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Abstract— P2P (peer-to-peer) technology has proved itself an
efficient and cost-effective solution to support large-scale multi-
media streaming. Different from traditional P2P applications, the
quality of P2P streaming is strictly determined by performance
metrics such as streaming delay. To meet these requirements,
previous studies resorted to intuitions and heuristics to construct
peer selection solutions incorporating topology and proximity
concerns. However, the impact of proximity-aware methodology
and delay tolerance of peers on the scalability of P2P system
remains an unanswered question. In this paper, we study this
problem via an analytical approach. To address the challenge of
incorporating Internet topology into P2P streaming analysis, we
construct a H-sphere network model which maps the network
topology from the space of discrete graph to the continuous
geometric domain, meanwhile capturing the the power-law prop-
erty of Internet. Based on this model, we analyze a series
of peer selection methods by evaluating their performance via
key scalability metrics. Our analytical observations are further
verified via simulation on Internet topologies.

I. I NTRODUCTION

Live multimedia streaming is gaining increasing popularity
with the advent of commercial deployment from major content
providers. Among the existing systems, P2P streaming has
emerged to be a promising approach to large-scale multimedia
distribution [3], [12], [2], [14], [6], [4], [18], [10], [9]. The
basic idea is that each peer in the P2P streaming system
will contribute their uploading capacities to the downloading
demands of other peers. In this way, the media server load
could be significantly reduced. Therefore the system is ableto
support a larger number of peers in a streaming session with
a fixed server capacity, and thus achieve better scalability.

While proven to provide a better scalability in terms of
server load, the overall P2P streaming system performance
in terms of delay and network bandwidth cost largely depends
on the P2P topology. At the core of its construction is the
problem ofpeer selection – how to select the parent peer(s)
to download the stream. The goal is to construct ahigh
quality topology that could minimize the server load and delay
experienced by peers, and reduce the network bandwidth cost.
To address this problem, the existing approaches have resorted
to intuitions and heuristics. The proposed solutions include
tree-based, mesh-based, directed-acyclic-graph-based,and ran-
domized topology construction algorithms and protocols.

One of the fundamental challenges that all these approaches
face is the problem of topology mismatch between the overlay
layer of P2P network and physical layer network. The peers

which are one-hop away in the P2P topology could have
certaindistance (number of hops) between them in the under-
lying physical network. Such a distance governs its streaming
quality such as delay.

Without considering such distances between peers in the
physical network, the random peer selection mechanism used
in many commercial P2P streaming systems are shown to
be inefficient [1], [7]. Proximity-aware peer selection strate-
gies [3], [2], [8] could remedy such inefficiency. In the
proximity-aware P2P streaming systems, the peers are aware
of such distance and select peers that are closer as their
parents for downloading. The benefit of such proximity-aware
mechanism in P2P streaming include (1) Reduced delay which
is important for live streaming applications; (2) Reduced load
on network by removing long-haul unicast connections, which
also achieves ISP friendliness.

Towards the construction of high-quality P2P topologies, it
is natural to ask the following questions for the proximity-
aware streaming systems: (1) how server load and network
bandwidth cost scales with the number of peers in the system;
(2) how server load and network bandwidth cost scales with
the delay tolerance of peers. Unfortunately, although the
existing research have devised protocols to construct good
proximity-aware P2P topologies, they fail to offer a compre-
hensive and analytical study on the characteristics that govern
the scalability and performance of P2P streaming. On the other
hand, though there exist analytical models for the P2P file
sharing [13], [11], [17] and on-demand P2P streaming [16],
[15], none of them could be applied to proximity-aware P2P
streaming systems where the underlying physical network
topology needs to be incorporated into the model.

In this paper, we seek analytical insights into the scalability
of proximity-aware P2P streaming solutions. The challenge
to incorporating topology concern into the P2P streaming
analysis is evident from the complexity of Internet topology.
To gain critical insights, we must construct an analytical model
reasonably simple to derive closed-form results, meanwhile
capturing the essential property of Internet topology. Towards
this challenge, this paper proposes a novelH-sphere network
model, which maps the network topology from the space
of discrete graph to the continuous geometric domain. Our
approach is motivated by the seminal study on power-law
relation in Internet topology, which reveals the neighborhood
size as aH-power function of hop distance [5].



