
Time Synchronization in Heterogeneous Sensor
Networks

Isaac Amundson1, Branislav Kusy2, Peter Volgyesi1, Xenofon Koutsoukos1,
and Akos Ledeczi1

1 Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, TN 37235, USA

Email: isaac.amundson@vanderbilt.edu
2 Department of Computer Science

Stanford University
Stanford, CA 94305, USA

Abstract. Time synchronization is a critical component in many wire-
less sensor network applications. Although several synchronization pro-
tocols have recently been developed, they tend to break down when im-
plemented on networks of heterogeneous devices consisting of different
hardware components and operating systems, and communicate over dif-
ferent network media. In this paper, we present a methodology for time
synchronization in heterogeneous sensor networks (HSNs). This includes
synchronization between mote and PC networks, a communication path-
way that is often used in sensor networks, but has received little atten-
tion with respect to time synchronization. In addition, we evaluate clock
skew compensation methods including linear regression, exponential av-
eraging, and phase-locked loops. Our HSN synchronization methodology
has been implemented as a network service and tested on an experimen-
tal testbed. We show that a 6-hop heterogeneous sensor network can be
synchronized with an accuracy on the order of microseconds.

1 Introduction

Wireless sensor networks (WSNs) consist of large numbers of cooperating sensor
nodes that can be deployed in practically any environment, and have already
demonstrated their utility in a wide range of applications including environ-
mental monitoring, transportation, and healthcare. These types of applications
typically involve the observation of some physical phenomenon through periodic
sampling of the environment. In order to make sense of the individually collected
samples, nodes usually pass their sensor data through the network to a central-
ized sensor-fusion node where it can be combined and analyzed. We call this
process reactive data fusion.

One important aspect of reactive data fusion is the need for a common notion
of time among participating nodes. For example, acoustic localization requires
the cooperation of several nodes in estimating the position of the sound source



based on time-of-arrival data of the wave front [1], [2]. This may require up to
100-microsecond accurate synchronization across the network. Another example
is acoustic emissions (AE), the stress waves produced by the sudden internal
stress redistribution of materials caused by crack initiation and growth [3]. As
the speed of sound is typically an order of magnitude higher in metals than in
the air, the synchronization accuracy required for AE source localization can be
in the tens of microseconds.

Accurately synchronizing the clocks of all sensor nodes within a heteroge-
neous network is not a trivial task. Existing WSN time synchronization protocols
(e.g. [4], [5], [6], [7], [8]) perform well on the devices for which they were designed.
However, these protocols tend to break down when applied to a network of het-
erogeneous devices. For example, the Routing-Integrated Time Synchronization
(RITS) protocol [8] was designed to run on the Berkeley motes, and assumes the
operating system is tightly integrated with the radio stack. Attempting to run
RITS on an 802.11 network can introduce an unacceptable amount of synchro-
nization error because it requires low-level interaction with the hardware, which
is difficult to attain in PCs. Reference Broadcast Synchronization (RBS) [5],
although portable when it comes to operating system and computing platform,
is accurate only when all nodes have access to a common network medium. A
combined network of Berkeley motes and PDAs with 802.11b wireless network
cards, for example, would be difficult to synchronize using RBS alone because
they communicate over different wireless channels. In addition, the communi-
cation pathway between a mote and PC is realized using a serial connection.
Synchronization across this interface is essential when attempting to combine
time-dependent sensor data from each device. Furthermore, it may be desirable
to have several mote-PC gateways, since often it is not always possible to ex-
tract data fast enough through a single base station. In large networks, this also
enables data packets to reach the base station in a fewer number of hops, thus
minimizing delay and conserving energy. Although time synchronization across
this interface has previously been explored (see Section 2), it has not been im-
plemented in software.

Our work focuses on achieving microsecond-accuracy synchronization in het-
erogeneous sensor networks (HSNs). HSNs are a promising direction for de-
veloping large sensor networks for a diverse set of applications [9], [10], [11].
We consider a multi-hop network consisting of Berkeley motes and Linux PCs,
a dominant configuration for reactive data fusion applications. Mote networks
consist of resource-constrained devices capable of monitoring environmental phe-
nomena. PCs can support higher-bandwidth sensors such as cameras, and can
run additional processing algorithms on the collected data before routing it to
the sensor-fusion node. In this sense, we model both motes and PCs as sensor
nodes. Time synchronization in both mote and PC networks have been studied
independently, however, a sub-millisecond software method to synchronize these
two networks has not yet been developed to the best of our knowledge.

