INTEAMATEINAL FOHCILTY FORE AR IR EATHNG ENGINES

ISABE 97-7143
Automated, Real-Time Validation
of Turbine Engine Test Data Using

Explicit Parallelization on an

Eight-Processor Pentiunt Platform

Csaba Biegl|
Vanderbilt University
Department of Electrical Engineering
Nashville, TN
and

Donald J. Malloy and Mark A. Chappell
Sverdrup Technology, Inc., AEDC Group
Arnold Engineering Development Center
Arnold Air Force Base, Tennessee 37389

Xl | NTERNATIONAL SYMPOSIUM
ON
AIR BREATHING ENGINES

September 7 -12, 1977
Chattanooga, Tennessee

AUTOMATED, REAL-TIME VALIDATION OF TURBINE ENGINE TEST
DATA USING EXPLICIT PARALLELIZATION ON AN EIGHT-
PROCESSOR PENTIUM® PLATFORM*

Csaba Biegl!
Vanderbilt University
Department of Electrical Engineering
Nashville, TN

ABSTRACT

A parallel distributed machine consisting of eight
Pentium® PC clones is presented as a develop-
ment environment that emulates a distributed work-
station network. An overview of the model-based
fault identification approach and typical test results
are presented. Explicit parallelization on an eight-
processor Pentium® platform is shown to provide a
higher level of parallelization than with instruction-
level parallelizing compilers. An interactive graphi-
cal user interface and tools for explicit paralleliza-
tion of the recursive algorithms are described. The
ease of implementation of the parallelization
approach and highly satisfactory nature of the
numerical results indicate the effectiveness of the
distributed network for real-time data processing.

INTRODUCTION

Turbine engine testing at the Arnold Engineer-
ing Development Center (AEDC) is conducted to
evaluate engine operation at a wide variety of sim-
ulated altitude conditions. Hundreds of sen-

Donald J. Malloy and Mark A. Chappell
Sverdrup Technology, Inc., AEDC Group
Arnold Engineering Development Center

Arnold AFB, TN

ods. Although traditional methods produce mean-
ingful results, they are labor-intensive and time-
consuming. Consequently, application of the meth-
ods is typically restricted to a fraction of the avail-
able data, which diminishes the ability to detect
anomalous data and intermittent events. In order to
meet the requirements for a fast, thorough system,
AEDC has undertaken a development program
which uses a number of automated analysis tasks
to maximize test efficiency. Automated analysis
tasks include an event detection system, a rule-
based expert system with more than 150 checks,
and the model-based fault detection and diagnostic
system (Fig. 1).

An automated approach that emulates the tradi-
tional data validation and engine condition monitor-
ing processes is needed to ensure a comprehen-
sive assessment. Nonlinear component-matching
engine models embody the physical relationships
employed in the data validation and engine condi-
tion monitoring processes and can provide a basis
for automating them. However, in order to provide

sors, each producing measurements at rates in
excess of 100 samples/sec, are typically
installed in the engine and test facility to mea-

=]

TURBINE ENGINE TEST

sure aerothermodynamic performance. Conse-
guently, a typical 8-hr test can produce 30 mil-
lion samples of aerothermodynamic perfor-
mance data. The challenge is to ensure the
validity of the data, monitor the condition of the
engine, and to identify anomalies promptly.

The countless variations of steady-state
and transient engine operation and the neces-
sity to delineate between sensor anomalies
and abnormal engine deterioration, combined
with the large volume of data, overwhelms the
capabilities of traditional data validation meth-

¢ » ENGINE MODEL

EVENT
DETECTION
MODEL

RULE-BASED

EXPERT SYSTEM [—3»< COMPARE *
GOOD

FAULT
DETECTION
and
DIAGNOSIS | —— |

High Performance Com puter Platform) TIME

Fig. 1. Online test diagnostic system.

* The research reported herein was performed by the Arnold Engineering Development Center (AEDC), Air Force Materiel
Command. Work and analysis for this research were performed by personnel of Sverdrup Technology, Inc., AEDC Group, technical
services contractor for AEDC. Further reproduction is authorized to satisfy needs of the U. S. Government.

This paper is declared a work of the U. S. government and
not subject to copyright protection in the United States.

Approved for public release; distribution unlimited.

a sound basis, the models must accurately repre-
sent the test engine.

Calibration of a model to accurately represent a
specific engine is also a labor-intensive task. Sys-
tem identification techniques have commonly been
applied to reduce the effort required to calibrate a
model and have been used most effectively for cal-
ibrating simplified models to measurement sets for
which data uncertainties are well de-fined. How-
ever, system identification techniques can exhibit
numerical divergence as model complexity
increases or as data uncertainties increase. Con-
sequently, system identification techniques have
not been effectively applied to complex transient
models in a developmental test environment.
Therefore, to take advantage of the relationships
inherent in a component-matching model, a more
effective calibration technique is required.

