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Abstract— P2P (peer-to-peer) technology has proved itself an which are one-hop away in the P2P topology could have
efficient and cost-effective solution to support large-sda multi-  certaindistance (number of hops) between them in the under-

media streaming. Different from traditional P2P applications, the lying physical network. Such a distance governs its stragmi
quality of P2P streaming is strictly determined by performance . '
quality such as delay.

metrics such as streaming delay. To meet these requirements ) oeie . )
previous studies resorted to intuitions and heuristics to enstruct Without considering such distances between peers in the
peer selection solutions incorporating topology and proxhnity  physical network, the random peer selection mechanism used
concerns. However, the impact of proximity-aware methodagy in many commercial P2P streaming systems are shown to
and delay tolerance of peers on the scalability of P2P system be inefficient [1], [7]. Proximity-aware peer selectionasé-

remains an unanswered question. In this paper, we study this . . -
problem via an analytical approach. To address the challeng of gies [3], [2], [8] could remedy such inefficiency. In the

incorporating Internet topology into P2P streaming analyss, we ~Proximity-aware P2P streaming systems, the peers are aware
construct a H-sphere network model which maps the network of such distance and select peers that are closer as their

topology from the space of discrete graph to the continuous parents for downloading. The benefit of such proximity-avar

geometric domain, meanwhile capturing the the power-law pop- echanism in P2P streaming include (1) Reduced delay which
erty of Internet. Based on this model, we analyze a series. . tant for li t - lications: (2) Reducead
of peer selection methods by evaluating their performance im IS important for live streaming applications; (2) Reduce:

key scalability metrics. Our analytical observations are fither ~ ON network by removing long-haul unicast connections, Whic
verified via simulation on Internet topologies. also achieves ISP friendliness.

Towards the construction of high-quality P2P topologigs, i
is natural to ask the following questions for the proximity-
Live multimedia streaming is gaining increasing popularitaware streaming systems: (1) how server load and network
with the advent of commercial deployment from major contetiandwidth cost scales with the number of peers in the system;
providers. Among the existing systems, P2P streaming h@3} how server load and network bandwidth cost scales with
emerged to be a promising approach to large-scale multametlie delay tolerance of peers. Unfortunately, although the
distribution [3], [12], [2], [14], [6], [4], [18], [10], [9] The existing research have devised protocols to construct good
basic idea is that each peer in the P2P streaming systproximity-aware P2P topologies, they fail to offer a compre
will contribute their uploading capacities to the downloayl hensive and analytical study on the characteristics thegmo
demands of other peers. In this way, the media server lod scalability and performance of P2P streaming. On theroth
could be significantly reduced. Therefore the system is blehand, though there exist analytical models for the P2P file
support a larger number of peers in a streaming session wstharing [13], [11], [17] and on-demand P2P streaming [16],
a fixed server capacity, and thus achieve better scalability [15], none of them could be applied to proximity-aware P2P
While proven to provide a better scalability in terms o$treaming systems where the underlying physical network
server load, the overall P2P streaming system performariopology needs to be incorporated into the model.
in terms of delay and network bandwidth cost largely dependsin this paper, we seek analytical insights into the scatgbil
on the P2P topology. At the core of its construction is thef proximity-aware P2P streaming solutions. The challenge
problem ofpeer selection — how to select the parent peer(sjo incorporating topology concern into the P2P streaming
to download the stream. The goal is to construchigh analysis is evident from the complexity of Internet topglog
quality topology that could minimize the server load and delajo gain critical insights, we must construct an analyticabiel
experienced by peers, and reduce the network bandwidth cosasonably simple to derive closed-form results, meamwhil
To address this problem, the existing approaches haveteesocapturing the essential property of Internet topology. dms
to intuitions and heuristics. The proposed solutions idelu this challenge, this paper proposes a nd¥esphere network
tree-based, mesh-based, directed-acyclic-graph-basédan- model, which maps the network topology from the space
domized topology construction algorithms and protocols. of discrete graph to the continuous geometric domain. Our
One of the fundamental challenges that all these approachpproach is motivated by the seminal study on power-law
face is the problem of topology mismatch between the overleglation in Internet topology, which reveals the neighloarth
layer of P2P network and physical layer network. The peesize as aH-power function of hop distance [5].