In this paper, we present a methodology for HSN time synchronization that
utilizes a combination of existing synchronization protocols. Our methodology
supports reactive data fusion, incurs little overhead of network resources, and



has synchronization error on the order of microseconds. In addition, we have
implemented a time synchronization service for reactive data fusion applications,
which allows the application developer to focus on aspects of sensor fusion, and
not the underlying aggregation mechanism. To achieve accurate cross-platform
synchronization, we have developed a technique for synchronization between a
mote and PC that is implemented completely in software, and remains effective
when multiple mote-PC connections exist within the network.

The rest of this paper is organized as follows. Section 2 describes existing
synchronization protocols for WSNs. We present the problem of HSN time syn-
chronization in Section 3. We discuss the sources of synchronization error in
Section 4, and clock skew compensation in Section 5. In Section 6, we present
our methodology and implementation for HSN time synchronization, and in Sec-
tion 7 our evaluation results. Section 8 concludes.
2 Related Work
Synchronization protocols can be classified as sender-receiver, in which one node
synchronizes with another, or receiver-receiver, in which multiple nodes synchro-
nize to a common event. Both have their advantages, and each can provide syn-
chronization accuracy on the order of microseconds using certain configurations
[12]. An in-depth survey on time synchronization in WSNs can be found in [12].

Several sender-receiver synchronization protocols have been developed for the
Berkeley motes and similar small-scale devices that provide microsecond accu-
racy. Elapsed Time on Arrival (ETA) [13] provides a set of application program-
ming interfaces for an abstract time synchronization service. In ETA, sender-side
synchronization error is essentially eliminated by taking the timestamp and in-
serting it into the message after the message has already begun transmission.
On the receiver side, a timestamp is taken upon message reception, and the dif-
ference between these two timestamps estimate the clock offset between the two
nodes. RITS [8] is an extension of ETA over multiple hops. It incorporates a set
of routing services to efficiently pass sensor data to a network sink node for data
fusion.

In [14], mote-PC synchronization was achieved by connecting the GPIO ports
of a mote and IPAQ PDA. The PDA timestamped the output of a signal, which
was captured and timestamped by the mote. The mote then sent the timestamp
back to the PC, which was able to calculate the clock offset between the two. Al-
though using this technique can achieve microsecond-accurate synchronization,
it was implemented as a hardware modification rather than in software.

Reference Broadcast Synchronization (RBS) [5] is a receiver-receiver protocol
that minimizes error by taking advantage of the broadcast channel found in
most networks. Messages broadcast at the physical layer will arrive at a set of
receivers within a tight time bound due to the almost negligible propagation
time of sending an electromagnetic signal through air. Nodes then synchronize
their clocks to the arrival time of the broadcast message.
3 Problem Statement
Our goal is to provide accurate time synchronization to reactive data fusion ap-
plications in HSNs. We refer to the combination of these components as a config-



uration. Our testbed configuration consists of Mica2 motes and Linux PCs. There
are two physical networks, the B-MAC network [15] formed by the motes and
the 802.11 network containing the PCs. The link between the two is achieved by
connecting a mote to a PC using a serial connection. This mote-PC configuration
is chosen because it is representative of HSNs containing resource-constrained
sensor nodes for monitoring the environment and resource-intensive PCs used
for high-bandwidth sensing and computation.

Ideally, a single synchronization methodology would suffice for the entire
HSN. However, no protocol has been developed that can achieve this. Instead,
we turn to the underlying methodologies found in existing protocols, and use
them in conjunction. Individually, the mote and PC networks have been studied
extensively. However, the interaction between the two has not been sufficiently
investigated. To understand how synchronization affects these connections, we
first adopt a system model for time synchronization.

System Model Each sensor node in a WSN is a computing device that
maintains its own local clock. Internally, the clock is a piece of circuitry that
counts oscillations of a quartz crystal, energized at a specific frequency. When a
certain number of these oscillations occur, a clock-tick counter is incremented.
This counter is accessible from the operating system and its accuracy (with re-
spect to atomic time) depends on the quality of the crystal, as well as various
operating conditions such as temperature, pressure, humidity, and supply volt-
age. When a sensor node registers an event of interest, it will access the clock-tick
counter and record a timestamp reflecting the time at which the event occurred.