Based on theH-sphere model, we perform in-depth analysis
on a series of topology-aware peer selection methods and
compare them with the random peer selection strategy. Our
analytical investigation provides significate insights into the
P2P streaming systems: First, of all peer selection methods
studied, the server and network loads are independent of the
peer population, but solely determined by the average out-
bound bandwidth of peers. Second, although random selection
method can maximally save the server resource, it introduces
the maximum load to the network.

The original contributions of this paper are two-fold.
First, the novelH-sphere model enables in-depth analysis on
topology-aware peer selection methods of different flavors. To
the best of our knowledge, this is the first analytical study
conducted in a topology-aware network setting. Second, we
systematically investigate the proximity-aware P2P streaming
strategies, by evaluating their performance via key scalability
metrics, namely server load and network load. The analytical
findings provide valuable guidelines for future P2P streaming
system designs.

The remainder of this paper is organized as follows. We
first present ourH-sphere model for proximity-aware P2P
streaming analysis in Sec. II. Then we proceed to analyze
the server load and network load in Sec. III and Sec. IV
respectively. Finally, we validate our analytical model via a
simulation-based study over Internet topologies in Sec. V and
conclude the paper in Sec. VI.

II. A NALYTICAL MODEL

A. H-Sphere Model

To enable in-depth analysis on topology-aware peer selec-
tion methods, we first need to construct an analytical model
reasonably simple to derive closed-form results, meanwhile
capturing the essential property of Internet topology. We first
characterize the distance between peers in the underlying phys-
ical network. Here the distance between nodes are measured
by their hop count in the physical network, as it reveals many
important performance metrics perceived by peers in the P2P
system such as streaming delay.

In our network model, each node represents the router that
is attached by either the server or the peers within a P2P
streaming system. In order to model the distances among these
nodes, we measure the number of neighboring nodes within a
certain distance. In the seminal study [5] on Internet topology,
the following power-law relation about neighborhood size is
revealed:

α · rH (1)

wherer is the node distance measured by hop count, andH
is the constant exponent. This model regards the neighborhood
centered around any node in the network as aH-sphere with
radius r, and α represents the average number of nodes in
the unit sphere. Then Eq. (1) gives the expected number of
neighbors withinr hops.

Based on this power-law relation, we perform our analysis
in a network sphere model with maximum radiusR. The server
S is situated at the center, and a client host (peer)C is allowed
to appear elsewhere in the sphere. Further, letρ be the node
density (number of nodes in anH-dimensional unit)1, then
α = ρ · sH

H , wheresH represents the surface area of a unitH-
sphere. In the two-dimension and three-dimension cases, we
haves2 = 2π, s3 = 4π. Through this model, the hop count
between two peers is transformed as their geometric distance
in the H-dimensional space.

To model the peer bandwidth, we assume that all peers
are interested with the same media stream with identical
streaming bit rate. For the purpose of simplicity, we normalize
the peer bandwidth with the streaming bit rate. We further
assume that each peerC has enough downloading bandwidth,
i.e., it is greater than or equal to1. We further denote the
normalized uploading bandwidth as randomly distributed with
meanp. Finally, we assume the serverS has unlimited upload
bandwidth.

B. Peer Selection Methods

In this work, we compare a series of proximity-aware peer
selection methods with random peer selection strategies. In
particular, we consider the following methods.

• Random Selection: In this method, a peerC can seek
bandwidth supply from all other peers regardless their
distance toC. C can also seek help from serverS, if
enough bandwidth cannot be obtained from peers.

• Variable-Range (VR) Selection: In this method,C has a
search radius limited byr, its distance to the serverS. In
this way,C constrains the streaming delay from its peers
to be no more than the one from the server.

• Fixed-Range (FR) Selection: In this method, the search
radius of peerC is limited by the constantt, which
constrains the peer streaming delay to a predetermined
bound.

The basic semantics of these methods do not prevent the
deadlock problem, i.e., a pair of peers download content from
each other. To establish a loop-free dependency among peers
and better reflect the reality of peer selection protocols, the
following geographical dependency constraint is applied to
all the above methods: each peerC can only download from
peers whose distances to the serverS are shorter than its
own distancer. These constraints ensure that the content will
be distributed from the central server to the outer rim of the
network.

