
Multigranular Simulation
of

Heterogeneous Embedded Systems
Aditya Agrawal

Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN - 37235

1 615 343 7567

aditya.agrawal@vanderbilt.edu

Akos Ledeczi
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN - 37235

1 615 343 7440

akos.ledeczi@vanderbilt.edu

ABSTRACT

Heterogeneous embedded systems, where
configurable or application specific hardware devices
(FPGAs and ASICs) are used alongside traditional
processors, are becoming more and more widely used.
To facilitate rapid design and development of such
heterogeneous hardware/software systems, it is
essential to expand the software design cycle to
integrate hardware modeling and simulation. Co-
simulation and exploration of the joint design space
are key problems. To design, develop and verify such
systems, different kinds of simulations at various
levels of granularity are required. The hardware
modeling and simulation framework of the Model-
Based Integrated Simulation Framework (MILAN)
integrates these requirements into a single powerful
design, development and simulation environment.

Categories and Subject Descriptors
E.3 [HW/SW co-design]: specification, modeling, co-
simulation and performance analysis, system level
partitioning and scheduling.

General Terms
Performance, Design, Standardization, Languages and
Verification.

Keywords
Modeling, Orthogonalization, Design space and
Simulation.

1. INTRODUCTION
Configurable FPGAs and fast ASICs are pushing embedded
systems to implement more and more functionality
directly in hardware. However, to facilitate the rapid
design and development of such heterogeneous
hardware/software systems, it is essential to expand the

software design cycle to integrate hardware modeling and
simulation. The Model-based Simulation Integration
Framework (MILAN) [1][2] provides a unified
environment for the design and simulation of these
heterogeneous systems.

Such a unified environment poses unique requirements that
need to be fulfilled. One important requirement of the
heterogeneous design paradigm is the orthogonalization of
concerns, that is to separate various aspects of design in
order to effectively explore alternative solutions [9]. For
example, system requirement specifications and
implementation or computation and communication are
good candidate concerns that should be separated.

In large and complex systems there is a need for modular
design to mitigate complexity. Systems are typically
designed in terms of components and component
interactions. A component usually embodies some kind of
computation and it has a standardized interface for
communication. This helps to separate computation from
communication and the developer can design and
implement one without being concerned with the other.

Separation of system requirements and implementation is
desirable because the former captures the intention of the
system designer and provide a high level view, while the
latter is specific and is done at a much finer level of
granularity. By capturing the intention separate of the
implementation, the high level abstraction is preserved,
allowing the user to specify alternate implementations for
the same intent. These alternatives may be in the form of
different algorithms to solve the same problem, a choice
between hardware and software implementation, or a
selection of programming language. Furthermore,
implementation is a refinement of the intent and needs to
be captured at different levels of granularity. Initially a
coarse grain implementation is used for prototyping. This

can be transformed in stages to a detailed low-level
implementation later.

By capturing alternative implementations at different
levels of granularity we gain the flexibility of choosing the
implementation according to the exact needs of the
system. The development cycle starts from a coarse grain
implementation. This is tested for functional correctness
and is then refined to different alternative
implementations. The feasibility of these alternatives is
explored by profiling them. This is followed by system
simulation of a few feasible system wide implementations
to validate the system with respect to the requirements.
Simulation becomes more important as testing of these
applications on actual hardware is expensive and time
consuming, especially for applications implemented in
hardware such as FPGAs or ASICs.

These design and development philosophies exist and are
used in real world embedded systems and can be used for
the expanded role of computer-based systems. In the
absence of an integrated design and development
environment, a variety of tools are used to achieve all the
above needs. These tools more often than not are incapable
of exchanging design, implementation and data between
each other forcing developers to duplicate information
manually between tools. This is a time consuming,
inefficient and a error-prone. In order to speed up the
design cycle, there is a need for an integrated design and
development framework that facilitates all these
requirements.

The Model-based Simulation Integration Framework
(MILAN) [1] is a suite of tools developed to integrate the
following design and development needs:

• Single design representation to use in different
simulations and software synthesis,

• Separation of concerns,

• Capture different levels of hierarchy for
refinement.

• Synthesize code to drive various simulation
methodologies: isolated simulation, multi-
granular simulation, full system simulation,

• Speed up the design and development cycle for
rapid application development.

