
Generative Programming via Graph Transformations in the Model-Driven 
Architecture  

 
Aditya Agrawal1, Tihamer Levendovszky, Jon Sprinkle, Feng Shi, and Gabor Karsai2 

Institute for Software-Integrated Systems 
Vanderbilt University 

Nashville, TN 37235, USA 

Abstract 
The Model-Driven Architecture of OMG envisions a development paradigm where designers create a Platform-
Independent Model (PIM) of the design, which is then refined into a Platform-Specific Model (PSM). This paper 
argues that this approach lends itself well to generative programming techniques, and that tools are needed to 
support this transformation. The paper shows how a technique based on graph transformations could be applied 
to automate the process, as well as make it user-extendible.  

Introduction 
The bold vision outlined in Model-Driven Architecture of OMG [1] places great emphasis on the use of modeling 
in the software development process. What has been started in the Unified Modeling Language, MDA is taking to 
its logical next step: the fully model-based development process. In this process models are created for 
capturing not only requirements, but also designs and implementations. The models are not merely artifacts of 
documentation, but “living documents” that are transformed into implementations. This view radically extends the 
current prevailing practice of using UML: UML is used for capturing some o the relevant aspects of the software, 
and some of the code (or its skeleton) is automatically generated, but the main bulk of the implementation is 
developed by hand. MDA, on the other hand, advocates the full application of models, in the entire life-cycle of 
the software product.  
 
Note that the crucial components in a model-based development process are (1) the tools used in creating the 
models, (2) the tools used in transforming the models into some executable form, and (3) the platform on which 
the executable form of the models is executed. For modeling tools, there is a wide variety available, ranging from 
(pure) UML modeling tools [2] to meta-programmable modeling environments [3]. Also, there are industry-
strength platforms for execution, ranging from middleware packages like CORBA of COM to sophisticated 
frameworks like .NET or EJB. However, the connection between modeling tools and execution platforms: the 
model transformation technology is an active area or research.  
 
We argue that current model transformation technology as manifested in industrial tools has not achieved its 
potential. Code generation is a special case of model transformation, where the product is executable code. 
However, code generators that produce skeleton code from UML models tend to be simplistic, while code 
generators for more focused domains (like Mathworks’ Real-Time Workshop [4]) fare better in their own domain. 
However, the practical use of generators is not as widespread as the potential impact they can make on software 
development. Arguably, the reason for this is economical: it is very expensive to create a good generator, and 
the average software developer may find It simpler to create code by hand than by developing a generator first 
and then using it systematically.  
 
Arguably, the model transformation approach will succeed only if it becomes easy to create model transformation 
tools that can produce high-quality products (including code).  There seems to be a need for the configurability of 
generators: as developers tend to be very skilled in domain-specific optimizations and —by applying these— can 
produce high quality code by hand. This need for configurability is also present in the context of the MDA. 
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MDA introduces the concept of the Platform Independent Model (PIM) and the Platform Specific Model (PSM). A 
PIM is an abstract model of the software design that omits any platform (i.e. implementation-specific details). A 
PSM, on the other hand, is another model that includes implementation-specific details. The PSM is obviously 
dependent on the PIM, and arguably one (the PSM) can be derived automatically from the other one (the PIM). 
However, this derivation process is highly domain- and application-specific: different domains might need 
different methods for implementing the derivation.  
 
This paper introduces a technique and a prototype tool for creating highly configurable model transformation 
tools that can be applied in the MDA context. The technique (and the tool) is based on a well-established 
theoretical framework based on graph transformations. The paper first briefly reviews graph transformation 
techniques and their applications, next it casts the model transformation problem in graph-oriented framework, 
then it discusses implementation techniques and provides an illustrative example, and concludes with a 
summary and an outline for further research needed.  

Backgrounds 
Graph grammars and graph rewriting [5][6] have been developed during the last 25+ years as techniques for 
formal modeling and tools for very high-level programming. Graph grammars are the natural extension of the 
generative grammars of Chomsky into the domain of graphs. The production rules for (string-) grammars could 
be generalized into production rules on graphs, which generatively enumerate all the sentences (i.e. the 
“graphs”) of a graph grammar. One can also define replacement rules on strings, which consist of a pattern and 
a replacement string. The replacement rule’s pattern is matched against an input string, and the matched sub-
string is replaced with the replacement string of the rule. Similarly, string rewriting can be generalized into graph 
rewriting as follows: a graph-rewriting rule consists of a pattern graph and a replacement graph. The application 
of a graph-rewriting rule is similar to the application of a string rewriting rule on strings, only the matching sub-
graph is replaced with another graph. For precise details see [5].  
 