We illustrate these method for a2-dimensional sphere (H =
2) in Fig. 1. Each method assigns a peerC (1) thedownloading
region (the vertically shaded area in Fig. 1), where all peers
in this region are the supplier candidates ofC; and (2) a
uploading region (the horizontally shaded area in Fig. 1),
whereC is the supplier candidate to all peers in this region.
The defined geographical dependency constraint ensures these

1For simplicity a peer is represented by the node it attaches to in the
following analysis.
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Fig. 1. Analytical Scenarios

two regions to exclude each other. Given the peer densityρ,
by calculating the downloading region volumeAD, one can
know the number of peers in this region, denoted asND.
Similarly, by calculating the uploading region volumeAU , we
can acquire the number of peers in this regionNU .

Although illustrated forH = 2, we note that our analytical
model is general to arbitrary value ofH in the H-sphere.
However, the extreme complexity of calculating sphere inter-
section in the three-dimensional or hyper space forbids us from
obtaining closed-form results to the above terms. Nevertheless,
the analytical insight gained in the two-dimensional case
proves to generalize into higher dimensions via simulation
verification.

C. Performance Metrics

To measure the scalability of different peer selection meth-
ods, we introduce two metrics.

• Server load L, defined as the amount of bandwidth
provided by the serverS to support all peers.

• Network load M , defined as the summary of distances
traveled by all data units within the network. The metric
unit of M is the multiplication of bandwidth unit (such
as Kbps) and distance, which is number of hops in
topological networking terms, or geometric distance in
the sphere model.

The terms used in this paper are summarized in the follow-
ing table.

Notations Definitions
H Dimension of the Network Sphere
α Node Density in the UnitH-Sphere
sH Surface Area of a UnitH-Sphere
S Server
C Peer (Client Host)
R Radius of the Disk Model
ρ = αH/sH Node Density ofH-dimensional Unit
r Distance between the ServerS and a PeerC
p Upload Bandwidth of the Peer
t Search Range in the Fixed Selection Method
AD Volume of the Downloading Region
AU Volume of the Uploading Region
ND = ρAD Number of Peers in the Downloading Region
NU = ρAU Number of Peers in the Uploading Region
B Amount of Bandwidth Received by a Peer from its

Downloading Region
r∗ Threshold Value Separating the Self-Sustained Re-

gion and Server-Support Region
L Server load
MB Network Load per Peer Imposed by P2P Streaming
M Network Load

TABLE I

NOTATION DEFINITIONS

III. SERVER LOAD ANALYSIS

To derive the server loadL, we need to know how much
of the streaming workload is offset by peers. We do so by
studying the amount of bandwidth received by each peerC
from its supplying peers included in downloading region (the
vertically shaded areas in Fig. 1).



A. Downloading and Uploading Regions

We first look at how to calculateND, the number of
peers in the downloading region. The region consists of
peers with different server-peer distancex. Such a distance
is bounded within[rmin

D , rmax

D ], which is defined by different
peer selection methods. From the shape of the downloading
region we also knowsD(x), the length of the arc, which is
the collection of points distancedx away from the serverS
within this region. Now we have

ND = ρAD = ρ

∫ rmax

D

rmin

D

sD(x)dx (2)

As a reference, Tab. II lists the results ofrmin

D , rmax

D , sD(x),
andAD as functions ofr.

In the same fashion, we can calculateAU , the volume of
the uploading region, andNU , the number of peers in this
region.

NU = ρAU = ρ

∫ rmax

U

rmin

U

sU (x)dx (3)

wheresU (x) and[rmin

U , rmax

U ] serve the same purpose as their
counterparts in the downloading region. Tab. III collects the
results ofrmin

U , rmax

U , sU (x), andAU as functions ofr.

B. Bandwidth Received per Peer

With the knowledge ofND and NU , we are now able to
deriveB, the amount of bandwidth received per peer. For any
peer whose server-peer distance isx, it supplies equal share
of its uploading bandwidthp, then each peer in its uploading
region gets bandwidthp/NU (x). ThenB is given by

B =

∫ rmax

D

rmin

D

ρsD(x)
p

NU (x)
dx =

∫ rmax

D

rmin

D

sD(x)
p

AU (x)
dx

(4)
Let us first look at the random selection method in the 2-

sphere. Plugging their results in Tab. II and III into Eq. (4),
we have

Brandom,2D = p ln
R2

R2 − r2
(5)

For variable-range (VR) and fixed-range (FR) selection
methods, due to the complexities of their arc lengthsSD(x),
volume of downloading regionAD, as well as uploading
regionAU (shown in Tab. II and III), we are unable to obtain
the closed-form results as the random method. Instead, we
seek for numerical solutions.