Some protocols synchronize nodes to atomic time, often referred to as real-
time or Coordinated Universal Time (UTC). Irrespective of whether a given
protocol synchronizes to UTC, it is often convenient to represent the occurrence
of an event according to some universal time standard. We use the notation t to
represent an arbitrary UTC time, and the notation te to represent the UTC time
at which an arbitrary event e occurred. Because each node records a timestamp
according to its own clock, we specify the local time on node Ni at which event
e was detected by the timestamp Ni(te).

Although the two timestamps Ni(te) and Nj(te) correspond to the same real-
time instant te, this does not imply that Ni(te) = Nj(te); the clock-tick counter
on node Ni may be offset from Nj . Therefore, from the perspective of node Ni,
we define the clock offset with Nj at real-time t as φi

j(t) = Ni(t)−Nj(t). It may
be the case that the offset changes over time. In other words, the clock rate of
node Ni,

dNi(t)
dt , may not equal the ideal rate (dNi(t)

dt = 1). We define the ratio
of clock rates of two nodes as the relative rate, rri

j = dNi(t)
dNj(t)

. The relative rate is
a quantity directly related to the clock skew, defined as the difference between
clock rates, and is used in our clock skew compensation methods. We refer to
clock offset and clock rate characteristics as a node’s timescale.

Practically all synchronization protocols can be implemented using timescale
transformation. Rather than setting one clock to another, clocks advance unin-
hibited, and instead a reference table is maintained that keeps track of the clock
offsets and clock drift between a node and its neighbors. The reference table is



used to transform a clock value from one timescale to another, providing each
node with a common notion of time. Clock adjustment is disadvantageous in
WSNs because it leads to increased overhead and possible loss of monotonicity
[16]. Therefore, in subsequent sections, we discuss synchronization solely from
the perspective of timescale transformation.

4 Sources of Synchronization Error

Synchronization requires passing timestamped messages between nodes. How-
ever, this communication has associated message delay, which has both deter-
ministic and nondeterministic components that introduce error into the timescale
transformation. We call the sequence of steps involved in communication between
a pair of nodes the critical path. Figure 1 illustrates the critical path in a wire-
less connection. The critical path is not identical for all configurations, however,
it can typically be characterized by the steps outlined in the figure (for more
details, see for example [5], [6], [7]).

Send Access Transmission

Reception Receive

Propagation

Receiver:

Sender:

Fig. 1. Critical path

In both the mote and PC networks, the Send and Receive times are the
delays incurred as the message is passed between the application and the MAC
layer. These segments are mostly nondeterministic due to system call overhead
and kernel processing. The Access time is the least deterministic segment in
the critical path. It is the delay that occurs in the MAC layer while waiting for
access to the communication channel. The Transmission and Reception times are
the delays incurred from transmitting and receiving a message over the physical
layer, bit by bit. They are mostly deterministic and depend on bit rate and
message length. The Propagation time is the time the message takes to travel
between the sender and receiver. Propagation delay is highly deterministic.

For the mote-PC serial pathway, the Send and Receive times are similar to
wireless communication, however, the Access time is nonexistent. Because the
mote-PC connection does not have flow control, pending messages are immedi-
ately transmitted without having to wait for an available channel. The Transmis-
sion time starts when the data on the sender is moved in 16-byte chunks to the
buffer on the UART, and ends after the data is transmitted bit-by-bit across the
serial port to the receiver. Similar to wireless networks, the Propagation time is
minimal. The UART on the receiver places the received bits into its own 16-byte
buffer. When the buffer is almost full, or a timeout occurs, it sends an interrupt
to the CPU, which notifies the serial driver, and the data is transferred to main
memory where it is packaged and forwarded to the user-space application.