Fault identification capabilities have been dem-
onstrated on systems for which major attributes of
the system (e.g., components, configuration, con-
trol) remain unchanged and the same operating
condition is repeated many times. A variety of
approaches provides these capabilities, including
expert systems, neural networks, and system iden-
tification technigues such as Kalman filtering. The
system identification techniques rely on models
that are well-defined for model-to-data closure and
fault identification while neural network techniques
rely on a statistically significant number of samples
at a selected operating condition. A component-
level model for a developmental engine is not
defined sufficiently for these techniques and under-
goes frequent change to adapt to changes in the
engine’s attributes. Additionally, a developmental
engine, because of frequent configuration
changes, rarely repeats a specific operating condi-
tion, reducing the applicability of system identifica-
tion and neural network approaches. Conse-
quently, a fault identification approach that is able
to adapt to engine system changes is required to
enable an automated model-based approach to
data validation and engine condition monitoring.

The fault identification approach! relies on an
automated real-time model calibration technique
and emulates traditional fault identification pro-
cesses. The technique focuses on single faults as
each occurs rather than on the estimation of an
optimal combination of all possible faults. The

* Real-time speed is defined as the speed required to continuously execute the fault detection algorithms at an average execution rate of

100 Hz.

approach is adaptable to changes encountered in
developmental turbine engine testing and relies on
a basic component-matching model that repre-
sents the engine cycle (e.g., turbofan, turboshatft,
turbojet). Industry-accepted engine modeling prac-
tices are combined with advanced fault diagnostic
algorithms and parallel computer techniques to
provide real-time fault identification capability for
steady-state and transient engine operation.

OVERVIEW OF MODEL-BASED FAULT
IDENTIFICATION APPROACH

To be effective, gas path analysis tools must
identify component performance deviations and
measurement errors. The model-based fault identi-
fication process consists of two main phases. The
first phase of the fault identification process relies
on a real-time* model-based evaluation of test data
to detect a probable fault resulting from measure-
ment errors, engine component events, or a combi-
nation of the two. After a fault is detected, auto-
mated model simulation studies are performed to
diagnose the most probable cause of the fault in
near real time. This detailed diagnostic information
enables the analysis engineer to assess the rela-
tive probability of the fault and, in most cases,
quickly identify and verify the actual cause of the
fault. If necessary, additional test data may be
acquired at previously tested stabilized engine
operating conditions to increase the fidelity of the
diagnosis. The following sections provide an over-
view of the adaptive engine model and the model-
based fault identification approach.

MODEL DESCRIPTION

A component-level model (CLM), capable of
simulating steady-state and transient engine oper-
ation, serves as the basis for the fault identification
process. The CLM combines the physical relation-
ships that govern engine operation with empirical
relationships that describe individual component
performance. The result is an adaptable model in
which the effects of changes to engine attributes
(e.g., components, configuration, controls) are
incorporated by making corresponding changes to
the model attributes. Additionally, the component-
matching approach quantifies the changes to
engine performance interrelationships which pro-
vide a prediction capability for the fault identifica-
tion process.

The CLM is an assembly of components con-
strained to operate in unison to simulate the
engine. An augmented turbofan engine, for exam-
ple, may include a variable-geometry fan and com-
pressor, combustor, high- and low-pressure tur-
bines, fan bypass duct, mixer, afterburner, and
variable exhaust nozzle (Fig. 2). The component
models combine thermodynamic process equa-
tions with empirically determined component
performance relationships to simulate component
performance. An iterative technique is used to sat-
isfy a set of implicit relationships that constrain the
assembly to mass, momentum, and energy con-
servation principles. Measured engine control vari-
ables are used to govern model operation. The
effects of rotor acceleration, heat transfer, and off-
schedule variable geometry are included, providing
a simulation of steady-state and transient engine
operation ranging from engine starting conditions
to maximum power.2 The CLM computes tempera-
ture, pressure, mass flow, and rotational speed for
each inter-component engine station.

Baseline component performance relationships
are an integral element of the CLM; however, they
are determined primarily for a baseline component
configuration isolated from the engine assembly in
a component rig test. Component performance
variations that result from operation within the
engine assembly are included by applying scaling
parameters to the baseline performance relation-
ships. The scaling parameters account for the
effects of intercomponent interactions, component
modifications, and off-schedule geometry. The
scaling parameters are usually applied as scalars
to flow, pressure ratio, and efficiency relationships
and are defined as a ratio between measured val-
ues and baseline values. The scalars for the entire

2 @) DIROXE
o ® 006

— 1

High-Pressure Turbine

Fig. 2. Station designation for an augmented turbofan

engine.

High- Variable

Fan Pressure |Combustor| Augmentor Exhaust
Compressor L Nozzle
Low-Pressure Turbine

engine, comprised of the scalars from all the indi-
vidual components, are the primary variables used
to calibrate the engine model to a specific mea-
surement set. The method used to determine the
values of the scalars for the fault identification pro-
cess is described in detail in Ref. 1.

FAULT DETECTION

The issue of detecting faults during develop-
mental turbine engine testing with newly developed
hardware at never-before-tested conditions is
extremely complex. Therefore, the real-time
model-based fault identification approach is used
to supplement existing approaches that consider
on-site calibrations, online monitoring of instrumen-
tation systems, comparison of redundant measure-
ments, steady and non-steady measurements, and
measurement to predicted responses.