I. INTRODUCTION



Based on thé-sphere model, we perform in-depth analysis Based on this power-law relation, we perform our analysis
on a series of topology-aware peer selection methods and network sphere model with maximum radidsThe server
compare them with the random peer selection strategy. Qfiis situated at the center, and a client host (pékig allowed
analytical investigation provides significate insightsoinhe to appear elsewhere in the sphere. Furtherplbe the node
P2P streaming systems: First, of all peer selection methadnsity (number of nodes in af-dimensional unit), then
studied, the server and network loads are independent of the- p- %%, wheresy represents the surface area of a Uit
peer population, but solely determined by the average osgphere. In the two-dimension and three-dimension cases, we
bound bandwidth of peers. Second, although random setectimve s, = 27, s3 = 4x. Through this model, the hop count
method can maximally save the server resource, it intragludeetween two peers is transformed as their geometric distanc
the maximum load to the network. in the H-dimensional space.

The original contributions of this paper are two-fold. To model the peer bandwidth, we assume that all peers
First, the novell-sphere model enables in-depth analysis care interested with the same media stream with identical
topology-aware peer selection methods of different flavéos streaming bit rate. For the purpose of simplicity, we noizeal
the best of our knowledge, this is the first analytical studye peer bandwidth with the streaming bit rate. We further
conducted in a topology-aware network setting. Second, wesume that each pe€rhas enough downloading bandwidth,
systematically investigate the proximity-aware P2P stieg i.e., it is greater than or equal tb. We further denote the
strategies, by evaluating their performance via key sdilab normalized uploading bandwidth as randomly distributethwi
metrics, namely server load and network load. The analyticaeanp. Finally, we assume the serv&rhas unlimited upload
findings provide valuable guidelines for future P2P stremmi bandwidth.
system designs. )

The remainder of this paper is organized as follows. We: Peer Selection Methods
first present ourfH-sphere model for proximity-aware P2P In this work, we compare a series of proximity-aware peer
streaming analysis in Sec. Il. Then we proceed to analygelection methods with random peer selection strategies. |
the server load and network load in Sec. Ill and Sec. Iparticular, we consider the following methods.
respectively. Finally, we validate our analytical modeh \a « Random Selection: In this method, a pee€ can seek
simulation-based study over Internet topologies in Secn a bandwidth supply from all other peers regardless their

conclude the paper in Sec. VI. distance toC. C' can also seek help from servér if
enough bandwidth cannot be obtained from peers.

Il. ANALYTICAL MODEL « Variable-Range (VR) Selection: In this method,C' has a

A. H-Sphere Model search radius limited by, its distance to the servé. In

. ) this way,C' constrains the streaming delay from its peers

To enable in-depth analysis on topology-aware peer selec- 1, he no more than the one from the server.
tion methods, we first need to construct an analytical model Fixed-Range (FR) Selection: In this method, the search
reasonably simple to derive closed-form results, meamwhil -5 of peerC' is limited by the constant, which
capturing the essential property of Internet topology. Wt fi constrains the peer streaming delay to a predetermined
characterize the distance between peers in the underlyiysy p bound.
ical network. Here the distance between nodes are measure_?
by their hop count in the physical network, as it reveals man

;mgtc;rrt:r;tugthen;osrgs ggcranirrr:etggfapercewed by peers in the I:)each other. To establish a loop-free dependency among peers
y 9 Y- and better reflect the reality of peer selection protocdis, t

In our network model, each node represents the router tg%iowing geographical dependency constraint is applied to
|

is attached by either the server or the peers within a P .
; . all the above methods: each p&grcan only download from
streaming system. In order to model the distances among thes . :
. . - .peers whose distances to the sengrmare shorter than its
nodes, we measure the number of neighboring nodes within a" . : .
o . own distance. These constraints ensure that the content will
certain distance. In the seminal study [5] on Internet togyl - :
. . . 2" be distributed from the central server to the outer rim of the
the following power-law relation about neighborhood sige I etwork
revealed: We illustrate these method for2zadimensional sphereH =
" 2) in Fig. 1. Each method assigns a pégfl) thedownloading
a-r (1) region (the vertically shaded area in Fig. 1), where all peers

wherer is the node distance measured by hop count,HndlL? Ig;;i nregrlor;O?rtztggehzl:igglrlﬁ;”caggf dagssé?éaa?g I(:?) al)
is the constant exponent. This model regards the neighbdrhop grey y 9.

centered around any node in the network al-aphere with whereC_ is the supplle_r candidate to all peers in this region.
. The defined geographical dependency constraint ensurgs the
radiusr, and o represents the average number of nodes in

the_ unit sph_erg. Then Eq. (1) gives the expected number OfFor simplicity a peer is represented by the node it attaclem tthe
neighbors withinr hops. following analysis.