Beyond the ground-laying work in the theory of graph grammars and rewriting, the approach has found several 
applications as well. Graph rewriting has been used in formalizing the semantics of StateCharts [10], as well as 
various concurrency models [5]. Several tools —including programming environments— have been developed 
[8][9] that illustrate the practical applicability of the graph rewriting approach.  These environments have 
demonstrated that (1) complex transformations can be expressed in the form of rewriting rules, and (2) graph 
rewriting rules can be compiled into efficient code. Programming via graph transformations has been applied in 
some domains [6] with reasonable success. In this paper, we argue that the graph transformation techniques 
offer not only a solid, well-defined foundation for model transformations, but they can be also applied in the 
practice.  
 
The need for techniques for model transformations has been recently recognized in the UML world. For 
examples, see [13], [14], [15], [18], and [19]. Model transformation is an essential tool for many applications, 
including translating abstract design models into concrete implementation models [18], for specification 
techniques [15], translation of UML into semantic domains [19], and even for the application of design patterns 
[20]. The new developments in UML (see [16], [17]) emphasize the use of meta-models, and provide solid 
foundation for the precise specification of semantics. Related efforts, like aspect-oriented programming [11] or 
intentional programming [12] could also benefit from using transformation technique based on graph rewriting.  A 
natural extension of these concepts is to use transformational techniques for translating models into semantic 
domains: a task for which graph transformation techniques are —arguably— well-suited.  

The Transformation Language 
In MDA, the transformation engine that transforms the domain specific PIM into implementation-specific PSM 
plays a central role. Furthermore, the PSM could also be translated into some executable form. We argue that 
the PIM to PSM transformation is domain specific, and to speed up the development cycle it is important to be 
able to develop these transformers in as less time as possible. Furthermore, in a product-line situation, the PSM 
and the PIM can be considered as “sentences” in some Domain-Specific Modeling Language (DSML). 
Therefore, the PIM to PSM transformation is a transformation between two DSMLs. In this paper we will focus on 
a generalized graph transformation system called the Graph Rewrite Engine (GRE) that is able to transform 
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models based upon a description of a transformation provided to it. The transformation itself is specified in a 
visual language. 
 
Before describing the transformation language let us first introduce some terminology that we will be using 
extensively in this paper. A Metamodel is the UML class diagram that describes a domain specific modeling 
language (DSML). The word Paradigm is interchangeable with DSML. Models are sentences of a particular 
modeling language. For example, UML instance diagrams can be called models. Input Graph or Input Model 
refers to the models to be transformed by the transformer. Output Graph or Output Model refers to the output of 
the transformer. Usually the metamodel describing the input graph differs from that of the output graph.  
 
The transformation language used by GRE consists of three major components (1) rules, (2) test-cases, and (3) 
sequencing for the rules. A rule is an atomic transformation operation, which describes a single transformation 
step. A rule consists of the basic parts: (1) input subgraph (also referred to as the pattern, or the LHS), (2) output 
subgraph (also called the RHS), (3) mapping of input graph elements to output graph elements and (4) actions. 
A rule specifies the actions to perform if the described input subgraph exists in the input graph. One of the 
features of this language is that it allows one to associate input vertices and edges (of the input graph) with 
output vertices and edges (of the output graph). Thus an input vertex can reference to a corresponding vertex in 
the output graph. In order to apply a rule we need to find the input subgraph in the input graph. However, it is 
well-known that subgraph isomorphism is NP-complete with order complexity O , where n)( 2

1
nn 1 are the number 

of vertices of the host graph and n2 is the number of vertices in the pattern graph. However, for a particular rule 
the pattern graph will not change and thus n2 can be considered a constant and thus making the search actually 
polynomial, though the exponent of the polynomial can vary from one rule to another. Since the time complexity 
is an exponent in terms of the pattern the matching algorithm is an expensive operation. However, to avoid this 
problem we allow users to specify initial bindings between some pattern vertices and input graph vertices. This 
helps to reduce the size of the host graph to conceder and the exponent is reduced to only the number of 
unbound vertices in the pattern. Another issue is the sequencing of rule and their execution. This is left to the 
user and he/she can specify the order of execution for these rules. The user can also specify different sequences 
based upon conditional test-case steps, which differ from the rules as they have only patterns but no actions. 
Furthermore, input and output graph objects can be passed from one rule to another one. This is necessary, as 
each rule needs to have at least one pattern vertex bound to the input graph for efficiency. Thus, by choosing 
which objects to pass along the user can choose the traversal of the graph. For instance, the user could choose 
depth first traversal or he/she could choose to traverse the spanning tree of the graph.  
 