The fault detection approach relies on interpre-
tation of measured and predicted responses and
interrelationships throughout the propulsion system
quantified by the CLM. A simultaneous multipoint
analysis is used to provide a relative assessment
of measurement error and changes in component
performance. The multipoint analysis includes the
following:

1. Interpretation of differences between pre-
dicted and measured aerothermodynamic mea-
surements for the time being considered (to vali-
date modeling assumptions and detect measure-
ment errors);

2. Interpretation of changes in component flows
and efficiencies using data immediately prior to
and during the time being considered (to detect
abrupt faults); and

3. Interpretation of changes in component

®0O flows and efficiencies using data considerably

prior to and during the time being considered
(to detect slower faults such as engine degra-
dation or sensor drift).

A weighted root-sum-square fault detection
parameter is calculated as a measure of the
probability of a fault. The fault probability is a
function of time-dependent changes in com-
ponent flows and efficiencies, the ability to
predict test measurements not directly used in
the real-time model calibration process, and
changes in component flows and efficiencies
relative to baseline values. The sensitivity of

the fault detection system is varied to maximize the
probability of detecting faults, and to minimize the
probability of false alarms. Sensitivity is increased
when measurement uncertainties are lower (e.g.,
stabilized operating conditions at higher power set-
tings). Further increases in sensitivity result at pre-
viously tested conditions and configurations (e.g.,
no hardware or instrumentation system changes).
Some reduction in sensitivity is made to account
for higher data and model uncertainties during
engine starts.

FAULT DIAGNOSIS

Once a fault is detected, an automated model-
based methodical search is performed to isolate
the most probable cause of the fault. The probabil-
ity of accurately diagnosing the fault is increased,
as previously stated, by emulating the diagnostic
process performed by the analysis engineer. Spe-
cifically, the automated model-based fault diagno-
sis approach concentrates on identifying measure-
ment errors which are the most probable faults. If
the fault cannot be attributed to measurement
error, it is interpreted as a change in component or
overall engine performance.

Once a fault is detected, the fault diagnostic sys-
tem concentrates on identifying individual sensor
faults and tries to identify the erroneous measure-
ment and the magnitude of the error. The calibrated
CLM (calibrated with data immediately prior to
detection of the fault) is used to assess the proba-
bility of measurement errors. Each measurement is
sequentially perturbed, varying magnitudes to
determine the most probable cause of the fault
(e.g., fuel flow is perturbed (x 5 percent in 0.5-per-
cent increments, then airflow is perturbed, etc.) The
model-based diagnostic approach relies on inter-
pretation of measured and predicted responses and
interrelationships throughout the propulsion system
guantified by the CLM. Due to the highly nonlinear
interrelationships throughout the propulsion sys-
tem, multiple perturbations of varying magnitudes
are required to evaluate fault probabilities accu-
rately. The measurement error probability is the
inverse of the fault detection parameter. The error
probability considers differences between predicted
and measured parameters and both rapid and slow
changes in component flows and efficiencies.

TARGET PLATFORMS

The data validation process with an embedded
engine model requires a significant amount of com-

puting power to execute in a real-time test environ-
ment. A network of distributed processors was cho-
sen as the target platform to provide the computing
power required for the entire process. A prototype
platform was built to demonstrate the effectiveness
of a distributed processor approach in providing
the required computing power and as an environ-
ment for program development. The prototype plat-
form consists of eight 150-MHz Pentium® PC
clones interconnected via a dedicated high-speed
(100 Mbits/sec) Ethernet network in a cluster con-
figuration. The Pentium® cluster is scaleable since
processors may be added or removed as comput-
ing requirements vary. As shown in Fig. 3, the
high-speed ports can also be connected in a point-
to-point scheme (without using a hub) to build an
eight-node hypercube.

[——
L - -~ Node 0 |
L - Node 1 |
L1 —— High-Speed Network
[- Node 2] --- Low-Speed Network
L '} Z Node 3 |
|] El Node 4]
L 4 Node 5 |
[1 LA Node 6 |
- Node 7]
I

Fig. 3. Eight-processor Pentium® cluster
architecture.

Each node of the cluster has four network ports:
one of these is a standard 10 base-2 (coaxial) port;
the other three are high-speed 100 base-T (twisted
pair) ports. The coaxial ports are used for “stan-
dard” (remote login, remote shell, network file sys-
tem, and parallel applications with low communica-
tion bandwidth requirements) network traffic while
the high-speed ports are used for application-level
communications. The high-speed ports are con-
nected in a point-to-point scheme (without using a
hub) to build the eight-node cluster.

Each processor runs a copy of either the Linux
operating system or Windows NT™ in a multiboot
configuration. This allows users to develop and test
parallel code under their preferred operating envi-
ronment. The parallel machine also includes sys-
tem management tools (small collection of shell
scripts added to the standard Linux distribution) to
facilitate control of the distributed processors. The
Message Passing Interface (MPI)3 has been

ported to both environments to provide application-
level communication services over the high-speed
ports. Special user-level network device drivers
were developed for MPI to control the high-speed
Ethernet ports without the need to use operating
system calls. Other parallel programming environ-
ments available on the system include PVM and a
simple TCP/IP-based communication library.