In addition to the error from message delay nondeterminism, synchronization
accuracy is also affected by clock skew when a pair of nodes operate for extended
periods of time without correcting their offset. For example, suppose at real-time
t, nodes N1 and N2 exchange their current clock values at local times N1(t) and
N2(t), respectively. At some later time, an event e occurs that is detected and
timestamped by N1, which sends its timestamp N1(te) to N2. If the clock rates on
each node were equal, N2 would simply be able to take the previously calculated
offset and use it to transform the event timestamp N1(te) to the corresponding
local time N2(te) = N1(te) + φ1

2(t). However, if the relative rate rr1
2(t) is not

equal to 1, but 1 + 20 ppm3, for example, an attempt to convert N1(te) to the
local timescale would result in an error of 20 ∗ 10−6 ∗ (N2(te)−N2(t))µs. If the
interval between the last synchronization and the event was one minute, the
resulting error due to clock skew alone would amount to 1.2 milliseconds!

For accurate synchronization, it is therefore necessary to minimize the non-
deterministic sources of error in the critical path, and account for the determinis-
tic sources by appropriately adjusting the timescale transformation. Clock skew
compensation is necessary for minimizing synchronization error when nodes run
for long periods of time without updating their offset. With an estimation of
clock offset and relative rate, a complete timescale transformation, which con-
verts an event timestamp Nj(te) from the timescale of node Nj to the timescale
of Ni, can be defined as

Ni(te) = Ni(ts) + rri
j(ts)[(Nj(te)−Nj(ts)]

where Ni(ts) and Nj(ts) are the respective local times at which nodes Ni and
Nj exchanged their most recent synchronization message, s.

5 Clock Skew Compensation

Independent of synchronization protocol, there are several options for clock skew
compensation. The simplest is to do nothing. In some applications, event detec-
tion and synchronization always occur so close together in time that clock skew
compensation is unnecessary. However, when it does become necessary, nodes
must exchange timestamps periodically to ensure their clocks do not drift too
far apart. In resource-constrained WSNs, this may be undesirable because it can
result in high message overhead. To keep message overhead at a minimum, nodes
can exchange synchronization messages less frequently and instead maintain a
history of their neighbors’ timestamps. Statistical techniques can then be used
to produce an accurate estimate of clock offset at any time instant.

A linear regression fits a line to a set of data points such that the square of the
error between the line and each data point is minimized overall. By maintaining
a history of n local-remote timestamp pairs, node Ni can derive a linear relation
Ni(t) = α + βNj(t) and solve for the coefficients α and β. Here, β represents an
estimation of rri

j(t). A problem arises when attempting to improve the quality
of the regression by increasing the number of data points. This can result in high
3 Parts per million (10−6). A relative rate of 1 ppm means that one clock ticks 1µs/s

faster than the other.



memory overhead, especially in dense networks. However, it has been shown that
sub-microsecond clock skew error can be achieved with as few as six timestamps
in mote networks [7].

Exponential averaging solves the problem of high memory overhead by keep-
ing track of only the current relative rate and the most recent neighbor-local
synchronization timestamp pair. When a new timestamp pair is available, the
relative rate is adjusted. Because the relative rate estimate is partially derived
from its previous value, there will be a longer convergence time before an accu-
rate estimate is reached. This can be reduced by providing the algorithm with
an initial relative rate, determined experimentally.

The phase-locked loop (PLL) is a mechanism for clock skew compensation
used in NTP [17]. The PLL compares the ratio of a current local-remote times-
tamp pair with the current estimate of relative rate. The PLL then adjusts
the estimate by the sum of a value proportional to the difference and a value
proportional to the integral of the difference. PLLs generally have a longer con-
vergence time than linear regression and exponential averaging, but have low
memory overhead. A diagram of a PLL implementation is illustrated in Fig-
ure 2. The Phase Detector calculates the relative rate between two nodes and
compares this with the output of the PLL, which is the previous estimate of
the relative rate. The difference between these two values is the phase error,
which is passed to the second-order Digital Loop Filter. Because we expect
there to be some amount of phase error, we choose a filter with an integra-
tor, which allows the PLL to eliminate steady-state phase error. To implement
this behavior in software, a digital accumulator is used, and is represented by
y(t) = (K1 + K2)u(t) − 10K2K1u(t − 1) + 10K2y(t − 1). The resulting static
phase error is passed to the Digitally Controlled Oscillator (DCO). The DCO
sums the previous phase error with the previous output, which produces the
current estimate of relative clock rate, and is fed back into the PLL. Techniques
for selecting the gains are presented in [17].