The focus of this paper is on the modeling paradigm for
applications implemented in hardware and the associated
tools integrated into MILAN. These tools consist of an
integrated environment to specify modular system design
with alternative implementations. At the lowest level,
designers need to provide SystemC or VHDL
implementations. The tools are capable to drive various

kinds of simulations from these specifications to provide
for verification of functionality and performance. The
kinds of simulation supported are isolated simulation of
components, multi-granular simulation of the system,
complete system simulation and simulation of hardware in
heterogeneous hardware/software systems.

We begin in Section 2 by discussing Model Integrated
Computing (MIC) and an overview of MILAN. In Section 3
we discuss the modeling methodology of MILAN with
focus on hardware modeling, followed by the
interpretation of the models to drive various simulations in
Section 4. We conclude in Section 5.

2. MILAN OVERVIEW
The software infrastructure of MILAN is based on Model
Integrated Computing (MIC). MIC employs domain-
specific modeling methodology to represent the system
being designed. The system models are then used to
automatically synthesize the applications and/or to
generate inputs to analysis and/or simulation tools. This
approach speeds up the design cycle, facilitates the
evolution of the application, and helps system
maintenance, dramatically reducing costs during the entire
lifecycle of the system. MIC is implemented by the
Generic Modeling Environment (GME), a
metaprogrammable toolkit for creating domain-specific
modeling environments [6].

MILAN is a typical MIC application. Its architecture is
depicted in Figure 1. The domain-specific modeling
paradigm developed specifically for MILAN enables the
specification of the system in the form of multiple-aspect,
hierarchical, primarily graphical models in GME. The
three main categories of models specify the desired
application functionality, available hardware resources and
non-functional requirements in the form of explicit
constraints. The application models capture the dataflow
of the system. Both asynchronous and synchronous
dataflow is supported, as well as their composition. By
allowing the specification of explicit design and
implementation alternatives as part of these models,
MILAN captures the design space [10] of the application,
not just a point solution. Size, weight, energy, performance
and timing (SWEPT) requirements are also part of the
models in the form of formal constraint.

Only a subset of the potentially exponentially large design-
space satisfies all these constraints. A symbolic constraint
satisfaction methodology is applied to explore and prune
the design-space. Once a single design has been selected,
generators translate the models into the input of the
selected simulators. Simulators already integrated into
MILAN include Matlab [8], SystemC [12], HiperE, a high-
level performance estimator developed in parallel with

MILAN [13], SimpleScalar [4], Armulator [3]. Some
simulation results need to be incorporated back in the
models in the form of performance attributes of
components, for example, to make them available for
other simulators. For some simulators this will
necessarily be a human-in-the-loop process, while for
others the procedure can be automated.

Application
Models Constraints

Resource
Models

Design-Space
Exploration and

Pruning

DESIGN

Generic Modeling
Environment

(GME)

SYSTEM

System Synthesis

High-Level
Simulator

Performance
Simulator

Power
Simulator

Functional
Simulator

i

i

i

i

i

i i

i

i

i

Model Interpreter
configuring/driving simulator

Model Interpreter feeding
Data back to the models

Figure 1. MILAN Architecture

The final component in the MILAN architecture is
Software Synthesis. Notice that this step is similar to
driving simulators. Instead of targeting the execution
model of a simulation engine, the synthesis process needs
to generate code for a given runtime system. Just like
there is a need to support multiple simulators, MILAN
supports multiple target runtime systems.

The goal of the paper is to describe how a careful
composition of a variety of modeling concepts can result
in a highly domain-specific modeling methodology that
supports the unique needs of the complex application
domain of simulation of computer-based systems. We
shall focus on modeling of applications implemented in
hardware and how the models are used to drive the various
types of simulation.

3. MODELING METHODOLOGY
Modeling is an abstraction of the system and captures
specific details required to best represent, understand,
implement and modify the system. Traditional hardware
design approaches and the need for integrating with the
expanding domain of computer-based systems motivated
us to incorporate various modeling methodologies to
mitigate complexity, separate concerns and to provide for
effective management and maintenance of these systems.

The wide variety of domain specific modeling concepts
that has been incorporated are as follows.

1. Modeling of hardware applications using domain
specific concepts and to separate the concerns.

2. Strong data typing of communication ports for
accurate simulation of data exchange and to catch
modeling errors at design time.

3. Parameterization of components to develop
generic modules for reuse, as well as to design a
set of solutions instead of a single solution.

4. Data abstraction and information hiding to better
manage complexity using multiple aspects of the
same module.

5. Explicit designs of alternative implementations to
capture design choices in order to better explore
different solutions.