SOFTWARE ENGINEERING CONSIDERATIONS

All current component-level engine models
used at AEDC have been written in FORTRAN.
Several reasons for the use of FORTRAN are dis-
cussed below:

« Efficiency: Although there are more modern
programming languages available, FORTRAN
is still one of the best languages for fast
numerical computations. The lack of "modern”
features (e.g., pointers) makes it relatively
easy to write very good optimizing compilers
for FORTRAN. Additionally, the emerging
High Performance Parallel FORTRAN (HPF)
standard promises to simplify creation of par-
allel FORTRAN programs — at least for cer-
tain kinds of parallel architectures and for cer-
tain types of problems.

Historical Reasons: Most of the existing
engine model software was developed on
mainframes and later ported to personal com-
puters and workstations. On the mainframe
the natural development language was FOR-
TRAN.

Developers: Most engine models are written
by aeromechanical engineers who are fluent
FORTRAN programmers who want to concen-
trate on the aeromechanical aspects of the
problem instead of software engineering
issues.

Modular Legacy Software: Most models have
been developed using existing FORTRAN
software libraries and a modular structure
applicable to arbitrary engine configurations.
The modular structure typically consists of a
main program, engine-dependent subroutines
and data, component routines, and utility rou-
tines. The component routines use general-
ized logic for determining engine component
operating characteristics and for performing
aerothermodynamic calculations. Utility rou-
tines perform vital tasks such as cycle balanc-

ing, data interpolation, and calculation of gas
properties. Together, the customized FOR-
TRAN library and the engine-specific data
become the model of the given engine.

he programming style used in most existing
models relies heavily on global data structures
stored in FORTRAN common blocks. Moreover,
most software was not intended either for parallel
execution or for integration with a graphical user
interface. In addition, input and output of the mod-
els is typically done with formatted FORTRAN data
files. Effective techniques for converting existing
FORTRAN software for parallel operation are pre-
sented in the following sections.

PARALLELIZATION OF FORTRAN SOFTWARE

The next issue after selecting the hardware
platform was to select the methods and evaluate
the tools that are available for converting existing
software for parallel execution. Generating parallel
software from FORTRAN input is a technique that
has been used with success for some time. FOR-
TRAN is a primitive language when compared to
later languages (e.g., ADA, C, Pascal). This sim-
plicity is, in fact, an advantage when creating paral-
lelizing compilers. In modern languages which sup-
port pointers, various subtle interactions are possi-
ble between variables — for this reason it is much
harder to write a correct and efficient parallel soft-
ware generator for them.

A number of successful FORTRAN compilers
for shared memory Multiple Instruction Stream/
Multiple Data Stream (MIMD) or Single Instruction
Stream/Multiple Data Stream (SIMD) architectures
have been developed. One of the best examples is
the vectorizing FORTRAN compiler for Cray super-
computers which parallelizes on the instruction
level. These compilers use techniques such as
unrolling loops and assigning the iterations of the
loop to different processors. These techniques
work well in shared memory architectures, but in
distributed systems their applicability is limited. In
addition, shared memory parallel computers have
limited scalability due to memory contention prob-
lems; this effectively limits the possible speedup
which can be achieved using these techniques.

Generating good parallel software for scaleable
distributed parallel architectures is a more complex
task. Simple instruction-level parallelizing does not
work very well on these architectures due to com-
munication overhead problems. For these reasons,

parallelizing FORTRAN compilers for distributed
architectures are just starting to emerge. These
compilers frequently rely on the High Performance
FORTRAN (HPF) extensions of the FORTRAN 90
language standard.

Two typical parallel software generators which
claim FORTRAN support on distributed architec-
tures are the SAGE* toolkit and the FORGE family
of compilers.® The SAGE toolkit is being developed
at the Department of Computer Science, Indiana
University, Bloomington, under a DARPA grant. Its
primary aim is to implement a parallel version of the
C++ language (pC++), but it supports C and FOR-
TRAN as well. The program source is first trans-
lated by one of the available compiler front end
translators (pC++, C or FORTRAN) into an inter-
mediate form. The output of this phase is a huge
dependency file that contains the representation of
all of the program's instructions and their interac-
tions. This dependency output in itself is a valuable
resource; various browsers can be used to analyze
program structure, calling sequences, and data
usage. The toolkit also provides software genera-
tors that can compile the dependency file for vari-
ous shared memory and distributed parallel target
architectures. The supported distributed target
environments include the Intel Paragon system and
two widely accepted message passing standards
for distributed computing: Parallel Virtual Machine
(PVM)® and the MPI.2 The SAGE FORTRAN front-
end currently processes only FORTRAN 90 input.
Support for HPF extensions is being developed.
The current implementation will not parallelize
instructions operating on global data.