Note that in Eq. (5), the densityρ disappears, which means
that the amount of bandwidth received by a peerC does
not relate with the node density in the network. Intuitively,
the more supplying peersC has in its downloading region,
the less bandwidth each peer will provide toC since each
of them will have more peers in its uploading region, which
results in less bandwidth per share. Also, the average outbound
bandwidthp is the weight factor in Eq. (5), which represents
its linear relation with the bandwidth received per peer. These
two findings are evident from the structure of Eq. (4), thus
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Fig. 2. Bandwidth Received per Peer

also apply to VR and FR selection methods, although their
analytical results are unavailable.

We plot B for all methods in Fig. 2. Since the role of
p as the linear factor is trivial, show only a special case is
sufficient. In this figure, we choosep = 1. In all methods,
B is a monotonically increasing function ofr, which reveals
the common fact that peers further away from the serverS
can receive more bandwidth than the ones close toS. We
explain the behaviors of different methods as referenced in
Fig. 1. The superlinear growing curves of random and VR
selection methods are due to the fact that the downloading
region of a peerC enlarges quadratically as the distancer
increases (Fig. 1 (e) and (f)). For FR selection method, the
curve first increases abruptly, then levels off, and quickly
increases towards the end. This is because whenC is close
to the server, its downloading region increases quadratically
(Fig. 1 (a)). AsC further shifts away (Fig. 1 (b) and (c)), the
growth of its downloading region stabilizes. Finally, whenthe
search range ofC exits the radiusR, its uploading region starts
to shrink, which makes peers in this region able to receive
greater bandwidth per share ofC, thus explains the final surge
of the curve. Obviously, the smaller the search ranget, the
longer the “stabilized” phase will last.

C. Server Load

Fig. 2 and Eq. (4) confirms thatB is a monotonically
increasing function of distancer. This means there exists
threshold valuer∗, at which B = 1. From Eq. (5), we can
easily deriver∗ for the random method in the 2-sphere.

r∗random,2D = R

√

e1/p − 1

e1/p
(6)

If the average uploading bandwidthp = 1, then
r∗random,2D ≃ 0.795R, which can also be found in Fig. 2.
From the same figure we can numerically identifyr∗ for the
VR and FR methods. This value serves as the watershed point.
As illustrated in Fig. 3, peers within this perimeter must rely
on server support, which we call theserver-support region,
whose volume issHr∗H/H . Peers outside this perimeter can



Method rmin
D

rmax
D

sD(x) AD

Fixed (t ≤ r < R) r − t r 2x cos−1 x
2
+r

2−t
2

2rx
2r2 sin−1 t

2r
+ t2 cos−1 t

2r
− t

2

√
4r2 − t2

Fixed (t/2 ≤ r < t) 0 r 2x cos−1 x
2
+r

2−t
2

2rx
if x > (t − r) 2r2 sin−1 t

2r
+ t2 cos−1 t

2r
− t

2

√
4r2 − t2

2πx otherwise
Fixed (0 < r < t/2) 0 r 2πx πr2

Variable 0 r 2x cos−1 x

2r
2r2(π

3
−

√
3

4
)

Random 0 r 2πx πr2

TABLE II

COMPUTATION OF DOWNLOADING REGION AREA (H = 2)

Method rmin
U

rmax
U

sU (x) AU

Fixed (R − t ≤ r < R) r R 2x cos−1 x
2
+r

2−t
2

2rx
− 1

2

p

2(r2t2 + t2R2 + R2r2) − r4 − R4 − t4 + t2 cos−1 t
2
+r

2−R
2

2tr
+

R2 cos−1 R
2
+r

2−t
2

2Rr
− 2r2 sin−1 t

2r
− t2 cos−1 t

2r
+ t

2

√
4r2 − t2

Fixed (t/2 ≤ r < R − t) r r + t 2x cos−1 x
2
+r

2−t
2

2rx
πt2 − 2r2 sin−1 t

2r
− t2 cos−1 t

2r
+ t

2

√
4r2 − t2

Fixed (0 < r < t/2) r r + t 2x cos−1 x
2
+r

2−t
2

2rx
πt2 − πr2

Variable r R 2x cos−1 r

2x
R2 cos−1 r

2R
− πr

2

3
− r

√
4R2−r2

4
+ r

2
√

3

4

Random r R 2πx πR2 − πr2

TABLE III

COMPUTATION OF UPLOADING REGION AREA (H = 2)

receive enough bandwidth from peers in the inner circle, which
we call theself-sustained region. The volume of this region
is sH(RH − r∗H)/H , the difference of the entire sphere and
the server-support region.