Digitally Controlled 
Oscillator

Delay

++

+
+

Digital Loop Filter

Phase Detector

K1

K2

Fig. 2. Phase-locked loop



6 Time Synchronization in HSNs

In this section, we present our HSN synchronization methodology and the archi-
tecture of our synchronization service.

Synchronization Methodology The accuracy of a receiver-receiver syn-
chronization protocol (such as RBS) is comparable to sender-receiver synchro-
nization (such as RITS) in mote networks. However, receiver-receiver synchro-
nization has greater associated communication overhead, which can shorten the
lifetime of the network. Therefore, we selected RITS to synchronize the mote
network in our HSN.

Synchronization of PC networks has been studied extensively over the past
four decades, however, popular sender-receiver protocols such as the Network
Time Protocol (NTP) [18] only provide millisecond accuracy. This is accept-
able because PC users typically do not require greater synchronization precision
for their applications. For microsecond-level synchronization accuracy in PC net-
works, a receiver-receiver protocol such as RBS outperforms sender-receiver pro-
tocols because it has less associated message delay nondeterminism. We therefore
use RBS to synchronize our PC network.

To synchronize a mote with a PC in software, we adopted the underlying
methodology of ETA and applied it to serial communication. On the mote, a
timestamp is taken upon transfer of a synchronization byte and inserted into
the outgoing message. On the PC, a timestamp is taken immediately after the
UART issues the interrupt, and the PC regards the difference between these two
timestamps as the PC-mote offset, φpc

mote. Serial communication bit rate between
the mote and PC is 57600 baud, which approximately amounts to a transfer time
of 139 microseconds per byte. However, the UART will not issue an interrupt
to the CPU until its 16-byte buffer nears capacity or a timeout occurs. Because
the synchronization message is six bytes, reception time in this case will consist
of the transfer time of the entire message in addition to the timeout time and
the time it takes to transfer the date from the UART buffer into main memory
by the CPU. This time is compensated for by the receiver, and the clock offset
between the two devices is determined as the difference between the PC receive
time and the mote transmit time.

Architecture We have developed a PC-based time synchronization service
for reactive data fusion applications in HSNs4. Figure 3 illustrates the interac-
tion of each component within the service. The service collects sensor data from
applications that run on the local PC, as well as from other service instances
running on remote PCs. It accepts event messages on a specific port, converts
the embedded timestamps to the local timescale, and forwards the messages to-
ward the sensor-fusion node. To maintain synchronization with the rest of the
PC network, the service uses RBS. The arrival times of the reference broad-
casts are stored in a reference table and accessed for timescale transformation.
In addition, the service accepts mote-based event messages, and converts the
embedded timestamps using the ETA serial timestamp synchronization method
4 Our synchronization service implementation is available as open source, and can be

found at http://www.isis.vanderbilt.edu/Projects/NEST/HSNTimeSync.html.



outlined above. The messages are then forwarded toward the sensor-fusion node.
The service instance that resides on the sensor-fusion node transforms incoming
timestamps into its local timescale before passing the event messages up to the
sensor-fusion application.

Kernel modifications in the serial and wireless drivers were required in order
to take accurate timestamps. Upon receipt of a designated synchronization byte,
the time is recorded and passed up to the synchronization service in the user-
space. The mote implementation uses the TimeStamping interface, provided with
the TinyOS distribution [19]. A modification was made to the UART interface
to insert a transmission timestamp into the event message as it is being trans-
mitted between the mote and PC. The timestamp is taken immediately before
a synchronization byte is transmitted, then inserted at the end of the message.

Kernel-space

User-space

Serial 
Timestamping

Wireless 
Timestamping

Time Sync Daemon

RBS 
receiver

Event message
receiver

Serial message
receiver

Timescale 
transformation

Event message
forwarder

Reference table

Sensing 
Application

Sensor-fusion 
Application

Fig. 3. PC-based time synchronization service.

7 Evaluation

Experimental Setup Our HSN testbed consists of seven Crossbow Mica2
motes and four stationary ActivMedia Pioneer robots with embedded Redhat
Linux 2.4 PCs, as illustrated in Figure 4. In addition we employ a Linux PC to
transmit RBS beacons. We chose this testbed because the issues that arise here
are representative of practical HSN configurations such as hierarchical clustering
and networks with multiple sinks. In addition, routing sensor data from a mote
network to a PC base station is a dominant communication pathway in sensor
network architectures.