The FORGE compiler family is a commercial
product offered by Advanced Parallel Research,
Inc. It contains both interactive program depen-
dency analyzers/browsers and batch mode paral-
lelizing compilers. The interactive tools only support
FORTRAN 90, while the batch mode compilers
support both FORTRAN 90 and FORTRAN 77. The
compilers generate FORTRAN 77 output for either
shared memory or distributed architectures. The
distributed architecture output contains calls to
FORGE's own communication library. This library is
implemented as a wrapper on top of commonly
available communication interfaces such as PVM,
EXPRESS, and TCP-IP. Most of the tools in the
compiler family seem to be geared towards the
FORTRAN 90 language and HPF, but some FOR-
TRAN 77 parallelization support is provided as well.

In summary, both SAGE and FORGE generate
better parallel software from FORTRAN 90 input
with HPF directives than from FORTRAN 77 input.
However, FORTRAN 77 programs which rely
extensively on global variables will probably never
be parallelized by automatic tools to the same
extent as HPF input. As an alternative to existing
parallel software generators, explicit algorithm par-
allelization and an associated tookit are discussed
in the following sections.

EXPLICIT ALGORITHMIC PARALLELIZATION

The other avenue for parallelizing existing FOR-
TRAN software is to understand the algorithm
being used and distribute the different functional
blocks of the program explicitly to different proces-
sors. This also requires that explicit calls to an
underlying communication library be made at the
points where synchronization and/or data
exchange is necessary. Communication libraries
such as MPI, PVM, and EXPRESS can be used for
this purpose.

The advantage of explicit parallelization is that
frequently, a much higher level of parallelization
can be obtained than with instruction-level parallel-
izing compilers. The disadvantage is that explicit
parallelization requires changes to the original pro-
gram and conditional compilation to maintain serial
and parallel versions of the software. Also, the
algorithms must be analyzed (or reformulated) to
find the best decomposition. The dependency ana-
lyzer components of some automatic tools can
simplify this process.

DEVELOPMENT OF A PARALLELIZATION
TOOLKIT

A parallelization toolkit has been developed to
aid in explicit software parallelization. Major ele-
ments of the toolkit include:

» Performance Analysis: The first task of explicit
software parallelization is to identify the soft-
ware components to parallelize. Various soft-
ware profiler tools with analyzers for their out-
put can be used for this purpose. Our toolkit
contains an analyzer tool which complements
the standard UNIX profilers by post-process-
ing their output into a more readable format.

« Dependency Analysis: After the design of the
parallel conversion and distribution of the soft-
ware has been completed, the next task is to

identify the data which must be communicated
between the different processors. Two types
of dependency analysis tools can be used for
this purpose: static and run-time. Develop-
ment of a static dependency analyzer based
on the SAGE toolkit has begun. A significant
development effort is required to process arbi-
trary FORTRAN software. For this reason,
run-time dependency analysis is also being
considered. This technique is based on a
FORTRAN compilation process which uses
the AT&T F2C translator. The intermediate C
output of the F2C translator is instrumented
using preprocessor macros and linked-in
debugging libraries. This technique can be
used to trace the usage of various common
block variables by the different subroutines of
the program. A post-processor is then used to
generate communication calls based on the
global variable access patterns generated by
the instrumented program. This technique is
not perfect, since it is possible for the instru-
mented program to avoid some instruction
branches and create an incomplete variable
access signature. Nevertheless, a significant
portion of the parallelized communication soft-
ware can be developed automatically using
this method. It is anticipated that upon comple-
tion of the static data dependency tool, the two
analysis methods will complement each other.

Run-Time Libraries: One of our goals for the
explicit parallelization work was to develop a
method which requires minimal changes to
the original software to avoid maintaining sep-
arate sequential and parallel versions of the
software. This required the development of
powerful communication libraries to parallelize
the software using a minimal number of addi-
tional subroutine calls. We implemented such
a communication layer on top of the standard
MPI calls. A TCP/IP-based implementation of
the communication library is also available.
This layer was specifically tuned for parallel-
ization of global variable-oriented FORTRAN
software. To accomplish the conversion of the
software with minimal changes, a powerful set
of communication primitives was developed to
work on large data sets grouped by the FOR-
TRAN NAMELIST construct. A dummy ver-

sion of this library is provided for building
sequential versions of the software.

MODEL IMPLEMENTATION

Implementation of the nonlinear model and
large amounts of data provided for gas path analy-
sis impose a considerable computational burden,
not only in terms of cycle time, but also in terms of
divergence control of the nonlinear model. Several
approaches were employed to counter these bur-
dens. The first was to simultaneously balance the
cycle equations and minimize errors between the
model and the data. The second was to optimize
the combination of perturbation variables and cycle
constraints associated with the nonlinear model.
This maximized the accuracy of the simulation and
ensured convergence with minimal iteration. Effec-
tive use of the partials correction in the modified
Newton-Raphson solver eliminated the need to
recalculate derivatives and minimized any potential
benefits associated with parallelizing the numerical
solver.

In conjunction with the above improvements,
"task level" parallel processing was used to provide
real-time operation. Parallel computing processes
shown to greatly enhance the real-time computing
capability include simultaneous calibration of com-
ponent maps, calculation of engine processes
(cycle balancing) and integration of dynamic quan-
tities (rotor and gas dynamics) for time-dependent
data. Surprisingly, use of model segmentation and
distribution algorithms from the "Parallel Processor
Engine Model Program"’* failed to greatly enhance
the real-time capability of the parallel technique
and tended to increase the effect of numerical
errors and their cumulative effects over time.

