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Abstract 

Model-Integrated Computing (MIC) is an infrastructure for model-based design of real-time and embedded 
software and systems. MIC places strong emphasis on the use of domain-specific modeling languages 
(DSMLs) and model transformations in design flows. Building on our earlier work on transformational 
specification of semantics for DSMLs, the paper proposes a “semantic unit” - a common semantic model - 
for timed automata behavior. The semantic unit is defined using Abstract State Machine (ASM) formalism. 
We show that the precise semantics of a wide range of timed automata based modeling languages (TAMLs) 
can be defined through specifying model transformations between a domain-specific TAML and the 
semantic unit. The proposed method that we call semantic anchoring is demonstrated by developing the 
transformation rules from the UPPAAL and IF languages to the semantic unit. 
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1. Introduction 
Emerging frameworks for model-based design such as Model-Integrated Computing (MIC) [1], Model 
Driven Architecture (MDA) [2] and Model Driven Design (MDD) [3] share the common vision of raising 
the level of abstraction in system and software design by placing models that are formal and manipulable in 
the focus of the design process. In all approaches to model-based design, modeling languages play major 
roles that fall into the following three categories: 

1. Unified (or universal) modeling languages, such as UML [4] and Modelica [5], are designed with 
goals similar to programming languages; they optimized to be broad and intend to offer the advantage 
for adopters to remain in a single language framework independently from the domain and system 
category they concerned with. Necessarily, the core language constructs are tailored more toward an 
underlying technology (e.g. object modeling) rather then to a particular domain - even if extension 
mechanisms such as UML profiling allow some form of customizability. 

2. Interchange languages, such as the Hybrid System Interchange Format (HSIF) [6], are designed for 
sharing models across analysis tools (hybrid system analysis). Interchange languages are optimized 
for providing specific quantitative analysis capabilities in design flows via facilitating the integration 
of a group of tools. Accordingly, they are optimized to cover concepts related to an analysis 
technology. 

3. Domain-specific modeling languages (DSMLs) [8] are tailored to the particular concepts, constraints 
and assumptions of application domains. They are optimized to be focused: the modeling language 
should offer the simplest possible formulation that is still sufficient for the modeling tasks. Model-
based design frameworks that aggressively use DSMLs, need to support the composition of modeling 
languages. For example, the MIC infrastructure uses abstract syntax metamodeling and meta-
programmable tool suites [12] for the rapid construction of DSMLs with well defined syntax and 
semantics.  

While abstract syntax metamodeling has been a very important step in model-based design and is used not 
only in MIC but also in various MDA and MDD frameworks, such as Eclipse [9] and Software Factories 
[3], explicit and formal specification of semantics has been an unsolved problem whose significance not 
even recognized. For instance, the SPT profile [7] (UML Profile for Schedulability, Performance and Time) 
does not have precisely defined semantics [24], which creates possibility for semantic mismatch between 
design models and modeling languages of analysis tools. This is particularly problematic in safety critical 
real-time and embedded systems domain, where semantic ambiguities may produce conflicting results 
across different tools.  

There has been much effort in the research community to define semantics of modeling languages by 
means of informal mathematical text [6] or using formal mathematical notations [10]. In either case, precise 
semantics specification for DSMLs remains a challenge. To solve this problem, in our former paper [11], 
we proposed and demonstrated a method and tool infrastructure for semantic anchoring that facilitates the 
transformational specification of DSML semantics. The proposed semantic anchoring infrastructure 
includes a set of well-defined “semantic units” that capture the operational semantics of basic dynamic 
behaviors and models of computations using Abstract State Machines [15] as an underlying formal 
framework. The semantics of a DSML is defined by specifying the transformation between the abstract 
syntax metamodel of the DSML and that of the semantic unit. 

In this report we build on our earlier result and develop a Semantic Unit for modeling languages that use 
timed automata semantics. Timed Automata Modeling Languages are widely used for modeling and 
analysis of real-time and embedded systems. Therefore, we believe that the work can contribute to the 
establishment of precise semantics for UML-TPC. The proposed Timed Automata Semantic Unit (TASU) 
is priority-oriented. Both an abstract mathematical definition and formal specification of TASU using the 
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Abstract State Machine Language (AsmL) [17] are presented in this paper. We also show examples for the 
semantic anchoring process by presenting anchoring rules for the UPPAAL [21] and IF [22] languages. 

This report consists of the following sections: Section 2 introduces the concepts of semantic units and 
semantic anchoring. We specify TASU in Section 3. The semantic anchoring rules from the UPPAAL and 
IF languages to TASU are illustrated in Section 4. Section 5 is our conclusion and future work. An 
Appendix introduces the metamodeling concepts used in GME, which are employed in the TASU 
metamodels. 
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2. Overview of Semantic Anchoring 
A DSML can be formally defined as a 5-tuple L = <A, C, S, MS, MC> consisting of abstract syntax (A), 
concrete syntax (C), syntactic mapping (MC), semantic domain (S) and semantic mapping (MS) [25]. The 
abstract syntax A defines the language concepts, their relationships, and well-formedness rules available in 
the language. The concrete syntax C defines the specific notations used to express models, which may be 
graphical, textual, or mixed. The syntactic mapping, MC: C → A, assigns syntactic constructs to elements in 
the abstract syntax.  

The DSML semantics are defined in two parts: a semantic domain S and a semantic mapping MS: A → S. 
The semantic domain S is usually defined in some formal, mathematical framework, in terms of which the 
meaning of the models is explained. The semantic mapping relates syntactic concepts to those of the 
semantic domain. 

Although DSMLs use many different modeling and model composition concepts and notations for 
accommodating needs of domains and user communities, semantic domains for expressing fundamental 
types of dynamic behaviors are more limited. Broad categories of component behaviors can be represented 
by behavioral abstractions, such as Finite State Machine, Timed Automaton and Hybrid Automaton. This 
observation led us to propose a semantic anchoring infrastructure for defining behavioral semantics for 
DSMLs. The development of a semantic anchoring infrastructure includes the following tasks [11]:  

1. Defining a set of modeling languages {Li} for the basic behavioral abstractions and developing the 
precise specifications for all components of Li = <Ci, Ai, Si, MSi, MCi>. We use the term “semantic 
units” to describe these basic modeling languages. 