The reference broadcast node transmits a reference beacon containing a se-
quence number once every ten seconds. The arrival of these messages are times-
tamped in the kernel and stored in a reference table. Simultaneously, a designated



Wireless
Serial

Motes PCs

Event Beacon
RBS Beacon

Sensor-fusion Node

Fig. 4. Our sensor network testbed. Arrows indicate communication flow.

mote broadcasts event beacons, once every 4000 ± ε milliseconds, where ε is a
random number in the range (0,1000). Six hundred event beacons are broadcast
per experiment. The motes timestamp the arrival of the event beacon, and place
the timestamp into a message. The message is routed over three hops in the
mote network to the mote-PC gateways, using RITS to convert the timestamp
to the local timescale with each hop. The message is next transferred from the
mote network to the PC network over the mote-PC serial connections, and the
event timestamp is converted to the timescale of the gateway PCs. The gateway
PCs forward the message two additional hops to the sensor-fusion node. The ex-
periment was repeated using the different clock skew compensation techniques
in the PC network, as described in Section 5. Because RITS synchronizes a sin-
gle sender with a single receiver at the time of data transfer, and because event
data is forwarded to the base station immediately after the event is detected or a
data message is received, clock skew compensation in the mote network provides
negligible improvement.

Subsystem Synchronization Results We performed a series of experi-
ments to quantify synchronization error on the individual critical paths in the
HSN. The results allow us to justify our selection of synchronization protocols
for the entire HSN. Note that no clock skew compensation was performed for
these initial tests. To determine synchronization error, we used the pairwise dif-
ference evaluation method. Two nodes, N1 and N2, simultaneously timestamp
the occurrence of an event, such as a reference beacon. These timestamps are
then transformed to the timescale of node N3, and the absolute value of their
difference represents the error in the timescale transformation.

Experimental results in the literature (e.g. [8], [13]) indicate that RITS works
well for synchronizing the mote network. We confirmed this on a 3-hop network
of Mica2 motes. A beacon was broadcast to two outlying motes, which times-
tamped its arrival and forwarded the timestamp to a network sink node 3 hops
away. At each intermediate node, the timestamps were converted to the local
timescale. Synchronization error was calculated as timestamps arrived at the
network sink node and, over 100 synchronizations, the average error was 7.27µs,
with a maximum of 37µs.



Based on the implementation described in [5], we synchronized our PC net-
work using RBS. We used a separate transmitter to broadcast a reference beacon
every ten seconds (randomized) for 100 runs. Two PCs received reference broad-
cast r at local times PC1(tr) and PC2(tr), respectively. Synchronization error
was 8.10µs on average, and 43µs maximum. Results are displayed in Figure 5a.

Figure 5b plots the synchronization error between two PCs using RITS. Ev-
ery two seconds, PC1 sent two synchronization messages to PC2. Immediately
before the command to send the first message was issued to the network in-
terface controller on the sender, a transmission timestamp PC1(ttx) was taken
in the kernel. This was found to be the latest possible time for the sender to
take the timestamp. However, by the time the timestamp had been acquired,
the message had already been transmitted, so a second message was needed to
deliver the timestamp to the receiver. PC2 recorded the timestamp PC2(trx) in
the kernel interrupt function upon receipt of the first message, and obtained the
sender timestamp in the second message shortly after. The results show that we
cannot expect consistent synchronization accuracy using RITS with the 802.11
networked Linux PCs. This is partly due to sender-side message delay error in
RITS, which is nonexistent in RBS. In addition, the PC-based operating system
is not tightly integrated with the network interface, and therefore the times-
tamping precision of the transmission and reception of sync bytes is degraded.

To synchronize the mote with the PC, we used the synchronization method-
ology described in Section 6. To evaluate synchronization accuracy, GPIO pins
on the mote and PC were connected to an oscilloscope, and set high upon times-
tamping. The resulting output signals were captured and measured. The test
was performed over 100 synchronizations, and resulting error was 7.32µs on av-
erage. The results are displayed in Figure 6. The majority of the error is due to
nondeterministic message delay resulting from jitter, both in the UART and the
CPU. A technique to compensate for such jitter on the motes is presented in [7],
however, we did not attempt it on the PCs.