6. A paradigm to compose hardware and software
components together to facilitate the design of
heterogeneous systems.

3.1 Hardware Modeling
The goals while developing the hardware application
modeling paradigm were separation of concerns,
flexibility to capture the implementation in different
languages and at different levels of granularity. Another
goal was to mitigate complexity to help design more
manageable systems.

The model of computation in hardware is unbuffered
hierarchical dataflow. Hierarchical dataflow implies that a
dataflow node can contain a dataflow subgraph.
Unbuffered dataflow means that the receiver and sender
need to be synchronized. This model of computation can
alternatively be looked at as the structural description.

The hardware modeling paradigm consists of a set of
modules implementing behavior and directed links
connecting modules specifying the dataflow graph of the
system. The modules are hierarchical, that is they can
contain other modules and module associations forming a
dataflow subgraph. Figure 2 shows the basic meta model of
MILAN’s hardware-modeling paradigm.

hwModule is the basic building block. It is a hierarchical
module as it can contain subgraphs. Ports define the input
and output interface of the module, while hwSignalConn
is an association between ports representing a data path.
These ports can also be connected to and from a hwBus.
Modules also contain hwDataStore which represent
memory elements.

A module that doesn’t contain a subgraph has processes
associated with it. Processes specify the behavior of a
module. This is captured as functions implemented in a
hardware description language such as VHDL or SystemC.
Notice that, hwModule contains hwFunctionBase, an

abstract base class. This class has been specialized for
SystemC and VHDL. It can also be specialized to
supported other languages later. The functions can be event
driven or sequential. Events are specified using the
hwTrigger connection between processes and ports.

Figure 2. Meta model of the hardware application

paradigm.

Hierarchy in the modeling paradigm serves two purposes.
First, it helps separate intention from implementation.
Using hierarchy the system is designed according to the
intention, that is the high-level dataflow of the system.
Then the design in refined by designing the modules in
details until it is low-level enough to provide an
implementation. Second, it helps to mitigate complexity.
The dataflow graph of large systems can be very complex;
hierarchy hides data at different levels to make the
systems more manageable. The functions can be specified
at any level of granularity and can be in either VHDL or
SystemC. This provides the user with the flexibility to
choose between different HDLs. Moreover
implementations in different languages can coexist
providing the user with design choices.

3.2 Data Type
Data type models in MILAN are used for several purposes.
First of all, to accurately simulate communication
performance, the amount of data exchanged needs to be
captured. Furthermore, as data type models are attached to
hardware modules, or more precisely to their input and
output ports, they define the interface of those
components. When the components are attached using
signal connections, their interfaces are checked to ensure
that only compatible objects are connected. Finally, the
data type models can also be used to generate the

corresponding definitions in the target hardware
description language ensuring consistency.

The MILAN data type modeling paradigm allows the
specification of both simple and composite types. Simple
types, such as floats and integers, specify their
representation size, i.e. the number of bits used.
Composite types can contain simple types and other
composite types. Attributes of the fields specify extra
information such as array size or signed/unsigned type.
Data types supported by the C programming language can
be modeled in MILAN. Preexisting data types, specified in
a DSP library for example, can also be modeled. Their
name and size in bytes are the only information MILAN
requires.

The hardware application and the data type modeling
paradigms are composed together according to precise
rules (not shown). OCL constraints ensure that every port
has exactly one type specification and that dataflow
connections are only allowed between ports having
compatible data types.

3.3 Parameters
In order to support parametric hardware modules, such as
an FFT block with configurable data points, MILAN allows
for the specification of such parameters.

Components contain ParameterPorts capturing their
parameter interface. A Parameter can be connected to a
ParameterPort supplying a value to it. Each port has a
default value that is used if no Parameter is attached to it.
Both the ParameterPort and the Parameter are data typed,
using the same modeling technique as for ports. Typing
information is used to verify that the supplied parameter is
compatible with the parameter interface of the component.

Parametric modeling plays an important role in
representing design spaces. A parametric component
encapsulates multiple implementations that can be
selected by supplying an appropriate value for the
parameter. For example, an N-point FFT model
encapsulates a number of FFT implementations spanning
the valid range of N. Thus, a number of options can be
represented in the models instead of an implementation.
Furthermore parameterization helps to design and develop
generic components that can be reused.