SIMULATION INTERFACE

In a related effort, a universal Graphical User
Interface (GUI) library has been developed for use
with turbine engine model software. The purpose
of this GUI is to support the interactive execution of
various simulations and provide data visualization
capabilities.

The main design goals of the GUI were univer-
sal applicability and user extensibility. The same
user interface should support several different

* The parallel processing engine model program is a generalized engineering tool intended to aid in the design of parallel processing
real-time simulations of turbofan engines. The program had two major objectives. These were to provide a framework in which a wide
variety of parallel processing architectures could be evaluated and to provide tools with which the parallel implementation of a real-

time simulation technique could be assessed.

engine model types and their applications. This
was achieved by providing a set of core functions
for database services and basic plots and an appli-
cation program interface (API) for implementation
of customized functions. Most of the custom func-
tions are implemented using user-defined FOR-
TRAN software (e.g., engine models, user-defined
plot formats, and custom data file interfaces) which
can be registered into the basic GUI framework.
The main software components of the GUI design
are shown in Fig. 4.

GUI LIBRARY

Control
Menus

A Plot
p Engine
I
Standard
File

USER CODE

File
Scanners
Simulation
Codes
Plot
Routines
Plot
Data Database
Transformations

Fig. 4. Graphical User Interface (GUI) architecture.

Scanners

* Plot Database: This database contains
records of measured and simulated variables
generated by reading in online data or by run-
ning the linked-in simulation software. The
database can be searched by parameter
names and classes. Each parameter can
have several data records associated with it
which are keyed by data class names. The
Plot Database also allows user-registered
simulation subroutines to enter data during a
simulation run. In this mode, plots are updated
online as the simulation progresses.

Plot Engine: This component is responsible for
generating the plots that are displayed in the
plot windows of the user interface. A slightly
modified version of the public domain GNU-
PLOT plotting program was used for this pur-
pose. The Plot Engine operates in either of two
modes; it can create standard plots from the
data in the Plot Database or display data gen-
erated by a user-registered plot subroutine.

» Standard Data File Scanners: The interface
provides the capability to scan a few "generic"

data file formats. These include binary data
files and tabulated data. For more customized
file formats, it is possible to register routines
using the Scanner Library.

User Interface Menus and Controls: These
components contain the menu options
through which the various screens, panels,
and menus of the interface are accessed.
These control components coordinate the var-
ious operations of the other interface services
such as selecting the plot window layout,
assigning parameters from the Plot Database
to the various plot windows for display, and
configuring the plot windows. Most of the con-
trol services can be invoked via top-level pull-
down menus.

Application Program Interface (API): This
layer contains the entry points through which
user software can be registered into the user
interface. The API is provided for C or C++
programs and for FORTRAN programs com-
piled with an F2C translator. FORTRAN entry
points are implemented as a wrapper around
the C entry points to adapt the interface to the
FORTRAN environment.

The universal interface library has been imple-
mented for a variety of platforms including IBM
PCs running DOS (full screen) or 32-bit Windows
applications (WIN32S, Windows™ 95, and Win-
dows NT) and several UNIX workstations with the
X window environment (Linux, SGI, and HP).

The universal interface was written in C++
using common interface elements (e.g., buttons
and scrollbars) which were adapted from public
domain toolkits. Some new widgets were devel-
oped because none of the commercially available
"portable” toolkits cover all of the targeted plat-
forms (DOS full-screen graphics, Windows, and
the X Window system) -- at least not without unac-
ceptable restrictions (like limiting the compiler
choices under DOS and Windows or requiring a
Motif license for workstations).

DEMONSTRATED INCREASE IN EXECUTION
SPEED

The model-based fault detection algorithms
executed at about 20 samples/sec on a single 150-
MHz Pentium" platform (100 samples/sec required
for real-time operation). Attempts to run the soft-
ware on available high-performance single-proces-

sor workstations did not result in real-time opera-
tion. The software was parallelized using a repli-
cated worker approach. Different time samples are
sent to different processors for cycle balancing and
calculation of engine processes. The scheme uses
one central processor to collect engineering unit
data from the network, distribute the data between
the processors, collect and order the results, iden-
tify component performance changes and mea-
surement errors from the reduced data, and run the
GUI. Special care was taken to correlate time-
dependent processes.

The effectiveness of the Pentium platform and
parallelized software was evaluated using an 89-
sec test maneuver. Figure 5 shows the execution
time as a function of the number of worker proces-
sors employed. The results convincingly show that
the eight-processor Pentium" system is fully capa-
ble of executing the parallelized model-based data
validation and fault detection algorithms in real
time.

Execution Time

Slower than
Real Time

Faster than
RFaI Time

| | | | | |
1 2 3 4 5 6 7 8

Number of Processors

Fig. 5. Pentium® platform effectiveness.