he basic semantics of these methods do not prevent the
E,adlock problem, i.e., a pair of peers download contemhfro
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Fig. 1. Analytical Scenarios
. . . Notations Definitions
two regions to exclude each_ other. .leen the peer density —; Dimension of the Network Sphere
by calculating the downloading region volumg,, one can a Node Density in the UnitZ-Sphere
know the number of peers in this region, denotedNgs. sH Surface Area of a UnitZ-Sphere
Similarly, by calculating the uploading region volumg;, we g i:g'e(rCIient oS0
can acquire the number of peers in this regién. = Radius of The Disk Modal
Although illustrated forH = 2, we note that our analytical | p=aH/su | Node Density ofH-dimensional Unit
model is general to arbitrary value df in the H-sphere. |.” Distance between the Servérand a PeeC’
. . . D Upload Bandwidth of the Peer
However, the extreme complexny of calculating spherermte I Search Range in the Fixed Selection Method
section in the three-dimensional or hyper space forbidsam f Ap Volume of the Downloading Region
obtaining closed-form results to the above terms. Neviasise ;‘ZU . \N/0|U”;e Offtge Uplpa?rllngDRegI?n S
. . . . . _di . D = pPApD umper o eers In the bownloading Region
the analytical |n3|.ght.ga|ne_d in the twq d|men3|0nal CaS8— — 1 Number of Peers in the Uploading Region
proves to generalize into higher dimensions via simulationr—7g Amount of Bandwidth Received by a Peer from its
verification. Downloading Region
r* Threshold Value Separating the Self-Sustained Re-
gion and Server-Support Region
. L Server load
C. Performance Metrics Mg Network Load per Peer Imposed by P2P Streaming
M Network Load
To measure the scalability of different peer selection meth TABLE |
ods, we introduce two metrics. NOTATION DEFINITIONS

o Server load L, defined as the amount of bandwidth
provided by the serve§ to support all peers.

o Network load M, defined as the summary of distances
traveled by all data units within the network. The metric [1l. SERVERLOAD ANALYSIS
unit of M is the multiplication of bandwidth unit (such

as Kbps) and distance, which is number of hops in .
: . S . To derive the server load, we need to know how much
topological networking terms, or geometric distance in

the sphere model of the streaming workload is offset by peers. We do so by
' studying the amount of bandwidth received by each péer
The terms used in this paper are summarized in the follofvem its supplying peers included in downloading regiore(th
ing table. vertically shaded areas in Fig. 1).



A. Downloading and Uploading Regions 5 . .

We first look at how to calculateéVp, the number of ‘ ‘ raa'?%%ﬁl --------
peers in the downloading region. The region consists of 4| fixed 0.1 e
peers with different server-peer distaneeSuch a distance ‘ ‘ I:iiﬂji;gjé R [
is bounded withinr3i®, rax] which is defined by different % sk fixed,t=09 e P
peer selection methods. From the shape of the downloadings
region we also knowsp(x), the length of the arc, which is § L
the collection of points distanced away from the servef 3
within this region. Now we have
rpe* !
Np = pAp = P/ ~ sp(x)dz (2)
pmin o L
0
As a reference, Tab. Il lists the resultsg§™, r5>, sp(z), distance (r/R)
and Ap as functions ofr. ) _ _
In the same fashion, we can calculate, the volume of Fig. 2. Bandwidth Received per Peer
the uploading region, an@y, the number of peers in this
region. max also apply to VR and FR selection methods, although their
Ny = pAy = p/ ! su(z)dx (3) analytical results are unavailable.
Fmin We plot B for all methods in Fig. 2. Since the role of

as the linear factor is trivial, show only a special case is
ufficient. In this figure, we choose = 1. In all methods,

B is a monotonically increasing function of which reveals
the common fact that peers further away from the seer
B. Bandwidth Received per Peer can r_eceive more.bandwidlth than the ones closes tdNe _

, explain the behaviors of different methods as referenced in
With the knowledge ofVp and Ny, we are now able 10 gy 1 The superlinear growing curves of random and VR
derive 3, the amount of bandwidth received per peer. For anyjection methods are due to the fact that the downloading

peer whose server-peer distancerjsit supplies equal share region of a peelC enlarges quadratically as the distance
of its uploading bandwidti, then each peer in its uploading;,, ~raases (Fig. 1 (e) and (f)). For FR selection method, the

wheresy (x) and [ r1ax] serve the same purpose as the&9
counterparts in the downloading region. Tab. Il colledis t
results ofy®in, ymax o, (z), and Ay as functions ofr.