2. Defining the behavioral semantics of an arbitrary L = <C, A, S, MS, MC> modeling language by 
specifying the MA : A → Ai mapping. The MS : A → S semantic mapping of L is defined by the         
MS = MSi ○ MA composition, which indicates that the semantics of L is anchored to the Si semantic 
domain of the Li modeling language. 

 
Figure 1: Tool suite for DSML design through semantic anchoring  

Figure 1 shows our tool suite to facilitate DSML design through semantic anchoring. It comprises (1) the 
ASM-based common semantic framework for specifying semantic units and (2) the MIC modeling (GME) 
and model transformation (GReAT) tool suites that support the specification of transformation between the 
DSML metamodels and the Abstract Data Models used in the semantic units. In the rest of this section, we 
give a short introduction to the related tools. Readers can refer [11, 14] for detailed knowledge about the 
semantic anchoring tool suite. 

We selected Abstract State Machine (ASM) [15], formerly called Evolving Algebras [16], as a formal 
framework for the specification of semantic units. General forms of behavioral semantics can be encoded 
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as (and simulated by) an abstract state machine [15]. AsmL [18], developed by Microsoft Research, 
provides specification language simulator, test-case generation and model checking tools for ASMs. 

The Generic Modeling Environment (GME) tool suite [12] is employed for defining the abstract syntax 
metamodels for DSMLs using the UML/OCL [4, 18] – based MetaGME as the metamodeling language1. 
The MA : A → Ai semantic anchoring of L to Li is defined by model transformation rules expressed in the 
UTM (Unified Transformation Model) language of the GReAT tool suite [13]. In UMT, model 
transformations are expressed as graph transformations that can be executed (both in interpreted and 
compiled form) by the GReAT engine. In summary, semantic anchoring specifies DSML semantics by the 
operational semantics of selected semantic units (defined in AsmL) and by the transformation rules 
(defined in UTM). The integrated tool suite [14] enables that domain models defined in a DSML are 
simulated according to their “reference semantics” by automatically translating them into AsmL data 
models using the transformation rules. 

  

                                                 
1 In the following discussion the knowledge of the meta-modeling approach used in GME is assumed. The 

 provides a brief summary, while the GME software 
distribution contains the precise documentation as well as a detailed tutorial.  
Appendix: Metamodels for Graphical Languages
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3. A Semantic Unit for Timed Automata Based Modeling 
Languages 

Timed Automata [19] were proposed for modeling the behavior of real-time systems over time. Several 
analysis tools for real time systems, such as UPPAAL [21], IF toolset [22] and Kronos [23], were 
developed based on this modeling approach. They use timed automata based modeling languages (TAMLs) 
that have tool dependent differences in their approach to express communication among concurrent 
components and action (transition) priorities. The similarities and differences in the syntax and semantics 
of varied TAMLs may confuse designers and lead to mistakes. There are plenty of examples for language 
constructs that may appear similar while they express essentially different semantics and language 
constructs that appear different but have essentially the same semantics. 

In this section, we propose a priority-oriented Timed Automata Semantic Unit (TASU) as a common 
semantic model for TAMLs. We propose that semantics of different TAMLs are defined by specifying the 
transformation between them and TASU. The explicit representation of transformation rules, the formal 
operational semantics specification of TASU and the behavioral simulation support allow designers 
understanding and comparing languages with different timed automata semantics and help the integration 
of different analysis tools in design flows.  

3.1 Overview of TASU 
A timed automaton is a finite-state automaton equipped with a finite set of clock variables [19]. In this 
original specification a strong synchrony assumption is adopted for time progress, which means that all 
clock variables progress at the same rate. Transitions are executed instantly and time progresses only when 
an automaton is in a location. Constraints on clock variables can be used as conditions for enabling 
transitions. Transitions can be associated with actions that reset clock variables. 

In order to facilitate modeling concurrent real-time systems, many TAMLs (e.g. UPPAAL and IF) extend the 
original timed automata with parallel composition to specify networks of automata. The supported 
communication mechanisms vary across tools. In general, such communication can be categorized into 
three categories: shared variables, synchronous and asynchronous communication. In most cases, 
asynchronous communication can be modeled by synchronous communication plus automata representing 
buffers. To keep balance between the semantic expressivity and complexity, our proposed semantic unit 
directly supports communication only through shared variables and synchronization. If needed, 
asynchronous communication is specified via mapping to the synchronous communication through model 
transformation. 

Transition priority is a very useful concept for reducing non-determinism in models and for modeling 
interrupts or preemption in real-time systems. Also, dynamic priorities match well with practical 
implementations of real-time systems. Priority information is implicitly expressed in certain language 
constructs of a TAML. For instance, an urgent location in UPPAAL indicates that transitions out from this 
location have higher priority than that of time progress [21]. The priority of a transition is, in general, time 
dependent. For example, a delayable transition in IF semantically implies that the priority of this transition 
jumps to a higher value than that of time progress when the enabling condition of this transition is about to 
be violated by time progress [22]. 

Although priority hierarchies of TAMLs are tool-dependent, they have many common features. In order to 
compare and integrate models from varied TAMLs, we need to establish a generic priority scheme that is 
capable of capturing all these priority hierarchies. A fundamental common feature is that all these tool-
defined priority schemes are built with respect to the time progress priority, which enables modeling 
urgency of actions in real-time systems. An urgent action in real-time systems is modeled as a transition 
having higher priority than that of time progress. In some TAMLs, urgent transitions are additionally 
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divided into two groups: normal urgent transitions and most urgent transitions. A most urgent transition 
prohibits the execution of any other transitions as well as time progress. This enables modeling of an 
atomic action that is composed of a sequence of sub-actions. In TASU, the priority hierarchy has three 
layers: the bottom priority (the time progress priority), the top priority (the priority to model atomic 
actions), and the urgent priority, which has a series of urgency degrees. We will show that this priority 
hierarchy is capable of expressing varied priority hierarchies defined by TAMLs. 