 
(a) Input metamodel   (b) Output metamodel 

Figure 1: Input and Output metamodels 
Let us consider a simple example. The input and output metamodels are shown in Figure 1. Suppose, the 
transformation needs to create an object graph such that for each instance of ClassA in the input there will be a 
corresponding instance of ClassC in the output. Similarly for each ClassB instance a ClassD instance should be 
created. The starting point of the transformation is an instance of ClassA in the input model. The transformation 
will look like Figure 2. Init is the starting point of the transformation and it refers to the instance of ClassA. This is 
then passed to Rule1. Rule1 specifies a pattern of the input graph and specifies that the corresponding objects 
should be created in the output graph. There are edges form the input graph to the output graph; these are 
called the action edges. The CreateNew action specifies that a new object should be created in the output graph. 
The action edge will also establish a reference between the source and destination object. Thus, in this example 
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the particular instance of ClassA that was matched will have a reference to the newly created instance of 
ClassC. This is useful for subsequent operations: once the “image” of an input object is created, subsequent 
rules can access that. Another type of action edge is called Refer that asserts that the output object has been 
previously created and the same object is to be used.  
 

 
Figure 2: The transformation 

 

The run-time system architecture of GRE 
The Graph Rewrite Engine (GRE) is an experimental testbed developed for testing the transformation language 
to validate that the language is powerful enough to express most common transformation problems. The GRE 
takes the input graph, applies the transformations to it, and generates the output graph. Inputs to the GRE are 
(1) the UML class diagrams for the input and output graphs (also known as meta-models), (2) the transformation 
specification and (3) the input graph. The GRE traverses the rules according to the sequencing and produces an 
output graph based upon the actions of the rules. 
 
The architecture of the run time system is shown in Figure 3. The GRE accesses the input and output graph with 
the help of a generic UDM API (explained in detail in the next section) that allows the traversal of input and 
output graph. The rewrite rules are stored using yet another DSML, called Graph Rewrite (GR) (also explained in 
the next section) and can be accessed using the GR specific UDM API.  
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Figure 3: Run time architecture of the Graph Rewrite Engine 

The GRE is composed of two major components, (1) Sequencer, (2) Rule Executor (RE). The Rule Executor is 
further broken down into (1) Pattern Matcher (PM) and (2) Effector (or “Output generator”). The Sequencer 
determines the order of execution for the rules from the specification of the transformation, and for each rule it 
calls the RE. The RE internally calls the PM with the LHS of the rule. The matches found by the PM are used by 
the Effector to manipulate the output graph by performing the actions specified in the rules.  
 
The Sequencer traverses the transformation rules according to the sequencing information to determine the next 
rule to execute. It also has to evaluate test-cases (if they are used) to determine the next rule for execution. The 
high-level algorithm of the Sequencer is given in Figure 4.  
 
The Pattern Matcher finds the subgraph(s) in the input graph that are isomorphic to the pattern specification. 
When a pattern vertex/edge matches a vertex/edge in the input graph, the pattern vertex/edge will be bound to 
that vertex/edge. The matcher starts with an initial binding supplied to it by the Sequencer. Then it incrementally 
extends the bindings till there are no unbound edges/vertices in the pattern. At each step it first checks every 
unbound edge that has both its vertices bound and tries to bind these. After it succeeds to bind all such edges it 
then finds an edge with one vertex bound and then binds the edge and its unbound vertex. This process is 
repeated till all the vertices and edges are bound. The recursive algorithm for the matches is shown in Figure 5.  
 