region gets bandwidth/Ny (z). Then B is given by curve first increases abruptly, then levels off, and quickly
pmax P rmex D increases towards the end. This is because wfigén close
B= [ pSD(I)N—dSC :/ » SD(SC)A dx to the server, its downloading region increases quadtitica
rigin v(z) rigin v(z) @ (Fig. 1 (@). ASC further shifts away (Fig. 1 (b) and (©)), the

Let us first look at the random selection method in the g_rovvth of its downloading region stabilizes. Finally, wite

sphere. Plugging their results in Tab. Il and Il into Eq.,(4)search rangegﬁexns the radlusiw.%, its _uploa<_j|ng region starts-
we have to shrink, which makes peers in this region able to receive

R2 greater bandwidth per share ©f thus explains the final surge
Brandom,2D = plnw ()  of the curve. Obviously, the smaller the search rangthe

) ) . longer the “stabilized” phase will last.
For variable-range (VR) and fixed-range (FR) selection

methods, due to the complexities of their arc lengthgz), C. Server Load

volume of downloading regiordp, as well as uploading Fig. 2 and Eq. (4) confirms thaB is a monotonically

region Ay (shown in Tab. Il and Ill), we are unable to obtairincreasing function of distance. This means there exists
the closed-form results as the random method. Instead, #eeshold valuer*, at which B = 1. From Eq. (5), we can

seek for numerical solutions. easily deriver* for the random method in the 2-sphere.
Note that in Eq. (5), the densify disappears, which means

that the amount of bandwidth received by a pé&erdoes P op =R /el/p -1 (6)

not relate with the node density in the network. Intuitively randon, et/p

the more supplying peer§' has in its downloading region, If the average uploading bandwidthp = 1, then

the less bandwidth each peer will provide ¢ since each 77, 4,m2p =~ 0.795R, which can also be found in Fig. 2.

of them will have more peers in its uploading region, whickrom the same figure we can numerically identifyfor the
results in less bandwidth per share. Also, the average antbo VR and FR methods. This value serves as the watershed point.
bandwidthp is the weight factor in Eq. (5), which representd\s illustrated in Fig. 3, peers within this perimeter mudyre

its linear relation with the bandwidth received per peeeSéh on server support, which we call trserver-support region,

two findings are evident from the structure of Eq. (4), thughose volume isszr*7 /H. Peers outside this perimeter can



Method rin | pmax | sp(x) s Ap
Fixed ¢ <r < R) r—t | r 2x cos™ ! % 272 sin—1 % +t2cos™ ! % - % 4r? — ¢2
- PO - ;
Fixed ¢/2<r<t) | O T 2wcos™t TAZEif g > (t—r) 2r2sin~! L +12cos™ L — LV — 2
2mx otherwise
Fixed 0 <r<t/2) | O r 27z w2
X 1 = 3
Variable 0 r 2zcos ! 27‘2(% - %)
Random 0 r 2 r
TABLE Il
COMPUTATION OF DOWNLOADING REGIONAREA (H = 2)
Method ™ | g | su(®) Ay
. 2 2 2 2 2 2
Fixed R—t <r <R) r R 2wcos™t A ) 2 /2(r2t2 + 2R 4+ R?r%) —rT —RT— T + t2cos’1% +
2 2 2
R2cos™1 A —t% _ op2gin=1 L _2cos—1 L 4 L\/472 —¢2
2Rr 27 27 2
R 2 2,2 .
Fixed ¢/2<r<R-—t) | r r+t 2xcos*1:+2:7g: wt?2 — 2r2 sin 1%—t2cos*1%+%\/4r2—t2
Fixed 0 < r < t/2) r r+t | 2zcos™?! % w2 — 2
; —1 2 oq—1 2 r/4aR?—¢2 2V3

Variable r R 2x cos % R? cos # - % — 1 r 2
Random r R 2nx 7R? — mr?

TABLE Il
COMPUTATION OF UPLOADING REGIONAREA (H = 2)

receive enough bandwidth from peers in the inner circlectvhi Here, L is a linear function of the node densily, as
we call theself-sustained region. The volume of this region one can tell from the layout of Eq. (7). In fact, this general
is sg(RH — r*H)/H, the difference of the entire sphere andorm demonstrates that the server load increases linearly a

the server-support region.

