrid System

66/43 ~20 3000

6. CONCLUSIONS AND FUTURE WORK
This paper has identified three reasons for the historical
limitations of domain-specific languages (DSLs) and proposed a
framework-based solution to counter it. The dominant reasons for
the limitations of previous generations of DSLs are development
cost and lack of tool support. Using a framework approach to
domain driven development, we can push the development cost to
a one-time investment in a framework and allow independent
vendors to provide greater support for the framework. Such a
framework needs to satisfy criteria (such as low cost of
development of end-to-end domain languages and good tool
support) at both the metamodel and language level. The
framework presented in the paper that comprises of Generic
Modeling Environment (GME), the metamodeling language,
GReAT and GReAT-E has the required capabilities.
In the framework, the abstract and concrete syntax of a language
is captured using a UML-based approach called metamodeling.
Likewise, static semantics are captured with the help of OCL
expressions and the semantics of the language are captured with
the help of a transformation specification in GReAT. The syntax,
semantics, and transformations are converted to an executable
form using the metamodeling interpreter, OCL expression
checker, and the GReAT interpreter. At the language level, GME
provides the user with editing, visualization, and consistency
checks and GReAT is used to convert models to executable
models of an appropriate model of computation.
This paper illustrated the capabilities of the GME based
framework using a simplified example. We have developed and

tested a variety of small-to-medium-sized languages using this
approach. Preliminary results demonstrate a speedup in the
development time.
There are a number of open questions that we plan to address in
our ongoing research. Although we have addressed two problems
plaguing the domain driven development community, we still
must address the issue concerning language robustness. This issue
can be approached if we can reason about the languages built in
the framework and guarantee soundness properties. We envision
that we can construct languages that are correct by construction,
thereby ensuring robustness and correctness.

7. Acknowledgements
The DARPA/IXO MOBIES program and NSF ITR on
"Foundations of Hybrid and Embedded Software Systems"
programs have supported, in part, the activities described in this
paper. Tihamer Levendovszky and Jonathan Sprinkle have
contributed to the discussions and work that lead to GreAT, and
Feng Shi has written the first implementation of GreAT-E.

8. References
[1] J. Sztipanovits, and G. Karsai, “Model-Integrated

Computing”, Computer, Apr. 1997, pp. 110-112
[2] A. Ledeczi, et al., “Composing Domain-Specific Design

Environments”, Computer, Nov. 2001, pp. 44-51.
[3] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified

Modeling Language Reference Manual”, Addison-Wesley,
1998.

[4] Agrawal A., Levendovszky T., Sprinkle J., Shi F., Karsai G.,
“Generative Programming via Graph Transformations in the
Model-Driven Architecture”, Workshop on Generative
Techniques in the Context of Model Driven Architecture,
OOPSLA , Nov. 5, 2002, Seattle, WA.

[5] Grzegorz Rozenberg, “Handbook of Graph Grammars and
Computing by Graph Transformation”, World Scientific
Publishing Co. Pte. Ltd., 1997.

[6] Blostein D., Schürr A., ”Computing with Graphs and Graph
Rewriting”, Technical Report AIB 97-8, Fachgruppe
Informatik, RWTH Aachen, Germany.

[7] H. Gottler, “Attributed graph grammars for graphics”, H.
Ehrig, M. Nagl, and G. Rosenberg, editors, Graph Grammars
and their Application lo Computer Science, LNCS 153,
pages 130-142, Springer-Verlag, 1982.

[8] H. Göttler, "Diagram Editors = Graphs + Attributes + Graph
Grammars," International Journal of Man-Machine Studies,
Vol 37, No 4, Oct. 1992, pp. 481-502.

[9] J. Loyall and S. Kaplan, "Visual Concurrent Programming
with Delta-Grammars," Journal of Visual Languages and
Computing, Vol 3, 1992, pp. 107-133.

[10] D. Blostein, H. Fahmy, and A. Grbavec, “Practical Use of
Graph Rewriting”, 5th Workshop on Graph Grammars and
Their Application To Computer Science, Lecture Notes in
Computer Science, Heidelberg, 1995.