Function Name : Sequencer 
 
Inputs   : 1. Set of Rules  
      2. Sequencing 
     3. Input graph 
Outputs  :  1. Output graph  
 
Output graph = function RuleTraversal (Set of Rules, Sequencing, Input graph)  
{ R = GetStartRule(Set of Rules) 
 Output graph = new empty Graph  /* Using the Output meta-model */ 
 while( RNEXT = GetNextRule(R))  { 
  PropagateBindings(R, RNEXT) /* Propagate existing bindings */ 
  R = RNEXT 
  RLHS = GetLHS(R) 
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  B = GetRuleBinding(R) 
  Set of Matches = PatternMatcher(RLHS, Input graph, B) /* Find match */ 
  Effector(R, Set of Matches, Output graph) /* Create/modify output as needed */ 
 } 
 return Output graph 
} 

Figure 4: High level Algorithm for Sequencer 
 
The output generator (which is called after the matches are found) creates and extends the output graph 
corresponding to each rule. The generator determines whether new objects should be created, or existing 
objects referenced, if there is a need to insert new associations, and how attributes of output objects and 
associations has to be calculated.  
 
Function Name : PatternMatcher 
 
Inputs  : 1. Pattern  
    2. Input graph 
     3. Partial Match  
Outputs  :  1. Set of Matches  
 
Set of Matches = function PatternMatcher (Pattern, Input graph, Partial Match)  
{ edge = get pattern edge with both vertices having valid bindings 
 while(edge exists) { 
  if(corresponding edge doesn’t exists between host graph vertices) then return the empty set 
   Bind pattern and host graph edge 
  Delete the pattern edge 
  edge = get pattern edge with both vertices having valid bindings 
 } 
 
 edge = get pattern edge with one vertex bound to host graph 
 If(edge exists) { 
  vertices = vertices of the host graph adjacent to the bound vertex 
  New Pattern = copy of Pattern 
  Delete edge from New Pattern 
  For(Each vertex of the set of vertices) { 
   New Match = partial Match + new binding(unbound pattern vertex, vertex) 
   Return Match = PatternMatcher(New pattern, Host graph, New match)  
   Add Return Matches to Set of Matches 
  } 
  Return Set of Matches  
 } 
 
 If(all patern edges are bound) {  
  Add Partial match to Set of Matches 
  Return Set of Matches 
 } 
 reutrn empty set 
} 

Figure 5: High-level Algorithm for Pattern Matching 

The Implementation Framework 
The core techniques applied in the development of the GRE prototype rely on the UDM package [21] and an 
intermediate form for the rewriting models. 
 
The Universal Data Model (UDM) is a meta-programmable package [21] that includes a development process 
and a set of supporting tools to generate C++ accessible interfaces from UML class diagrams of data structures. 
The generated APIs can use a variety of implementations, including memory-based, XML-based, and one based 

 - 6 - 



on te internal data structures of a visual modeling environment. All the implementations are accessed through a 
uniform, generic interface, thus the actual backend is transparent to the programmer. UDM provides a 
convenient programmatic access and can be used to build generators or translators for different data structures 
described in UML class diagrams. Note that the programmer has two different interfaces: one of them is a 
domain-specific one, which is generated based on the UML class diagrams, and another, generic one, which 
allows manipulating objects using symbolic names (class names, attribute names, association role names, etc.). 
The typical process of using the UDM is as follows: 
� A UML class diagram (metamodel) is created in either of the two supported modeling tools (Visio or 

GME). The UML class diagram is the converted into an XML representation with the help of a UDM tool. 
� The XML file is then used to generate a C++ API (pair of a source and a header file) specific to the 

particular class diagram, as well as an XML DTD (to be used in the XML backend). The generated C++ 
files are then compiled and linked with the generic UDM library and one of the implementation specific 
UDM libraries. The user can easily create, modify and traverse object graphs described by the class 
diagram. 

� Alternatively, the generated XML file can be directly used to create, modify and traverse object graphs 
corresponding to the particular metamodel using the generic UDM API 

 
The Tool chain in the UDM process is described below. Figure 6 shows a simplified UDM based development 
scenario. Note that UDM includes a reflection package, as the meta-models (obtained from the UML class 
diagram) are explicit in the form of initialized data structures.   
 