In the proposed TASU, a real-time system contains a set of concurrent components. Each component is 
modeled by a timed automaton. Components communicate among each other through shared variables and 
synchronization. The priority of an action can be dynamically updated with respect to time progress. 
Enabled actions with higher priorities will block actions with lower priorities. Non-determinism is 
supported by allowing multiple enabled actions with the same priority. Based on the timed automata model 
defined in [20], we present an abstract mathematical definition for a timed automaton in the semantic unit. 

Given a finite set of variables V, a valuation for the variables is a function ν∈ℜV that assigns a value for 
each variable from the domain of real numbers. If |V| = n the valuation can be represented as the vector 

nv ℜ∈ . We denote the valuation for an element i∈ N as vi. A linear expression )(vφ over V can be 

expressed as where (integers) and∑ ii va Ζ∈ia Vvi ∈ . A linear constraint γ is of the form )(νφ  op c where 

)(vφ  is a linear expression over V, op ∈ {=, <, ≤, >, ≥} and c ∈ Ζ. We denote the set of linear constraints 

over the set of variables V as LC(V). A linear assignment over V is defined as cv +A , where A is 
an matrix with coefficients from Z and nn× c  is a vector of nZ . We denotes a set of linear assignment 
over the set of variable V as LA(V). The set of simple assignment SA(V) corresponding to the case when all 
entries of A are 0 and 0≥c .  

A timed automaton is defined over a set C of resetable clocks and a set V of integer variables. A timed 
automaton in the semantic unit is a 7-tuple iElLVC Pr,,,,,, 0Σ  where: 

• C is a finite set of n clock variables, 

• V is a finite set of integer-valued variables, 

• ∑ is a finite set of symbols defining the system events, 

• L is a nonempty set of locations, 

•  is the initial location, Ll ∈0

• LVCVCLE ×∪×∪×∑×⊆ )()()( LASALC  is a set of edges. A edge ll ′,,,,, γβϕα  represents 
a transition from location l to location l’ on symbol α. ϕ is a guard over clock and integer 
variables. β represents simple assignment for clock variables and γ is linear assignment over 
integer variables, 

•  is a map that assigns to each edge its priority, which is a non-negative integer 
value, with respect to a give clock evaluation , so that  is the priority of edge e at 
clock value v. 

+→× NREi n:Pr
nRv∈ ),(Pr vei

A state of the timed automaton is defined as , where ),,( vcl Ll ∈ , c, v are valuation of the clock C and 
integer V variables, respectively. The set of all state is denoted S. The step relation denotes a jump 
transition which is a discrete and instantaneous transition that changes the location of the automaton as 
well as the assignment of the integer variables and clocks. The  step relation denotes a time transition 

⎯→⎯α

⎯→⎯t
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that advances all clock variables at the same value. A time transition may affect the priority of edges 
through the function Pri. The priority of a time transition is assumed a constant value, zero. 

The semantics of a timed automaton model iElLVCM Pr,,,,,, 0Σ=  in TASU is given as a transition 
system  where S is the set of states, s0 is the initial state where c0 = 0, and the step relation 
→ is the union of the jump transition: 

),,( 0 →= sSTM

•  iff ),,(),,( vclvcl ′′′⎯→⎯α Elle ∈=∃ ',,,,, γβϕα such that 
o )()(),( vvcctruevc γβϕ =′∧=′∧= , and 
o Elle ∈′′′′′=′∀ ,,,,, γβϕα , ),(Pr),(Pr),( ceiceitruevc ′≥⇒=′ϕ .   

and time transition: 
•  iff ),,(),,( vtclvcl t +⎯→⎯

     Elle ∈=∀ ',,,,, γβϕα and tt ≤≤∀ '0 , 0),(Pr),( =′+⇒=′+ tceitruevtcϕ . 

A run of the timed automata is a finite or infinite sequence of alternating jump and time transition of TM : 
.  4

2
3

2
2

1
1

1
0 sssss tt ⎯→⎯⎯→⎯⎯→⎯⎯→⎯= ααρ

The operational semantics for TASU is specified as a Control State ASM [15]. The specification includes 
three parts: an Abstract Data Model, Operations and Transition Rules. In the ASM formulation, the 
Abstract Data Model captures the abstract syntax of a modeling language defined for TASU. The 
Operations and Transition Rules form a model interpreter that specifies the operational semantics. An 
instance of the Abstract Data Model (we will refer to it as Date Model), Operations and the Transition 
Rules form an ASM that specifies the model semantics. We document the specification in AsmL for the 
sake of readability. Because of page limitation, we present only a part of the specification together with 
short explanations. For a detailed exposure to the AsmL specification, please refer to [14]. 

3.2 Abstract Data Model  
We choose to define the Abstract Data Model for TASU by using AsmL classes [17]. The Clock defines a 
type for clock variables. The variable field time represents the logical time of a clock variable. All clock 
variables progress at the same rate. For the purpose of model simulation, we introduce an AsmL constant 
CLOCKUNIT to set the granularity of time progress. A system might define a set of global clocks and each 
component might define its own local clocks. The globalClocks is an AsmL set containing all global 
clocks. Note that the set globalClocks is empty in the specification of the Abstract Data Model. Elements of 
this set are model-dependent and will be specified in instances of the Abstract Data Model (in the Data 
Models). When the Boolean variable TimeBlocked is set to true, the system explicitly blocks time progress. 