TEST RESULTS

The fault detection and diagnostic algorithms
were evaluated using data from two distinctly dif-
ferent modern military turbofan engines undergo-
ing ground test development at simulated altitude
test conditions. Data from hundreds of sensors
were recorded at rates up to 100 samples/sec to
characterize aerothermodynamic engine perfor-
mance. Both engines were tested over a wide
range of steady-state and transient engine operat-
ing conditions enabling a comprehensive assess-
ment of the suitability of the approach for develop-
mental engine testing.

The three-step model calibration process1 is an

integral part of the fault identification process.
Accurate predictions from the CLM are a key ele-
ment of the fault detection and diagnostic pro-
cesses. Figure 6 shows a prediction of engine
thrust compared to engine test data after model
calibration. Predicted thrust provides an indepen-
dent measure of the real-time model calibration
capability, since measured thrust is not used dur-
ing the calibration process. The close agreement
between measured thrust and predicted thrust
demonstrates the accuracy provided by the model
calibration capability.

Moderate Deceleration
o IR T, (Intermediate-Idle)

y Predicted

x / (Solid Line)

Measured

Gross Thrust

Time

Fig. 6. Predicted and measured gross thrust.

Propulsion control schedules and engine hard-
ware often vary significantly from basic design con-
ditions during developmental engine testing. The
situation is compounded by the use of specific pro-
pulsion control laws and schedules developed dur-
ing engine tests to tune overall system perfor-
mance to match individual mission roles. The
capability to identify measurement errors and
anomalous changes in component performance
during control logic development is a formidable
task because changes to the control laws may
result in atypical, but valid, engine operation. False
alarms and incorrect diagnoses will result unless
the control law changes are reflected in the fault
identification analyses. For example, potentially
anomalous engine behavior or anomalous mea-
surement of engine airflow is indicated in Fig. 7 by
an erratic, rather than uniform, increase in engine
airflow for a moderate engine acceleration. How-
ever, the erratic change in airflow is a result of con-
trol law manipulation and represents valid engine
operation. The real-time portion of the calibration
process, discussed previously, inherently accounts

for the control law changes and results in a confir-
mation of valid engine operation for the data shown
in Fig. 7. The fault identification process correctly
reported no faults, thus demonstrating its suitability
for developmental engine testing.

Moderate Acceleration
(Idle-Intermediate)

2

o

©

<

@ Measured

o \

£

()

£

[<)]

c

L Expected
(Normal
Operation)

Time

Fig. 7. Effects of propulsion controls on airflow

measurements.

Sensor faults identified during transient engine
operation using the model-based approach include
the identification of a slowly responding pressure
measurement used in the determination of engine
inlet airflow. The fault was initially identified as an
engine airflow measurement anomaly indicated by
differences between normal and faulty airflow indi-
cations as shown in Fig. 8. The differences are evi-
dent near the end of the deceleration and, to a
lesser extent, in the steady portion of the data
immediately prior to and following the deceleration.
Further investigation revealed the root cause as a

o —— e L -ul

Snap Deceleration
| (Intermediate-Idle)

Engine Inlet Airflow

Nominal Pressure Line e

Time

Fig. 8. Effect of slowly responding pressure mea-

surement on aiflow measurement.

crimped pressure line which affected the transient
airflow measurement. The diagnosis demonstrated
the applicability to transient engine operation by
identifying a faulty time response that is not detect-
able during steady-state engine operation.

Data anomalies are equally likely to occur dur-
ing steady-state and transient engine operation,
and the wide range of engine operating conditions
enabled detection and diagnosis of a number of
sensor faults while demonstrating a low occurrence
of false alarms. The fault identification approach is
most sensitive during steady-state engine opera-
tion at high power settings and is capable of
detecting very small (less than 1 percent) errors.
Common data anomalies that have been identified
using the model-based approach include identifica-
tion of sensor biases, drifts, level shifts, and exces-
sive noise.

An important function of the fault identification
capability is its ability to distinguish between mea-
surement anomalies and engine anomalies. Data
for a steady-state engine operating condition were
chosen for clarity to illustrate the capability to dis-
tinguish between measurement and engine anom-
alies. For steady-state engine operation, data in
Fig. 9 seem to indicate the occurrence of an engine
anomaly implied by an abrupt reduction in com-
pressor efficiency and a corresponding reduction in
flow capacity. The effects of the observed changes
in compressor performance were also seen in
other parameters throughout the engine, as would
be expected with a deviation in compressor perfor-
mance. Superficial inspection of the data leads to a
conclusion that a compressor anomaly exists.

b

Airflow
}

T T— —
> |
Q
@ 4%
(&)
]
- AA*"\\A/_/M‘
2 4 6 8 10
Time, sec

Fig. 9. Abrupt change in compressor performance
during steady operation.

However, the fault identification process diag-
noses the effects of a faulty P; measurement on
related cycle parameters, correctly identifies the P5
measurement anomaly, and distinguishes it from
an apparent engine anomaly. The high probability
of a Pz anomaly, as determined by the fault identifi-
cation process, is shown relative to the probability
of other measurements in Fig. 10. In contrast, if the
probability of a P3 error had also been low, a com-
pressor anomaly would have been diagnosed.
Independent analysis using traditional methods
confirmed the anomalous P5 diagnosis.