 
Figure 6: Tool chain for generation of UDM API 

We use UDM as the implementation environment for GRE. As shown in Figure 3, UDM is GRE’s interface to the 
input graph, output graph and rewrite rules.  For accessing the input and output graph the generic UDM API is 
used. The reason is that the input and output metamodels will vary from one transformation problem to another, 
thus the GRE cannot know about the input and output metamodels before hand. Hence, the GRE takes the input 
and output metamodels as input arguments and uses the generic API. On the other hand the Graph Rewrite 
(GR) metamodel is doesn’t change from one problem to another that thus the GR specific UDM API is compiled 
into the GR. This obviously entails a performance penalty, and we plan to solve the problem in another way in 
the future. 
 
The Graph Rewrite (GR) paradigm was created as a standardized format for the specification of transformation 
rules and sequencing. Hence, there can be different front-end graphical editors for the specification of these 
rules. The native format of the editor can then be mapped to the GR format to be fed as input to the GRE.  
Figure 7 shows the UML class diagram of the GR paradigm. 
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Figure 7: UML Class Diagram of the Graph Rewrite (GR) paradigm 

In this paradigm, the Transformation contains RewritingRule, Sequence (which describes the rules ordering) and 
PassAlong (which describes the passing of input and output subgraph objects between rules). There are three 
main entities in each RewritingRule: the PatternObject and PatternLink specify the pattern to look for in the input 
graph, the ConsequenceObject and ConsequenceLink specify the relationship between output objects, and the 
ObjectMapping and LinkMapping describe the corresponding actions input to output graphs.  
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Figure 8:  The Platform-Independent Model (top) and the Platform-Specific Model (bottom) 

Example 
Let us examine an example transformation.  We will trace the transformation of domain models from a more 
abstract, generic model to a model with more specialized components.  On the top, Figure 8 shows the platform-
independent model (PIM) class diagram.  This model shows that multiple Subscribers can subscribe to one of 
the multiple services provided by a Publisher. 
 
Staring from the PIM, the transformer applies design patterns and some implementation details to build a more 
detailed platform-specific model (PSM).  From Figure 8, only one instance of a Publisher is instantiated (Single 
design pattern). The publisher class then provides interface defining a different kind of operation for each kind of 
servant to be created (AbstractFactory design pattern). The publisher also hands over the subscriber's location 
so that a servant can notify its subscriber directly. Moreover, in this implementation, only one servant is assumed 
to be running at a time. Hence, for scheduling multiple servants the Scheduler class has been added to the PSM. 
 
Transforming these models takes three steps.  The first step is to transform all Publishers into Servants.  After 
the appropriate publishers have been changed, a scheduler must be created.  Finally, the new Publisher (which 
will be the only one in the new model) is created. 
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Figure 9:   The rule execution order (above) along with the rewriting definition to change all Publishers to 
Servants (below) 

Figure 9 shows two levels of the transformation specification.  The top window, “MakePSMs”, specifies the 
ordering of the execution of the transformation rules.  The bottom window specifies how to change a Publisher 
into a Servant.  The left side of the diagram (Publisher and Subscriber) is the prescribed pattern to match, and it 
is composed of items from the PIM.  The right side of the diagram represents concepts in the PSM, and how 
these “target” objects are to be created from the PIM.  
 
At this point, all the necessary information to begin the graph transformation process is present (see Figure 3).  
Inputting the proper input graphs (PIM domain models) and processing the encoded rewriting rules to the GRE 
will result in updated output graphs (models for the PSM domain). 

Conclusions and future work 
The Model Driven Architecture has come of age and is ready to become an integral part of the software 
development process. Models are not only a way of documenting initial ideas but are the formal representation of 
the actual system. The gap from models to executable code can be bridged using graph transformation 
techniques.  
  
In this paper we have described a language to express transformation on graphs. We have also noted that the 
sequencing of rules and pivoting of patterns can greatly reduce the search time. Furthermore, we have shown 
the feasibility of the transformation approach by building a prototypical graph transformation system that is able 
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to apply the transformation techniques and helps us test the validity of our approach. With the help of an 
example we have shown that the graph transformation techniques can be used to transform PIM’s to PSM’s.  
 
There still is more to do in the GRE. To start with, the transformation language needs to be extended to support 
more sophisticated patterns and to allow the modification of the input graph using graph replacement. Secondly, 
the pattern matcher is very simplistic and a more sophisticated pattern-matching algorithm is needed to utilize 
the power of the sophisticated pattern specification language. Finally, the GRE is interpretive in the sense that 
the program interprets the rules at runtime and executes then. This needs to change such that the GRE can be 
generated, and it runs efficient code that will perform the transformation.  
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