class Clock  

  var time        as Double = 0 

const CLOCKUNIT   as Double 

var globalClocks  as Set of Clock = {} 

var TimeBlocked   as Boolean =  false 

Location and Transition are defined as first-class types. The constant fields blockTime and setPrior in 
Transition indicate whether this transition is a special transition to block time progress or to set the priority 
of the owner automaton to the top priority. If any automaton is in the top priority, enabled transitions in all 
other automata as well as time progress will be prohibited. Note: these two special transition types are 
adopted for software implementation convenience. They are also denoted as edges whose source and 
destination locations are the same. (See further explanation in the operational semantics specification.) A 
transition can participate in a synchronous communication in one of two roles: SEND and RECEIVE. 
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class Location 

  const id             as String  

  const initial        as Boolean 

  const outTransitions as Set of Transition   

class Transition 

  const id             as String 

  const blockTime      as Boolean 

  const setPrior       as Boolean 

  const dstLocationID  as String 

enum SYNROLE 

  SEND 

  RECEIVE 

The class SignalChannel captures the synchronous communication among automata. The variable field 
senders and receivers record a set of signal senders and receivers, respectively. The Boolean field 
broadcast indicates whether the signal channel is a broadcasting channel. In a broadcasting channel, a 
sender publishes events without waiting for receivers and the event will be broadcasted to all receivers that 
are waiting for it. The event will be lost, if there are no receivers that are waiting for it. A non-broadcasting 
channel is enabled to fire when there are at least one sender and one receiver that are waiting. Only one 
sender and one receiver can take part in a synchronization communication and a synchronization pair is 
chosen non-deterministically when several combinations are enabled. 

class SignalChannel 

  const id        as String 

  const broadcast as Boolean 

  var senders     as Set of  

    (TimedAutomaton, Transition) = {} 

  var receivers   as Set of  

    (TimedAutomaton, Transition) = {} 

The abstract class TimedAutomaton defines the base structure for a timed automaton. The variable field 
currentLocation refers to the current location of an automaton. Initially, it refers to the AsmL null value. 
The AsmL construct Location? indicates that the value of this field may refer to either a Location instance 
or to the null value. When an automaton is in the top priority layer, its prior field is set to true. 

The TimedAutomaton class also holds a set of read-only abstract properties and abstract methods. These 
abstract properties define an abstract data structure that captures the tuple structure of an automaton. For 
example, the abstract property syns is a map whose domain consists of transitions that require 
synchronization. If t is a transition in this domain, then syns(t) is a 2-tuple whose first element refers to the 
corresponding signal channel and whose second element indicates whether t acts as a sender or a receiver. 
The abstract method TimeGuard(t) and DataGuard(t) return a Boolean-valued expression of time 
conditions and data conditions that are attached to the transition t, respectively. The abstract method 
DoAction(t) executes actions attached to a transition t. The abstract method Priority(t) returns the priority 
of a transition. Since the priority value of a transition might be dynamically updated, Priority(t) returns 
either an integer value or an integer-valued expression. All these abstract members of TimedAutomaton are 
model-dependent specifications for the semantic unit and will be further specified by a concrete automaton 
template. 
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abstract class TimedAutomaton 

  const id            as String 

  var currentLocation as Location? = null 

  var prior           as Boolean   = false 

  abstract property locations   as Set of Location 

    get 

  abstract property transitions as Set of Transition 

    get  

  abstract property localClocks as Set of Clock 

    get  

  abstract property syns as Map of  

    <Transition, (SignalChannel, SYNROLE)> 

    get    

  abstract TimeGuard (t as Transition) as Boolean 

  abstract DataGuard (t as Transition) as Boolean 

  abstract DoAction  (t as Transition) 

  abstract Priority  (t as Transition) as Integer 

The AsmL class RTSystem captures the top-level structure of a real-time system. The components field 
holds concurrent components contained in the system. Each component is an instance of a concrete 
automaton template. These components communicate through a set of signal channels, which are recorded 
in the field signalChannels. 

class RTSystem 

  const components     as Set of TimedAutomaton  

  const signalChannels as Set of SignalChannel 

3.3 Operational Semantics 
We are now ready to specify the operational semantics for TASU as AsmL Operations and Transition 
Rules, which interpreter the Abstract Data Model defined above. The specifications start from the top-level 
system, and proceed toward the lower levels. 

An active RTSystem instance executes enabled transitions or advances time. The operational rule Run of 
RTSystem specifies the top-level system operations as a set of updates. (Note that the AsmL keyword step 
introduces a set of operations that updates the ASM states. All operations within a single step occur 
simultaneously.) The rule Run first initializes all components in the system, which makes the field 
currentLocation of each component refer to its initial location. The next step is executed until the 
operations inside the step causes no state changes in the ASM (fixpoint). 

Within the loop, the rule first registers all current transitions that are enabled to participate in 
synchronization to the corresponding signal channels. A transition is called current if it is a transition out 
from the current location of an automaton. Then the signal channels are able to judge whether they are 
enabled to trigger communication among components. Next, the rule checks all current transitions and 
select an enabled one that has the highest priority as a candidate for the next execution. If such enabled 
transitions exist, the selected candidate is recorded as a 2-tuple whose first element refers a component and 
whose second element refers an enabled transition in that component. Otherwise, the second element of the 
2-tuple must be a null value. Afterwards, the rule checks a set of current system properties and makes 
decisions on whether to execute the candidate transition or to advance time. There are four possible cases: 

1. If time progress is explicitly set blocked and the system has no enabled transitions, the rule returns an 
error message that indicates the system will be blocked indefinitely. 
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2. If time progress is explicitly set blocked and the system has a candidate transition, this candidate 

transition is executed. 

3. If time progress is allowed and the system has no enabled transitions, the rule forces time progress. 

4. If time progress is allowed and the system has a candidate transition, the rule checks the priority of 
this candidate transition. This candidate transition is executed when it has a higher priority than that of 
time progress. Otherwise, the rule randomly determines to advance time or to execute the candidate 
transition.  

class RTSystem   

  Run() 

    step Initialize() 

    step until fixpoint 

      step RegisterSignalChannels() 

      step let T as (TimedAutomaton?, Transition?) = GetNextTransition() 

      step  

        if TimeBlocked then  

          if T.Second = null then  

            error("The system is blocked.") 

          else  

            T.First.DoTransition(t.Second) 

        else 

          if T.Second = null then  

            TimeProgress() 

          else 

            if T.First.GetPriority() = 0 and RandomDecisionIsTrue() then 

              TimeProgress() 

             else                   

               T.First.DoTransition(t.Second) 