Since Eq. (6) is derived fromB defined in Eq. (4),r∗ is
not related with the densityρ, However,r∗ is a function of
average outbound bandwidthp.

With the knowledge ofB as a function of distancer, and
the r∗, we can derive the server loadL by accumulatively
computing how much bandwidth the server contributes to all
peers distancedr away, up to the point ofr∗.

L = ρsH

∫ r∗

0

rH−1(1 − B)dr (7)

R r*

S

server-support region

self-sustained region

Fig. 3. Analysis of Server LoadL

Substituting Eq. (5) into the above equation, we have the
server load for the random selection method in the 2-sphere
as

Lrandom,2D = ρπR2(1 − p
e1/p − 1

e1/p
)

Here, L is a linear function of the node densityρ, as
one can tell from the layout of Eq. (7). In fact, this general
form demonstrates that the server load increases linearly as
the number of peers in the entire sphere increases. From the
peer perspective though, this means that the percentage of
the streaming workload offset by P2P streaming is constant
regardless the number of peers in the network, For example,
whenp = 1, the formula simplifies intoρπR2/e, which means
P2P streaming overtakes63.2% of the entire workload.

As it is clear now that the percentage of workload assigned
to the server is solely determined by the average outbound
bandwidthp, we plot the server load of all methods asp takes
different values. Note that sinceB can not be derived for
VR and FR selection methods, we must continue to seek for
numerical solutions sinceL depends onB. Also as the density
ρ offers rather trivial insight, showing only a special case will
suffice. We choose to show the results when there are 500
nodes in the network.

Shown in Fig. 4, the server load universally drops asp
increases. Obviously, the abundant spare bandwidth from peers
help increase the self-sustainability of all peers. The random
and VR selection methods respectively achieve the highest
and lowest server load. While in the middle, the FR selection
method achieves higher server load when the search range
is small (t = 0.1R). It achieves the lowest load when the
ratio t/R is between 0.2 and 0.3. When we further increase
its search range (t = 0.5R), the percentage bounces back.
This performance order is consistent with the order ofr∗,
i.e., the sequence according to which the curves of different
methods cross with 1, as witnessed in Fig. 2. Intuitively, the
faster a peer selection method can reach the self-sustained
region, the more server load it will be able to save. Also
for the FR selection method, its search ranget must be fine-
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tuned in order to achieve the minimum server load, which
is shown to be betweent = 0.2R ∼ 0.3R). While setting
the downloading region too small does not help a peer to
receive enough bandwidth, setting the region too large will
rapidly decrease the bandwidth per share. Finally, we notice a
clear diminishing return of server load saving as one linearly
increases the outbound bandwidthp.

IV. N ETWORK LOAD ANALYSIS

Now we turn to derive the network loadM . M is defined
as the summary of distances traveled by all data units within
the network. The metric unit ofM is the multiplication of
bandwidth unit (such as Kbps) and distance, which is number
of hops in topological networking terms, or geometric distance
in the sphere model. Note that since the streaming bit rate is
normalized to 1 in our analysis,M can be also regarded as the
average delay, i.e., summary of peer-to-peer distance weighted
by the proportion of traffic carried by the pair of peers.

A. Network Load per Peer

We first discuss how to derive the network load imposed
by an individual peerC. If C is located inside the server-
support region constrained byr∗, we classify its network load
into two types, the load imposed by server directly streaming
to peers, and the load imposed by P2P streaming. Thus, we
denote the network load imposed by a peer asMB +r(1−B),
whereMB refers to the P2P streaming load imposed byC
with server-peer distancer, andr(1 −B) refers to the server
streaming load, which is the bandwidth provision from server
S to the peer multiplied by their distance. For peers in the self-
sustained region, onlyMB is considered since server support
is unnecessary.