-0.7%
(Estimated Measurement Bias)
Most Probable Fault

Measurement Error Probability

Measurement Bias, percent

Fig. 10. Fault identification estimate of bias.

Important to note in the anomalous P3 diagno-
sis is that the fault was detected early in the event
(Fig. 11), clearly exceeding the fault detection
threshold. Although the P3 measurement eventu-
ally shifted to 95 percent of its true value (i.e., 5-
percent error), the fault was identified while the

N
1% 5% Steady-State
Operation
Fault
Identified

Compressor Exit Pressure

10
Time, sec

Fig. 11. Abrupt change in compressor exit pres-
sure during steady engine operation.

11

error was approximately 0.7 percent. The P53 fault,
which was indicative of other faults that were iden-
tified, demonstrated the capability of the model-
based approach to successfully detect and diag-
nose sensor anomalies as they occur and distin-
guish these anomalies from variations in compo-
nent and overall engine performance.

The technique has been demonstrated during
developmental turbine engine testing at simulated
altitude conditions to assess the viability of the
approach both in terms of the functionality of the
model-based approach and the required computa-
tional speed. The results indicate that the tech-
nique is capable of detecting and diagnosing
abrupt changes in measurements.

SUMMARY

The primary goal of the research described in
this document was to develop the computational
technologies necessary to permit real-time opera-
tion of turbine engine modeling technologies in an
online test environment. Work has progressed suc-
cessfully on multiple fronts to permit real-time oper-
ation of the model-based fault detection algorithms
and GUI on a distributed parallel network. Explicit
parallelization of the model-based fault detection
and diagnostic algorithms on an eight-processor
Pentium platform is shown to provide a higher level
of parallelization than with instruction-level parallel-
izing compilers. The ease of implementation of the
parallelization approach and highly satisfactory
nature of the numerical results indicate the effec-
tiveness of the distributed network for real-time
data processing.

REFERENCES

1. Malloy, D. J., Chappell, M. A., and Bieg|, C.,
"Real-Time Fault Identification for Developmental
Turbine Engine Testing," ASME Report 97-GT-
141, June, 1997.

2. Chappell, M. A., and McLaughlin, P. W., “An
Approach to Modeling Continuous Turbine Engine
Operation fro Startup to Shutdown,” Journal of Pro-
pulsion and Power, Vol. 9, No. 3, May-June 1993.

3. MPI Standard, version 1.1, MPI-2 Forum,
June 12, 1994.

4. "Distributed pC++: Basic Ideas for an Object
Parallel Language,” Scientific Computing, Vol. 2,
No. 3, Fall 1993.

5. "Automatic FORTRAN Parallelization for Dis-
tributed Memory Systems with FORGE Magic/
DM," Applied Parallel Research, Inc., Placerville
CA, 1992.

6. PVM: Parallel Virtual Machine -- A Users’
Guide and Tutorial for Networked Parallel Comput-
ing, MIT Press, Cambridge, 1994.

7. "Parallel Processor Engine Model Program,"
NASA-CR-174641, January 1984.

12

	ABSTRACT
	INTRODUCTION
	OVERVIEW OF MODEL-BASED FAULT IDENTIFICATION APPRO...
	TARGET PLATFORMS
	SOFTWARE ENGINEERING CONSIDERATIONS
	PARALLELIZATION OF FORTRAN SOFTWARE
	MODEL IMPLEMENTATION
	DEMONSTRATED INCREASE IN EXECUTION SPEED
	TEST RESULTS
	SUMMARY
	REFERENCES
	1. Malloy, D. J., Chappell, M. A., and Biegl, C., ...
	2. Chappell, M. A., and McLaughlin, P. W., “An App...
	3. MPI Standard, version 1.1, MPI-2 Forum, June 12...
	4. "Distributed pC++: Basic Ideas for an Object Pa...
	5. "Automatic FORTRAN Parallelization for Distribu...
	6. PVM: Parallel Virtual Machine -- A Users’ Guide...
	7. "Parallel Processor Engine Model Program," NASA...

	Fig. 1. Online test diagnostic system.
	Fig. 3. Eight-processor Pentium® cluster
	architecture.
	Fig. 4. Graphical User Interface (GUI) architectur...
	Fig. 5. Pentium® platform effectiveness.
	Fig. 6. Predicted and measured gross thrust.
	Fig. 7. Effects of propulsion controls on airflow ...
	Fig. 8. Effect of slowly responding pressure measu...
	Fig. 9. Abrupt change in compressor performance du...
	Fig. 10. Fault identification estimate of bias.
	Fig. 11. Abrupt change in compressor exit pressure...
	Fig. 2. Station designation for an augmented turbo...
	cover.pdf
	ISABE 97-7143
	Automated, Real-Time Validation
	of Turbine Engine Test Data Using
	Explicit Parallelization on an
	Eight-Processor Pentium‚ Platform
	Csaba Biegl
	Vanderbilt University
	Department of Electrical Engineering
	Nashville, TN
	and
	Donald J. Malloy and Mark A. Chappell
	Sverdrup Technology, Inc., AEDC Group
	Arnold Engineering Development Center
	Arnold Air Force Base, Tennessee 37389