The rule GetNextTransition of RTSystem describes the algorithm for the system to select a candidate 
transition for the next execution. It first looks for components that are in the top priority. If one exists, the 
subrule GetEnabledTransition of TimedAutomaton is then applied to select an enabled transition from this 
component. If this component has no enabled transitions, GetEnabledTransition returns a null value. The 
system will be blocked indefinitely, since a component in the top priority blocks enabled transitions in 
other components as well as time progress. If no component is in the top priority, the rule chooses a 
transition with the highest priority from enabled transitions in all components. In short, a block time 
transition has higher priority than normal transitions. For a normal transition, the larger its priority value, 
the higher its priority. 
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class RTSystem 

  GetNextTransition() as (TimedAutomaton?, Transition?) 

    choose c in components where c.prior  

      return (c, c.GetEnabledTransition()) 

    ifnone  

      let EC = {c | c in components where c.HasEnabledTransition()} 

      choose c in EC where c.GetEnabledTransition().blockTime 

        return (c, c.GetEnabledTransition()) 

      ifnone  

        choose c in EC where not  

          (exists c2 in EC where c2.Priority() > c.Priority()) 

          return (c, c.GetEnabledTransition()) 

        ifnone  

          return (null, null) 

The operational rule IsTransitionEnabled of TimedAutomaton examines if a transition is enabled or not. If a 
transition t does not need to synchronize with other transitions, the subrule IsSynEnabled(t) returns true. 
Otherwise, the corresponding signal channel checks whether it is ready to fire. The operational rule 
GetEnabledTransition chooses a transition with the highest priority from all enabled transitions in a 
component. It returns a null value if the component has no enabled transition. 

The block time transition and the setPrior transition are two special transitions. A block time transition has 
an implicit guard, which checks if the TimeBlocked field is false, and has an implicit action that sets the 
TimeBlocked field to true so that all components know time is blocked. A setPrior transition has no guard, 
but has one more implicit action that sets its owner component as a prior component. It must be enforced 
immediately after a component enters a location that has a setPrior transition. A setPrior transition is 
always considered disabled by the rule IsTransitionEnabled of TimedAutomaton, since it must already be 
executed if a setPrior transition exists in the current location. After an execution of a normal transition, the 
prior field of a component and the TimeBlocked field of the system will be reset to false if the new current 
location has no setPrior transition. 
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abstract class TimedAutomaton  
  IsTransitionEnabled (t as Transition) as Boolean  

    if (TimeBlocked and t.blockTime) or t.setPrior then 

      return false 

    else 

      return t in currentLocation. outTransitions and TimeGuard(t) and    

        DataGuard(t) and IsSynEnabled(t) 

 

  GetEnabledTransition() as Transition? 

    let ET = {t | t in transitions where IsTransitionEnabled(t)} 

    if Size(ET) = 0 

      return null 

    else 

      choose t in ET where t.blockTime  

        return t 

      ifnone  

        return (any t | t in ET where not (exists t2 in ET where Priority(t2) > 

          Priority(t))) 

The operational rule DoTransition of TimedAutomaton specifies the steps through which a system executes 
an enabled transition. We use the AsmL require construct to assert that this transition must be an enabled 
one. Our semantic unit has two special transitions, the block time transition and the setPrior transition. 
Both of these two transitions are system priority related transitions, and neither of them changes the current 
location of a component. A block time transition has an implicit action to set the TimeBlocked true. A 
setPrior transition has one more implicit action that sets its component as a prior component. If a transition 
needs to synchronize with transitions in other components, the corresponding signal channel organizes the 
synchronization. Otherwise, the operational rule FinishTransition is applied to finish the DoTransition 
operation. The FinishTransition rule first executes actions attached to this transition. Next, makes the field 
currentLocation refer to the destination location of the transition. A setPrior transition must be enforced 
immediately after entering its source location to set the priority of its component to the top priority. 

abstract class TimedAutomaton        
  DoTransition (t as Transition)  

    require IsTransitionEnabled(t) 

    if t.blockTime then 

      TimeBlocked := true 

    else 

      if t in syns then  

        let CHAN as SignalChannel = syns(t).First 

        let MODE as SYNROLE = syns(t).Second 

        step CHAN.Synchronize(me, t, MODE) 

      else  

        step FinishTransition(t) 
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abstract class TimedAutomaton   
  FinishTransition (t as Transition) 

    step DoAction (t) 

    step  

      choose l in locations where location.id = t.dstLocationID  

        currentLocation := l 

      ifnone  

        error(t.id + " does not have an effective destination location.") 

    step 

      if exists t1 in outTransitions(currentLocation) where t.setPrior then 

        me.prior := true 

        TimeBlocked := true 

      else 

        me.prior := false 

        TimeBlocked := false  

The operational rule Synchronize specifies operations for a signal channel to organize a synchronous 
communication. The subrule IsEnabled asserts that this signal channel must be enabled to fire. If the signal 
channel is a broadcasting channel, this transition synchronizes with all transitions waiting for the event. 
Otherwise, the signal channel randomly chooses a synchronization pair from its senders or receivers set. 
The operational rule FinishTransition is utilized to do actions that are attached with the corresponding 
transition, and reset the current location of the component. Note that there is no order for the execution of 
transitions that participate in a synchronous communication. All of these transitions are executed in a same 
abstract state machine step. 

class SignalChannel 

  Synchronize (ta as TimedAutomaton, t as Transition, m as SYNROLE)  

  require IsEnabled()  

    if (broadcast) then  

      step forall e in senders + receivers 

          (e.First).FinishTransition(e.Second) 

          (r.First).FinishTransition(r.Second) 

    else 

      match m  

        SEND:  

          ta.FinishTransition(t) 

          choose r in receivers (r.First).FinishTransition(r.Second) 

        RECEIVE: 

          ta.FinishTransition(t) choose s in senders  

            (s.First).FinishTransition(s.Second) 

3.4 Modeling Language Specification for TASU 
The semantic anchoring tool suite as shown in Figure 1 assumes that model transformation between a 
TAML and TASU is defined in terms of their abstract syntax metamodels [11] using the graph 
transformation language UMT and the GReAT tool. Consequently, we need to create an “interface” toward 
the semantic anchoring tool suite by defining a metamodel for TASU. Since the metamodeling language in 
MIC is UML/OCL (or MOF), the metamodel is simply the UML/OCL based representation of the Abstract 
Data Model defined in Section 3.2. The automaton metamodel (a part of TASU metamodel) in Figure 2 
shows the close correspondence between the two. In order to obtain a graphical modeling environment for 
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TASU, we also specified the metamodel in MetaGME. The MetaGME specification adds concrete syntax 
information to the metamodel and can be used for “meta-programming” the GME tool suite to create a 
modeling environment. (Detailed specifications and the full environment can be downloaded from [14].) 