MB is defined as the peer bandwidth provision is weighted
by the distance fromC to its supplying peers. Fig. 5 illustrates
how MB is derived in the same spirit asB, only in this case
the distance is originated from the peerC instead of serverS.
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Fig. 5. Analysis of Network LoadMB of an Individual Peer

MB = sH

∫ rmax

D
−rmin

D

0

(xH−1

∫ cos−1 x

2r

−cos−1 x

2r

xp

AU (z)
da)dx (8)

wherez =
√

x2 + r2 − 2xr cos a is the distance between the
serverS and the supplying peer at the surface distancedx
away from the peerC. At the inner integral of Eq. (8), we
accumulate the bandwidth shareC collects from peers on this
surface, then multiply by the distancex. At the outer integral,
we repeat the same operation for all surfaces by their distances
to C from 0 to rmax

D − rmin
D .

Notice that when the peerC is in the self-sustained re-
gion, i.e., whenr > r∗, the received bandwidthB > 1
(recall Fig. 3), which means that only a subset of peers in
the downloading region ofC will be enough to satisfy its
requirement. In this case, to correctly derive the network
load, we let C collect the bandwidth in its downloading
region in the following fashion. Starting from its closest peers,
C gradually marches to further peers, and stops when the
collected bandwidth accumulates to 1. Reflected in Eq. (8), we
change the upper bound of outer integral fromrmax

D −rmin
D to

r◦ < rmax
D − rmin

D , which is the point at which the marching
stops. Since we are unable to derive closed-form results for
r◦, we resort to numerical solutions to obtainMB for all peer
selection methods.

Similar toB, node densityρ does not appear in the formu-
lation of MB. Also in its original form,MB should increase
linearly with the average outbound bandwidthp. However, this
is changed with the presence ofr◦. In what follows, we plot
MB for all methods under different values ofp.

B. Network Load

With the knowledge ofMB, we now derive the total network
load M as the summary of the load from the server-support
region, and the load from the self-sustained region.

M = ρsH [

∫ r0

0

rH−1[MB + r(1 − B)]dr +

∫ R

r0

rH−1MBdr]

(9)
Evident from Eq. (9),ρ merely serves as the linear weight

to M , Therefore, when plottingM , we choose to show the
special case when there are 500 nodes in the network sphere.
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The network load imposed by different methods shown
in Fig. 6 demonstrates an almost reverse performance order
compared to the server load case ( Fig. 4). The random
selection method introduces the highest network load at the
cost of seeking bandwidth from peers distanced away. On
the other hand, although VR selection method has the lowest
server utilization, it imposes minimum load to the network
since a significant portion of the bandwidth is directly retrieved
from the server. The FR selection method manages to strike a
balance between these two methods. Moreover, enlarging the
search ranget allows a peer to seek bandwidth from peers
further distanced away, thus increases the network load.

Also notable is the behavior ofM when p is in the
range between 0 and 2, which showcases the benefit of
proximity-aware peer selection methods compared to the
random method. Whenp is approximate to 0, all methods
have comparable performance since all peers have to stream
from the serverS. As p grows, the network load of random
method slightly increases as the result of gaining more
bandwidth per share from its distanced peers. On the other
hand, able to accumulate more bandwidth from the peer
proximity, both VR and FR selection methods rapidly reduces
their network loads. Interestingly, further increasingp beyond
2 help little in reducing the network load. This phenomenon
of diminishing return turns out to be the same as the one
reported at the end of Sec. III. Sincep actually denotes the
real outbound bandwidth normalized by streaming bit rate,
this observation serves as a valuable reference to tradeoffthe
choice of server load and streaming quality determined by
the streaming bit rate.

In summary, by evaluating the three peer selection methods
in terms of the server load and network load, we claim there is
no all-around winner that minimizes both metrics. Therefore,
the choice of these methods in P2P streaming must be based
on the application semantics and the availability of network
and server resources.

Finally, we stress that our analytical model is general to

arbitrary value ofH in the H-sphere. Referred in Tab. I, this
is true to the definitions ofAD in Eq. (2),AU in Eq. (3),B
in Eq. (4),L in Eq. (7),MB in Eq. (8), andM in Eq. (9). In
the next section, we will verify our analytical obsevationsvia
simulation on network topologies.