3.4 Multiple Aspects
The MILAN application modeling paradigm is quite
complex. However, the hardware description, data type
specification and parameter modeling are largely
orthogonal concepts. Therefore, they can be separated into
different aspects to allow the user to better manage and
understand the system. In the Hardware aspect, only
module, ports, buses, data stores and the true
implementation scripts are shown. In Type aspect, Ports,

Parameters, ParameterPorts and data type references are
displayed. Finally, Components, Parameters,
ParameterPorts and their corresponding connections are
visible in the Parameter aspect. Multiple-aspect modeling
is a natural way to implement separation of concerns.

3.5 Software application modeling
The software application modeling paradigm is based on a
dataflow representation. A dataflow graph consists of a set
of compute nodes and directed links connecting them
representing the flow of data. A flat graph representation
does not scale well for human consumption, so we
extended the basic methodology with hierarchy.

There is extensive literature on various dataflow
representations. At the two ends of the spectrum are
synchronous [7] and asynchronous dataflow. Both these
models of computation are supported by MILAN and have
been discussed in greater details in [6].

3.6 Alternatives
Till now we have discussed the modeling environment and
a lot of its feature, however we haven’t discussed how
alternative designs are represented in the models.
Parameterized components are one way of representing
design alternatives. Being able to use multiple languages
of implementation provides for alternative
implementation.

MILAN also allows the user to have an explicit choice
between synchronous, asynchronous data flow and
hardware implementation. This is achieved by using
alternatives. Alternatives are models that can contain
synchronous, asynchronous software dataflow and
hardware modules and the containment implies an or
condition. That is one and only one of the given
implementations will be used. Furthermore choice
between different algorithms to solve the same problem
can also be captured using explicit alternatives.

3.7 Composition of hardware and software
MILAN supports the composition of hardware and
software models.

Figure 3. Composition of hardware and software

The metamodel in Figure 3 specifies that a dataflow
component can contain hardware modules and signal
connections. Furthermore, hardware and dataflow can be
associated using the connection DFHWConn. This
represents a data path between software and hardware
components. Thus, a hardware implementation of a sub-
SystemCan reside in any dataflow component.

4. SUPPORT FOR SIMULATION
After creating a design environment that allows us to
model applications and is able to capture hardware and
software designs, parameterized components and design
alternatives, there is a need to drive various simulations
from these models.

A typical development cycle starts from a coarse grain
implementation, which is tested for functional
correctness. With respect to hardware applications,
SystemC is a good language to provide a coarse grain
implementation. Simulation of the SystemC
implementation can be used to verify functional
correctness. The user will normally refine one block at a
time and so he/she may need to simulate the refined
module with coarse grain implementations of the other.
MILAN’s support of simulation at different levels of
hierarchy is called multi-granular simulation. After
refining the design to various alternative implementations,
the feasibility of the implementations is explored by
profiling the modules. Profiling of modules requires
simulation of each component in isolation to come up with
performance numbers such as throughput, latency, power
consumption and memory requirements. This kind of
simulation in MILAN is referred to as isolated simulation.
After profiling the modules a few feasible designs are
chosen for system wide simulation to validate the system
requirements. This is referred to as full system simulation.

In heterogeneous systems, that is systems having hardware
and software components interacting with each other,
verification of design becomes a more challenging task.
Simulation of the hardware having communication with
software components can be achieved by providing a
communication bridge between the hardware and software
components. This helps to simulate hardware with the
software implementation providing more accurate results.

To drive the various simulations mentioned above and to
automate this process the models captured in the design
environment need to be interpreted to generate code for
simulation.

4.1 Model Interpretation
The interpreter of the hardware-modeling paradigm in
MILAN generates code for simulation. Currently SystemC
code generation is supported, that is if the behavior of the
system is described in SystemC, the interpreter can

generate the code for isolated, multi-granular and full
simulation. The generated code can be compiled and run to
get simulation results. Furthermore simulation of
hardware in a heterogeneous system is also supported.

The interpreter traverses through the graph and gathers the
required information, like ports, signals, data elements,
event driven functions and their dependencies. These are
then used to generate SystemC glue code.

4.2 Multi-granular Simulation
In the hierarchical graph representing the system, typically
the lowest level modules contain the behavioral
information. Using multi-granular simulation the user can
choose to provide behavioral information for any module
at any level of hierarchy. Thus the user can simulate a
system with a mixture of coarse grain and fine grain
implementations. The high level behavioral information is
captured in the Coarse Grain Aspect of the module.

The interpreter generates the code for the system and
whenever it finds a module marked for using the coarse
grain implementation it uses that and doesn’t traverse
deeper in that module.