 
Figure 2. The automaton metamodel for TASU 

The semantic anchoring tool suite provides a translator, which translates TASU models built in the GME 
modeling environment into AsmL domain models (i.e. instances of the Abstract Data Model). To illustrate 
this process, we show in Figure 3 a simple TASU automaton model and its equivalent representation in 
AsmL. This generated AsmL data model can be simulated according to the operational semantics defined 
in Section 3.3. 

 
Figure 3. A TASU automaton (ComponentKindA) 
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class ComponentKindA extends TimedAutomaton 

  L0  as Location   = new Location ("L0",true, {T1,TBT}) 

  L1  as Location   = new Location ("L1",false,{T2,TSP}) 

  L2  as Location   = new Location ("L2", false, {}) 

  T1  as Transition = new Transition ("T1",false,false,“L1”) 

  T2  as Transition = new Transition ("T2",false,false,“L2”) 

  TBT as Transition = new Transition ("TBT",true,false,“L0”) 

  TSP as Transition = new Transition ("TSP",false,true,“L1”) 

  c   as Clock      = new Clock () 

  override property locations as Set of Location 

    get return {L0, L1, L2} 

  override property transitions as Set of Transition 

    get return {T1, T2, TBT, TSP} 

  override property localClocks as Set of Clock 

    get return {c} 

  override property syns as Map of <Transition,  

    (SignalChannel, SYNROLE)> 

    get return { T1 -> (EXIT, SEND)} 

  override TimeGuard (t as Transition) as Boolean 

    match t.id 

      "T1" : return c.time >= 10 

      "T2" : return c.time == 0 

      "TBT": return c.time >= 20 

      _    : return true  

  override DataGuard (t as Transition) as Boolean 

    match t.id  

      _   : return true 

  override DoAction (t as Transition) 

    match t.id 

      "T1": c.time := 0 

      _   : skip 

  override Priority (t as Transition) as Integer 

    match t.id 

      _   : return 0    

In the TASU domain modeling environment, a normal transition is represented as a continuous direct-line. 
Information attached to a normal transition includes five segments ordered in sequence: a signal channel, a 
time guard, a data guard, priority and actions. The corresponding segment is left empty if a transition does 
not have that information. A block time transition (e.g. TBT in Figure 3) is represented by a dot direct-line. 
Only a time guard can be attached to a block time transition. A dash direct-line is utilized to represent a 
setPrior transition, e.g. TSP in Figure 3. No additional information might be put on a setPrior transition, 
since the information attached to a setPrior transition is predefined by the semantic unit and can not be 
modified by a component. OCL constraints are specified to guarantee the well-formedness of domain 
models. 
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4. Semantic Anchoring to TASU 
Semantic anchoring of a TAML means defining the transformation to TASU. In MIC, this transformation is 
defined in terms of the TAML and TASU metamodels. As it is shown in Figure 1, the specification of the 
transformation (which is the transformational semantics of the selected TAML) can be directly used for 
automatically generating a model transformer, which can translate TAML models into TASU models. (The 
TASU models (as we showed it above) can then be translated into AsmL data models if we want to obtain a 
simulation using the specification of the semantics.)  In this section, we illustrate the semantic anchoring 
from the UPPAAL and IF languages to TASU. It must be noted that we do not consider in this paper the 
verification of the semantic equivalence between our specification and those used internally by the tools. 
We also have to restrict the description of the transformations due to space limitations. The full 
specifications by using our semantic anchoring tool suite can be downloaded from [14]. 

4.1 Semantic Anchoring for the UPPAAL Language 
A trivial one-to-one mapping can realize the anchoring for those modeling constructs that are the same both 
in the UPPAAL language and in TASU. In this section we show examples for transformation rules that 
map modeling constructs that exist in UPPAAL but not in the semantic unit. 

4.1.1 Location invariants 

Time constraints put on locations are called location invariants. An automaton may remain in a location as 
long as the clock variables satisfy the invariant condition of that location. When the invariant condition is 
about to be violated by time progress, the automaton must be forced to leave this location. 

 
Figure 4. Semantic anchoring for a UPPAAL automaton with location invariants 

A location with an invariant condition in UPPAAL is anchored to a location in TASU with a blocked time 
transition where the time guard is the critical condition. As shown by the example in Figure 4, a simple 
UPPAAL time automaton whose start location has an invariant condition on the clock variable c can be 
translated to an equivalent automaton in TASU. We briefly explain the behavior of the automaton in Figure 
4 (b). Before the critical condition, c == 5, is satisfied, the block time transition TBT is not enabled and the 
automaton may stay in or leave the location start. If the automaton is still in the start location when the 
critical condition is reached, the block time transition TBT is taken immediately. Now time is not allowed to 
progress until the automaton leaves the start location. 

4.1.2 Urgent/Committed locations 

There are three kinds of locations in UPPAAL that are normal locations with or without invariants, urgent 
locations and committed locations. Time may not pass in urgent or committed locations. However, urgent 
locations allow instantaneous interleaving with other components. In UPPAAL, a location marked ∪ 
denotes an urgent location and the one marked C is committed. 
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Figure 5. Semantic anchoring for a UPPAAL automaton with urgent locations 

In the anchoring, an urgent location is mapped to a normal location plus a block time transition with no 
time guard. Figure 5 shows a simple example. In the figure, (a) is a UPPAAL automaton, and (b) is the 
anchoring automaton in TASU. 