0 10 20 30 40
0

10

20

30

40

50

Error (μs)

S
yn

ch
ro

ni
za

tio
ns

(a)

0 10 20 30 40 50 60 70 80 90+
0

10

20

30

40

50

Error (μs)

S
yn

ch
ro

ni
za

tio
ns

(b)

Fig. 5. (a) RBS and (b) RITS synchronization error between two PCs.

HSN Synchronization Results Figure 7 summarizes the synchronization
error for each type of clock skew compensation technique under normal oper-
ating conditions, high network congestion, and high I/O load. To simulate a



0 5 10 15 20 25
0

20

40

60

80

Error (μs)

S
yn

ch
ro

ni
za

tio
ns

Fig. 6. Mote-PC error using ETA.

high network load, an extra mote and PC (not pictured in Figure 4) were intro-
duced, each broadcasting messages of random size every 100 milliseconds. We
first examined synchronization without clock skew compensation. The sensor-
fusion node reported the average difference between the source timestamps as
12.05µs, with a maximum of 270µs. Next, we synchronized the PC network
using linear regression as our clock skew compensation technique. Linear regres-
sion was implemented with a history size of 8 local-remote timestamp pairs for
each neighbor, and the relative rate was initialized to 1. As expected, there was
a notable improvement in synchronization accuracy, with an average of 7.62µs
error, and a maximum of 84µs. Repeating the experiment using exponential av-
eraging gives errors similar to linear regression. For exponential averaging, we
chose a value of 0.10 for α, and initialized the average relative rate to 1. These
values were determined experimentally for rapid synchronization convergence.
The average error recorded was 8.82µs, with a maximum of 112µs. The average
synchronization error using phase-locked loops was 7.85µs, with a maximum of
196µs. For the digital loop filter, we used gains of K1 = 0.1 and K2 = 0.09,
determined experimentally.

Memory overhead is minimal for each clock skew compensation technique.
Nodes require 8 bytes for the current relative rate estimate for each neighbor
within single-hop range. In the case of linear regression, a small history buffer
for each neighbor is also required. Our implementation has no message overhead
(except for the beacons transmitted by the RBS server). In fact, the only mod-
ification to the data message is the addition of a four-byte timestamp. Because
these synchronization timestamps piggyback on data messages, no additional
messages are required. Our methodology is therefore energy efficient, because
message overhead directly impacts energy consumption. Convergence time de-
pends on input parameters to the clock skew compensation algorithm. We found
that, on average, it took the network 80 seconds to synchronize with linear re-
gression, 200 seconds with exponential averaging, and 1300 seconds with phase-



Normal Network I/O
0

10

20

30

40

50

E
rr

or
 (

μs
)

Linear regression

 

 

Normal Network I/O
0

10

20

30

40

50
Exponential averaging

Normal Network I/O
0

10

20

30

40

50
Phase−locked loops

Normal Network I/O
0

10

20

30

40

50
None

Mean error Standard deviation Median error Maximum error

337270 3921692081969910711284 89 78

Fig. 7. HSN synchronization error with different types of clock skew compensation
under normal operating conditions (Normal), high network congestion (Network), and
high I/O load (I/O).

locked loops. Note that these convergence times reflect an inter-beacon delay of
four seconds.

Discussion These results show that we are able to achieve microsecond-
accurate synchronization in the HSN. Because error accrues with each timescale
transformation, achieving this level of synchronization accuracy over a 6-hop
network of heterogeneous devices is significant. Although the maximum syn-
chronization error extends to tens of microseconds, it was principally caused by
a small number of synchronization attempts in which prolonged operating sys-
tem interrupt operations occurred. Although these were difficult to avoid, they
did not occur frequently, and the worst-case synchronization error for each type
of clock skew compensation technique was acceptable for most kinds of HSN data
fusion applications. Furthermore, time synchronization was not affected by the
most common types of nondeterministic behavior, such as network congestion
and I/O operations.