[11] U. Assmann, “How to Uniformly specify Program Analysis
and Transformation”, Proceedings of the 6 International

Conference on Compiler Construction (CC) '96, LNCS 1060,
Springer, 1996.

[12] A. Maggiolo-Schettini, A. Peron, “A Graph Rewriting
Framework for Statecharts Semantics”, Proc.\ 5th Int.\
Workshop on Graph Grammars and their Application to
Computer Science, 1996.

[13] A. Radermacher, ``Support for Design Patterns through
Graph Transformation Tools'', Applications of Graph
Transformation with Industrial Relevance, Monastery
Rolduc, Kerkrade, The Netherlands, Sep. 1999.

[14] A. Bredenfeld, R. Camposano, “Tool integration and
construction using generated graph-based design
representations”, Proceedings of the 32nd ACM/IEEE
conference on Design automation conference, p.94-99, June
12-16, 1995, San Francisco, CA.

[15] H. Fahmy, B. Blostein, “A Graph Grammar for Recognition
of Music Notation”, Machine Vision and Applications, Vol.
6, No. 2 (1993), 83-99.

[16] G. Engels, H. Ehrig, G. Rozenberg (eds.), “Special Issue on
Graph Transformation Systems”, Fundamenta Informaticae,
Vol. 26, No. 3/4 (1996), No. 1/2, IOS Press (1995).

[17] G.Schmidt, R. Berghammer (eds.), “Proc. Int. Workshop on
Graph-Theoritic Concepts in Computer Science”, (WG ’91),
LNCS 570, Springer Verlag (1991).

[18] H.Ehrig, M. Pfender, H. J. Schneider, “Graph-grammars: an
algebraic approach”, Proceedings IEEE Conference on
Automata and Switching Theory, pages 167-180 (1973).

[19] Object Management Group, Object Constraint Language
Specification, OMG Document formal/01-9-77. September
2001.

[20] Edward A. Lee, "Embedded Software," Advances in
Computers (M. Zelkowitz, editor), Vol. 56, Academic Press,
London, 2002.

[21] A. Bakay, “The UDM Framework,”
http://www.isis.vanderbilt.edu/Projects/mobies/.

[22] J. McCarthy “Recursive functions of symbolic expressions
and their computation by machine – I”, Communications of
the ACM, 3(1), 184-195, 1960.

[23] Uwe Assmann, “Aspect Weaving by Graph Rewriting”,
Generative Component-based Software Engineering (GCSE),
p. 24-36, Oct 1999.

[24] “Simulink Reference”, The Mathworks, Inc., July 2002.
[25] E. Lee, D. G. Messerschmitt, “Static Scheduling of

Synchronous Dataflow programs for Digital Signal
Processing”, IEEE Transactions on Computers 36(1): 24-35,
1987.

[26] J. Gray, G. Karsai, “An Examination of DSLs for Concisely
Representing Model Traversals and Transformations”, 36th
Annual Hawaii International Conference on System Sciences
(HICSS'03) - Track 9, p. 325a, January 06 - 09, 2003.

[27] ActiveHDL, http://www.aldec.com/ActiveHDL/, Aldec Inc.,
Henderson, NV 89074.

http://www.isis.vanderbilt.edu/Projects/mobies/
http://www.aldec.com/ActiveHDL/

	INTRODUCTION
	Classifying Programming Languages
	Requirements of a Domain-Driven Software Development Framework
	A Domain Driven Development Framework
	Paper Organization

	THE META FRAMEWORK
	Infrastructure: The Generic Modeling Environment (GME)
	Abstract and Concrete Syntax
	Static Semantics
	Semantics via Transformation Specification
	Language for Graph Rewriting and Transformations
	The Pattern Specification Language
	Graph Rewriting Transformation Language
	Controlled Graph Rewriting and Transformation

	THE LANGUAGE FRAMEWORK
	Infrastructure: The Generic Modeling Environment (GME)
	Run-time support for model transformations

	DEVELOPING A SIMPLE LANGUAGE
	Language Specification
	Transformation Specification
	Using the language

	PRELIMINARY RESULTS
	Problem
	Hand code

	CONCLUSIONS AND FUTURE WORK
	Acknowledgements
	References