 
Figure 6. Semantic anchoring for a UPPAAL automaton with committed locations 

An automaton in a committed location blocks both time progress as well as enabled transitions in all other 
automata. This functionality is equivalent to a setPtior transition in TASU, which sets the priority of the 
owner automaton to the top priority. As shown in Figure 6, (a) is a UPPAAL automaton and (b) is the 
semantic equivalent automaton in TASU after transformation. 

4.1.3 Urgent synchronizations 

A signal channel in UPPAAL may be declared as urgent. If a transition with an urgent channel is enabled, 
time delay must not occur before this transition is taken. TASU does not have the urgent channel concept, 
but the same effects can be achieved through setting the priority of a transition to be an integer greater than 
zero (depending on the relative priority with respect to other actions). Figure 7 shows an example to 
illustrate the transformation for urgent synchronization. Note that the signal channel EXIT in (a) is declared 
elsewhere as an urgent channel, while the one in (b) is only a normal channel in TASU. 

 
Figure 7. Semantic anchoring for a UPPAAL automaton with urgent synchronization 

4.2 Semantic Anchoring for the IF Language 
The IF language [22] is another well-known TAML to model asynchronous communicating real-time 
systems. In IF, a real-time system contains a set of processes, which are running in parallel and interacting 
through asynchronous signal routes. Each process is modeled by an extended timed automaton. This 
section is focused on the semantic anchoring for the IF specialized language constructs including: 
transitions with three types of deadline, unstable states and asynchronous signal routes with different 
policies. 
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4.2.1 Lazy/Delayable/Eager transitions 

The IF language does not support location invariants explicitly, but the same behavior can be achieved 
through utilizing transitions with different deadlines. An IF transition may have one of three types of 
deadlines (lazy, delayable and eager), which indicates the priority of a transition with respect to time 
progress. A lazy transition is never urgent and always allows time progress. An eager transition is urgent 
and prohibits time progress as soon as it is enabled. A delayable transition becomes urgent when it is about 
to be disabled by time progress and allows time progress otherwise. A lazy transition is equivalent to a 
normal transition in TASU with a priority value zero. The same behavior for an eager transition can be 
achieved by setting the priority of the corresponding transition in TASU to be an integer greater than zero 
(depending on the relative priority with respect to other actions). 

A delayable transition implies that the priority of this transition jumps to a higher value than that of time 
progress when the enabling condition of this transition is about to be violated by time progress. An example 
for the transformation is shown in Figure 8. Note that the transition T1 in (a) is an IF delayable transition 
while the one in (b) is a normal transition in TASU. We give a briefly explanation for the behavior of the IF 
automaton in (a). During 10 <= c < 20 (where c is a clock variable), the transition T1 is enabled but the 
system can randomly make choices on whether it takes this transition or advances time. When c == 20 is 
reached, the transition T1 will be disabled by any further time progress. At this moment, the system should 
execute T1 before advancing time. The automaton in the Figure 8 (b) employs the expression  if c == 20 
return1 else return 0 to specify the dynamic priority of this transition. The priority of the T1 transition 
jumps to a higher value than the time progress priority (zero), which ensures T1 to be executed as soon as c 
reaches 20, if the automaton is still in the Start location. 

 
Figure 8. Semantic anchoring for an IF automaton with delayable transitions 

4.2.2 Unstable locations 

Unstable locations in IF have similar meaning to committed locations in UPPAAL. A process entering an 
unstable location must continue immediately by firing some transitions at that location and soon on, until a 
stable location will be reached. Unstable locations is an IF way to define an atomic action as a sequence of 
transitions from one stable location to another stable location. So the anchoring approach for an IF unstable 
location is also the same as that for a UPPAAL committed location. Like the approach shown in Figure 6, 
each unstable location in IF is mapped to a normal location with a setPrior transition in the semantic unit. 

4.2.3 Asynchronous signal routes  

The IF language imports a language construct, the signal route, to facilitate modeling the asynchronous 
communications among processes. Signal routes can be thought as specialized processes for the delivery of 
signals between normal processes. The behavior of signal routes is implicitly defined by a set of policies, 
including: queueing policy (with two options, #fifo and #multiset), reliability policy (with two options, 
#reliable and #lossy), delivering policy (with three options #peer, #unicast and #multicase) and delaying 
policy (with three options, #urgent, #delay[a, b] and #rate[a, b]). The option #delay[a, b] means that any 
message entering the signal route will eventually leave it after a and not later than b units of time. The 
option #rate[a, b] means that it takes between a and b units of time per message to be delivered by the 
signal route. Please refer to [22] for the meaning of other policies and options. 
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Figure 9. An IF asynchronous model with policies #reliable, #urgent and #multicast 

To ensure analyzability, the TASU can only handle simple events. In particular, we assume that 
communication events are only signals and are not attached with data. In this situation, two queueing policy 
options, #fifo and #multiset, are equivalent with respect to our semantic unit. An IF asynchronous model, 
with other three different policies, will result in different anchoring models in TASU. However, the general 
ideas that guide the anchoring approaches for an IF asynchronous model with different policies are very 
close. We use an example to illustrate our anchoring approach and also briefly explain the general ideas for 
other policies. The left part of Figure 9 depicts an Event Publish system, in which a sender process 
multicasts events to N receiver processes through an asynchronous signal route. The right part of the Figure 
is the IF specification for this system. The sender process is defined by the process template Source and the 
receiver process is defined by the process template Listener. The sender and receivers are connected 
through a signal route Link whose transmission policies are set to #reliable, #urgent and #multicast. The 
detailed structures of the Source and Listener processes are not shown, since they do not affect the 
anchoring approach for the signal route. 

During an asynchronous communication, the Source process first publishes an event and continues its 
following tasks without waiting. The signal route Link receives and buffers this event immediately. The 
buffered events will be delivered to target processes according to the pre-specified policies of the signal 
route. The option #reliable indicates that all events will be transmitted successfully without loss. The option 
#urgent denotes that the time required for a complete event transmission is zero. The option #multicast 
means that the signal route multicast events to all receiver processes. 