4.3 Isolated Simulation
In order to simulate a module in isolation the module
needs to be driven by sourcing functions and the output of
the module needs to be sent to sinking functions. In
MILAN we allow the user to capture the exact sourcing
and sinking function associated with each communication
port.

Hence to synthesize for an isolated simulation of a
module, the true implementation of the module in question
is used along with the sourcing and sinking functions from
adjacent modules. The interpreter generates code of the
module in question and creates sourcing and sinking
modules for it. The sourcing and sinking modules contain
simulation scripts specified by the user in the Substitute
aspect of the adjacent modules. Isolated simulation can be
performed not only on a single module but on a subgraph
also, that is a connected subgraph can be chosen for
simulation and the modules adjacent to this graph will be
used to supply and consume data.

4.4 Full Simulation
For a complete simulation of the entire system a single
design needs to be chosen. The user can choose between
alternative implementations by marking one of various
alternative implementations to use. Alternatively, the
design-space exploration tool can identify the point
designs that satisfy the all constraints [10] and mark the
selected alternatives automatically. The interpreter then
traverses through the models and picks up the chosen
alternative implementations to form a single design. The

true implementations of the design are then used to
generate SystemC code for a full simulation.

4.5 Simulation in Heterogeneous Systems
To simulate hardware in a heterogeneous system, it is
necessary to facilitate communication between hardware
and software components. In a real-world system,
hardware software interactions are facilitated using device
drivers. However, we do not require device drivers to
simulate the system. The communication is achieved by
using entities called proxies. At a hardware software
interface proxies are generated on both sides of the
interface. For example, a hardware proxy will read data
from the hardware module at the interface and pipe it to its
software counterpart using TCP. Similarly it will read data
from the pipe and provide it to the hardware module. The
software proxy does the same at the other end.

The interpreter breaks the heterogeneous graph into
hardware and software graphs. It then generates the proxies
and connects the respective graphs at the interface. Finally,
the two graphs are sent through their respective
interpreters. The hardware and software code can finally be
compiled independently and then run together to simulate
the hardware.

5. EXAMPLE APPLICATION
Image processing systems and specifically, missile
Automatic Target Recognition (ATR) systems face many
challenges due to extremely large computational
requirements and physical, power, and environmental
constraints [11]. Thus, it is a good example to demonstrate
some of the capabilities of MILAN.

Input Image
Stream

Preprocessing 2D FFT Multiply

Class
Filter
Banks

2D IFFT
Class

Distance
Calculation

Class
Determination

Display
Result

do_peaks

Figure 4. ATR application block diagram

The design and simulation of a system in the MILAN
framework starts with application modeling. Given the
size of the ATR application and the large number of design
choices, both hierarchy and alternatives are used
extensively. Figure 5 shows a model of the do-peaks block
of the ATR in the MILAN framework. This model captures
one of the core computations in the ATR application.
When designing the application it was determined that the
functionality of the peak to surface ratio (PSR) can be
realized in hardware or software. Instead of making the
selection upfront, the alternative realizations are captured
in the models and the selection postponed till a later phase
of design. Notice that in Figure 5 PSR is modeled as an

AsyncAlternative (colored differently) Figure 6 shows the
alternative realizations of PSR.

Figure 5. do_peaks model of the ATR application

The software implementation of PSR is an asynchronous
dataflow node and uses regular C code. The hardware
implementation, on the other hand, is a high-level node
representing a dataflow subgraph (Figure 7b). In the early
phases of the design it is not necessarily clear which one
is a better implementation. The suitability of one or the
other depends upon the actual resources that are available,
the runtime execution environment that is employed, and
other factors. The various simulation tools assists the
designer in making these selection decisions based on the
requirements of the system.

Figure 6. Alternatives in ATR application

Figure 7 shows two aspects of the hardware model of the
PSR. In addition to the input and output ports, the
Hardware aspect contains a data flow sub-graph of the
model showing the refined realization of the module. The
coarse grain aspect shows the high level implementation
of PSR. It contains a SystemC-script, and a VHDL-script.
The SystemC-script is a placeholder for the high level
SystemC code implementing the PSR, while the VHDL-
script is a placeholder for VHDL code. An appropriate
script is selected based on the target simulator.