V. SIMULATION RESULTS

To validate our analytical observations obtained from theH-
sphere model, we map them back to the real-world domain,
and examine them via simulation over the topological network
model, where the peer-to-peer distance is measured by the hop
count of their shortest path.

A. Simulation Setup

Using the popular BRITE Internet topology generator, we
create a 6000-router topology, whose node degree distribution
follows the power law withH = 4.6.

We also redefine the search range in each peer selection
method in accordance with the change of network model.
In the random selection method, the download region of a
peerC consists of peers whose hop count to the serverS is
smaller than itself, and its uploading region consists of peers
whose hop count toS is larger. To enforce the geographical
dependency constraint,C neither downloads or uploads to
peers with identical hop count. In the VR selection method,C
include into its downloading region the peers whose hop count
to S and C are both smaller than the hop count betweenC
and S. In the FR selection method,C only consider peers
within its search ranget in terms of hop count. Here, each
peer either belongs to the downloading region if its distance
to S is smaller than the hop count betweenS and C, or
the uploading region if the distance is greater. Finally, peers
with equal distance is excluded to enforce the geographical
dependency constraint.

In our experiment setting, the server is attached to the
most-connected router, i.e., the one with the highest degree.
Peers are randomly attached to other routers. We vary the
number of peers from 50 to 2000. Different average out-
bound bandwidthsp are chosen in the selection space of
{0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.5, 2, 4, 10}. In each run,p is set to
be randomly distributed between(0, 2p).

In what follows, we selectively demonstrate the results
on key metrics including percentage of self-sustained nodes
determined byr∗, server loadL, network loadM , and network
load per peerMB.

B. Server Load

We first plot in Fig. 7 the percentage of self-sustained
peers. As the number of peers increase, the percentage of self-
sustained peers stay constant, except at the beginning whenthe
number of peers are small. This coincides with Eq. (6), which
shows that the threshold valuer∗ determining the portion
of self-sustained peers is not related with the number of
peers in the network, but determined by the average outbound
bandwidthp. The percentage improves in a sublinear fashion
as we increasep.
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Fig. 7. Percentage of Self-Sustained Peers under DifferentOutbound Bandwidthp
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Fig. 8. Server Load under Different Outbound Bandwidthp

Fig. 8 plots the growing curve of server load as the number
of peers increase. Besides the fact that the performance order
of all methods is consistent with our analytical finding in
Fig. 4, the clear linear relationship between the server load and
the peer population confirms our claim that the percentage cut-
off of streaming workload between server and P2P streaming
is solely determined by the outbound bandwidthp. Together
with the observation in Fig. 7, it confirms that the system self-
sustainability in terms of streaming load share is independent
of peer population.

C. Network Load

Fig. 9 plots the network load per peer as the number of
peers increases, which confirms our analytical observationthat
the network load has no relationship with peer population.
Also consistent with Fig. 6, the random method induces the
highest network load, and the VR selection method induces
the minimum network load.

Finally, Fig. 10 shows the accumulative distribution ofMB,
the network load imposed by each peer in our simulation. In
fact, this metric can be also regarded as the average delay
experienced by each peer, i.e., summary of hop count weighted
by the proportion of traffic carried by the pair of peers). From
the figure, we observe that the network load of a peer is
primarily determined by its distance to the server. The delay
is further aggravated by the random selection method, and
remedied by VR selection method. In addition, the outbound
bandwidthp has little effect on the change ofMB.

VI. CONCLUSION

In this paper, we present our analytical study on the impact
of proximity-aware methodology to the scalability of P2P
streaming. We propose aH-sphere model, which maps the
network topology from the space of discrete graph to the
continuous geometric domain, meanwhile capturing the the
power-law property of Internet. Based on this model, we
analyze a series of peer selection methods (random, variable-
range, and fixed-range) by evaluating their performance via
key scalability metrics, namely server load and network load.

Based on our analytical model, our major findings are as
follows. First, of all peer selection methods studied, the server
and network loads are independent of the peer population,
but solely determined by the average outbound bandwidth
of peers. Second, although random selection method can
maximally save the server resource, it introduces the maximum
load to the network. A better tradeoff can be acquired through
the fixed-range selection method. However, we are unable to
find an all-around winner able to minimize server and network
load simultaneously. Our analytical observations are further
verified via simulation on the Internet topologies.
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