Figure 10 presents the structure of the anchoring model in TASU. The signal route in IF is a black box that 
realizes the asynchronous communication among processes. In a TASU model, it is explicitly modeled as 
an automaton representing a Transmitter to transmit events plus a set of automata representing Buffers to 
buffer events for receivers. Figure 10 (a) displays the overall structure of the system. The Transmitter 
receives events from the Source process through the non-broadcasting signal channel e, and publishes 
events to N Buffers through the broadcasting signal channel eR. Each Buffer saves events and delivers 
them to the corresponding Listener process through the corresponding non-broadcasting signal channel eRi. 
All signal channels in Figure 10 are synchronous channels in TASU. 
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Figure 10. The semantic anchoring model for the IF asynchronous model in Figure 9 

In this report, we omit the verification for the semantic equivalence between the IF asynchronous model in 
Figure 9 and the TASU synchronous model in Figure 10. If the policies of an asynchronous model are 
changed, the synchronous model also needs to be modified to capture the changed behavior. In fact, there 
may have multiple solutions to capture the changed behavior. However, we give a simple solution as a clue 
for other possible approaches. 

The behavior of the reliability policy #lossy can be achieved through adding transitions in the loaded 
location of the Transmitter, which randomly drop buffered events. If the signal channel eR is set as a non-
broadcasting channel, the model in Figure 10 has the same behavior as the model in Figure 9 with the 
delivering policy set to #unicast, which means that an event is delivered to a randomly selected receiver 
process. If the delivery policy is set to #peer, the source process must specify a specific target process to 
send events. In this case, the synchronous model has only one Listener process and one Buffer process. So, 
it runs in the same manner as the corresponding asynchronous model applying the delivery policy #peer. 
The delaying policy #delay[a, b] can be achieved by adding local clock variables to measure the buffered 
time for each received event, and adding time conditions and dynamic priorities on the publishing events 
transitions (T2 and T4) of the Transmitter to control the delay for the event delivering. Similarly, the 
delaying policy # rate[a, b] can be captured through adding a local clock variable to measure the time 
passing for the Transmitter, and adding time guards and dynamic priorities on the publishing events 
transitions (T2 and T4) to control the rate of the event delivering. 
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5. Conclusions and Future Work 
As application of model-based approaches extends to safety critical embedded systems, precise 
specification of behavioral semantics of DSMLs is becoming a crucial issue. We believe that semantic 
anchoring can provide a theoretically solid yet practical solution. Essential components of our proposed 
semantic anchoring infrastructure are the “semantic units”; the core behavioral abstractions that are widely 
used in many DSMLs. In this report we described considerations we used for defining a common semantic 
unit for DSMLs that use (possible as a behavioral aspect) timed automata semantics. We have found that 
complexity of semantic unites needs to be determined by balancing between the needs of understandability 
and the difficulty of developing transformations. We expect that the existence of well defined and carefully 
structured semantic units will encourage developers of DSMLs to consider semantic issues much more 
explicitly than currently. Besides experimenting with semantic unit specifications, we are working on their 
compositions and on various use cases for deep semantic integration of complex tool chains. 
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Appendix: Metamodels for Graphical Languages 
The Generic Modeling Environment (GME) uses an UML-based approach to define modeling languages. 
The underlying assumption is that graphical modeling languages have “sentences” formed from objects, i.e. 
a sentence is a network of objects. A UML class diagram can capture multiple classes, their attributes, and 
their relationships: inheritance, containment, and general associations. A programmer can instantiate those 
classes, specify instance attributes, and establish links among objects that correspond to associations in the 
class diagram. Therefore, a UML class diagram is a finite description of an infinite number of object 
networks that comply with it, not unlike a context-free grammar is a finite description of a (potentially 
infinite) language.  

 

 
Figure11: An example meta-model 

Unfortunately, pure UML class diagrams are not well suited for the metaprogramming of modeling 
environments. The reason is that environments tend to support some core modeling concepts (e.g. 
containers, ported objects, atomic objects, etc.), which are not UML concepts, yet metamodels should 
contain hints how UML class diagrams should be interpreted in terms of those concepts. A convenient 
solution to this problem is to use stereotypes, which mark classes as belonging to a specific category that is 
meaningful for (and has a specific semantics in) the modeling environment. Stereotypes are part of the 
UML standard, but in UML they do not have a specific interpretation —they are simply indicators marking 
classes as members of some category of classes. In the metaprogrammable Generic Modeling Environment 
this approach has been chosen. Figure1 below illustrates how a UML class diagram can be embellished to 
define a meta-model for GME. The drawing also summarizes the core model organization concepts 
supported by GME. GME provides the following set of organization concepts: folders (containers), models 
(ported hierarchical composite objects), atoms (primitive objects), connections (wires), sets (groups of 
objects), and references (pointers to models, atoms, sets, or other references). The diagram on Figure1, read 
as a pure UML diagram, has the following classes: aFolder: an untyped container of objects, aModel: a 
typed container with model semantics, anAtom and anotherAtom: simple objects, aConnection: an 
association class relating the classes anAtom and anotherAtom, anotherModel: a container for 
anotherAtoms and anotherModels, aSet: yet another container containing aSetElement, and 
aReference: associates with (“points to”) anotherAtoms. The stereotypes map these classes into 
environment-specific modeling concepts. GME supports <<Model>>-s, which are composite objects with 
ports containing other objects (including other <<Model>>-s), <<Atom>>-s are primitive objects that 
have their own graphical icons, <<Set>>-s are special containers that contain objects within the same 
parent <<Model>> that also contains the set, <<References>> are alias objects which point to (non-



 
 

 
 

 
local) objects in the object hierarchy, and <<Connection>>-s are association objects relating and two 
(or more) iconic objects. All objects except the <<Connection>>-s are iconic. <<Model>>-s can have 
ports on their icons, and <<Connection>>-s are visualized as lines.  It is not shown on the drawing, but 
many stereotypes have a corresponding “proxy” stereotype, which is semantically equivalent to the base 
stereotype. These stereotypes can be recognized by their name, which follows the form <<...Proxy>>. 
A class with name X with stereotype <<S>> can be referred to on another diagram by a class with name X 
with stereotype <<SProxy>>. The metamodel element appearing on the “other” diagram denotes the 
same metamodel element as X. This allows reducing visual clutter.  
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