A typical design cycle will begin with the designer wanting
to verify the functional correctness of the alternative
hardware application with a coarse grain implementation.
So the designer will choose the hardware version of the
PSR and mark it to specify the use of a course grain

implementation. Then the user will simulate the system
with the coarse grain implementation. The next step will
require the user to profile the hardware alternative in order
to allow him to choose between the hardware and software
at a later stage. This will require an isolated simulation of
the detailed hardware implementation of the PSR. The
designer will select the hardware version in the alternative
model and run isolated simulation on it. The interpreter
will then use the hierarchical implementation of the PSR
and use sourcing and sinking functions from
Calculate_Mean_Std and Calculate_Distance to generate
SystemC code for isolated simulation. After deciding on
the implementation to use the designer will want to run a
full simulation of the system with the right design choice.
In this example, let’s say that the hardware implementation
is chosen. Then the user selects that alternative and runs
the full system simulation. In this case the interpreter uses
the hierarchical implementation of the PRS implemented
in hardware as well as the complete implementation of the
rest of the system. The full simulation allows the user to
verify the design with respect to system requirements.

(a) Coarse grain aspect

(b) Hardware aspect

Figure 7. Two aspects of the hardware model of PSR

Subsequent to application modeling, the next step in the
ATR design is resource modeling. In this step the target
resources are modeled as per the resource-modeling
paradigm.

6. CONCLUSION
Needs of embedded applications have expanded with the
advent of FPGA’s and ASIC’s. The increasing complexity
and heterogeneity of such systems drives the need to have
an integrated framework to support design and
development to speed up the design cycle and to explore
various alternative solutions.

MILAN is a framework that provides an integrated
environment to design embedded system applications
using domain specific concepts. It allows for the design of
alternative solutions and abstracts the implementation
from design. Separation of concerns and modular design
are the pillars of MILAN.

Modeling of hardware using domain specific concepts in a
heterogeneous system allows for better representation of
the design and helps developers to design systems in an
intuitive manner. Support for various simulation needs by a
composite environment helps to speed up the design cycle
and allows for better exploration of alternative solutions.

The framework, specifically the hardware paradigm has
been applied to various small and medium sized projects
with a great deal of success in terms of increasing
efficiency and reducing the design time.

7. ACKNOWLEDGMENTS
The research described in this paper is sponsored by the
DARPA IPTO Power Aware Computing and
Communications program. The MILAN project is a joint
effort of Prof. Viktor Prasanna’s group at the University of
Southern California and the Institute for Software
Integrated Systems at Vanderbilt University.

8. REFERENCES
[1] Agrawal, A. et al. MILAN: A Model Based Integrated

Simulation Framework for Design of Embedded
Systems, Workshop on Languages, Compilers, and
Tools for Embedded Systems (LCTES 2001),
Snowbird, Utah, June 2001.

[2] MILAN.
www.isis.vanderbilt.edu/projects/milan/index.htm

[3] ARMulator.
http://www.arm.com/sitearchitek/support.ns4/html/sdt
_debug

[4] Burger, D. and Austin, M., The SimpleScalar Tool Set,
Version 2.0, Computer Architecture News, 25 (3), pp.
13-25, June, 1997.

[5] J.T. Buck, S. Ha, E.A. Lee and D.G. Messerschmitt,
Ptolemy: A Framework for Simulation and
Prototyping Heterogeneous Systems: Int. Journal of
Computer Simulation, special issue on "Simulation
Software Development", vol.4, pp. 155-182, April,
1994

[6] Ledeczi, A., et al. Composing Domain-Specific
Design Environments, Computer, pp. 44-51,
November, 2001.

[7] Lee, E. A. And Messerschmidt, D. G., Static
scheduling of synchronous data flow programs for
digital signal processing. Transactions on Computers,
C36 (1):24 --35, January 1987.

[8] MATLAB.
http://www.mathworks.com/products/matlab/

[9] Marco Sgroi, Luciano Lavagno, Alberto Sangiovanni-
Vincentelli. Formal Models for Embedded System
Design. IEEE Design & Test of Computers, 17(2):14-
27, June 2000.

[10] Neema, S., System Level Synthesis of Adaptive
Computing Systems, Ph. D. Dissertation, Vanderbilt
University, Department of Electrical and Computer
Engineering, May 2001.

[11] Nichols, K. And Neema, S., Dynamically
Reconfigurable Embedded Image Processing System,
Proceedings of the International Conference on Signal
Processing Applications and Technology, Orlando,
FL, November, 1999.

[12] SystemC. http://www.systemc.org/

[13] Mohanty, S. And Prasanna, Viktor K., Rapid System-
Level Performance Evaluation and Optimization for
Application Mapping onto SoC Architectures, 15th
IEEE International ASIC/SOC Conference, Rochester,
New York.