The accuracy of the mote-PC synchronization is quite good. Although we did
see error in the tens of microseconds, the maximum did not exceed 50µs, and
the average was below 10µs. This is significant, because it demonstrates that
microsecond accuracy synchronization can be achieved between mote and PC
networks, enabling the development of HSN applications that require precision
time synchronization. In addition, because this technique uses UART commu-
nication, it can easily be adapted for synchronization with UART-supported
peripheral sensing devices.

8 Conclusion

Time synchronization is an important and necessary component in most wireless
sensor network applications. However, as we describe in this paper, its implemen-
tation is non-trivial, especially when high-precision synchronization is required.
In networks of heterogeneous devices, the problem is compounded by issues of
system integration, and therefore alternative techniques must be employed to
reduce synchronization error. We have shown that with certain configurations,
microsecond accuracy can be achieved with careful selection of hardware, soft-
ware, and network components. Our methodology is generally portable to other



platforms, provided mechanisms exist within the target configuration that enable
low-level timestamping.

Acknowledgements This work was supported in part by a Vanderbilt Uni-
versity Discovery Grant, ARO MURI grant W911NF-06-1-0076, NSF CAREER
award CNS-0347440, and NSF grant CNS-0721604. The authors would also like
to thank Manish Kushwaha and Janos Sallai for their help with this project.

References

1. Williams, S.M., Frampton, K.D., Amundson, I., Schmidt, P.L.: Decentralized
acoustic source localization in a distributed sensor network. Applied Acoustics
67 (2006)

2. Ledeczi, A., Nadas, A., Volgyesi, P., Balogh, G., Kusy, B., Sallai, J., Pap, G., Dora,
S., Molnar, K., Maroti, M., Simon, G.: Countersniper system for urban warfare.
ACM Transactions on Sensor Networks 1(2) (2005)

3. Huang, M., Jiang, L., Liaw, P.K., Brooks, C.R., Seeley, R., Klarstrom, D.L.: Using
acoustic emission in fatigue and fracture materials research. JOM 50(11) (1998)

4. Romer, K.: Time synchronization in ad hoc networks. In: ACM MobiHoc. (2001)
5. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using

reference broadcasts. In: OSDI. (2002)
6. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor net-

works. In: ACM SenSys. (2003)
7. Maroti, M., Kusy, B., Simon, G., Ledeczi, A.: The flooding time synchronization

protocol. In: ACM SenSys. (2004)
8. Sallai, J., Kusy, B., Ledeczi, A., Dutta, P.: On the scalability of routing integrated

time synchronization. In: EWSN. (2006)
9. Yarvis, M., Kushalnagar, N., Singh, H., Rangarajan, A., Liu, Y., Singh, S.: Ex-

ploiting heterogeneity in sensor networks. In: IEEE Infocom. (2005)
10. Duarte-Melo, E., Liu, M.: Analysis of energy consumption and lifetime of hetero-

geneous wireless sensor networks. In: IEEE Globecom. (2002)
11. Lazos, L., Poovendran, R., Ritcey, J.A.: Probabilistic detection of mobile targets

in heterogeneous sensor networks. In: IPSN. (2007)
12. Romer, K., Blum, P., Meier, L.: Time synchronization and calibration in wireless

sensor networks. In Stojmenovic, I., ed.: Wireless Sensor Networks. Wiley and
Sons (2005)

13. Kusy, B., Dutta, P., Levis, P., Maroti, M., Ledeczi, A., Culler, D.: Elapsed time
on arrival: A simple and versatile primitive for time synchronization services. In-
ternational Journal of Ad hoc and Ubiquitous Computing 2(1) (2006)

14. Girod, L., Bychkovsky, V., Elson, J., Estrin, D.: Locating tiny sensors in time and
space: A case study. In: ICCD: VLSI in Computers and Processors. (2002)

15. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: ACM SenSys. (2004)

16. Elson, J., Romer, K.: Wireless sensor networks: A new regime for time synchro-
nization. In: HotNets-I. (2002)

17. Mills, D.L.: Modelling and analysis of computer network clocks. Technical Report
92-5-2, Electrical Engineering Department, University of Delaware (1992)

18. D. L. Mills: Internet time synchronization: The network time protocol. IEEE
Transactions on Communications 39(10) (1991)

19. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E.,
Culler, D.: The emergence of networking abstractions and techniques in TinyOS.
In: NSDI. (2004)