Since Eq. (6) is derived fronB defined in Eq. (4)7* is
not related with the density However,* is a function of
average outbound bandwidth

With the knowledge ofB as a function of distance, and
the r*, we can derive the server loall by accumulatively
computing how much bandwidth the server contributes to
peers distanced away, up to the point of*.

*

L:psH/7 =11 — B)dr @)
0

self-sustained region

server-support region

Fig. 3. Analysis of Server Load

Substituting Eq. (5) into the above equation, we have tlj'rg"
server load for the random selection method in the 2-sphéﬂ§

as
el/r —1

Lrandom,QD = PWRQ(l -p el/p

the number of peers in the entire sphere increases. From the
peer perspective though, this means that the percentage of
the streaming workload offset by P2P streaming is constant
regardless the number of peers in the network, For example,
whenp = 1, the formula simplifies intpr R? /e, which means
P2P streaming overtaké$.2% of the entire workload.

all As it is clear now that the percentage of workload assigned
to the server is solely determined by the average outbound
bandwidthp, we plot the server load of all methodsatakes
different values. Note that sinc8 can not be derived for
VR and FR selection methods, we must continue to seek for
numerical solutions sincé depends orB. Also as the density

p offers rather trivial insight, showing only a special casé w
suffice. We choose to show the results when there are 500
nodes in the network.

Shown in Fig. 4, the server load universally dropsias
increases. Obviously, the abundant spare bandwidth frarspe
help increase the self-sustainability of all peers. Thedoam
and VR selection methods respectively achieve the highest
and lowest server load. While in the middle, the FR selection
method achieves higher server load when the search range
is small ¢ = 0.1R). It achieves the lowest load when the
ratio ¢t/ R is between 0.2 and 0.3. When we further increase
its search ranget(= 0.5R), the percentage bounces back.
This performance order is consistent with the orderrbf
the sequence according to which the curves of difteren
thods cross with 1, as witnessed in Fig. 2. Intuitivelg, th
faster a peer selection method can reach the self-sustained
region, the more server load it will be able to save. Also
for the FR selection method, its search ramgaust be fine-
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tuned in order to achieve the minimum server load, Whi%herez — V22 12 — 2zrcosa is the distance between the
is shown to be between = 0.2R ~ 0.3R). While setting gervers and the supplying peer at the surface distanged
the (_jownloadmg region too sm.aII does not help a peer éﬁvay from the peef’. At the inner integral of Eq. (8), we
receve enough bandW|dth,-sett|ng the region too large,wﬂlccumulate the bandwidth shatecollects from peers on this
rapidly decrease the bandwidth per share. Finally, we eatic surface, then multiply by the distanee At the outer integral,

_clear diminishing return of Server load saving as one lilyear, repeat the same operation for all surfaces by their distn
increases the outbound bandwidth to C from 0 to rjee — pmin,

Notice that when the peet’ is in the self-sustained re-
IV. NETWORK LOAD ANALYSIS gion, i.e., whenr > r*, the received bandwidttB > 1
d (recall Fig. 3), which means that only a subset of peers in
as the summary of distances traveled by all data units Witht]}ﬁe (_jownloadlng region ot will be enough_to satisfy its
requirement. In this case, to correctly derive the network

the network. The metric unit of/ is the multiplication of . L :
bandwidth unit (such as Kbps) and distance, which is numblgla(.j' we letC collect the bandwidth in its downloading

of hops in topological networking terms, or geometric dis& region in the following fashion. Starting from its closestps,

in the sphere model. Note that since the streaming bit rateC gradually marches to further peers, and stops when the

[ X ;
normalized to 1 in our analysig/ can be also regarded as theC(E"eCte?hbandW'dtQ accdurr}ulattes _totl. R?IIeCteS n E?ﬂ Ee)’ w
average delay, i.e., summary of peer-to-peer distancehtesig change the upper bound of outer integral fropf™ —r5™ to

o max __ ,.min i i i i i
by the proportion of traffic carried by the pair of peers. . < "D . —rp " Which is the point at which the marching
stops. Since we are unable to derive closed-form results for

r°, we resort to numerical solutions to obtaifiz for all peer
A. Network Load per Peer selection methods.

We first discuss how to derive the network load imposed Similar to B, node density does not appear in the formu-
by an individual peerC. If C is located inside the server-lation of Mp. Also in its original form,Mp should increase
support region constrained by, we classify its network load linearly with the average outbound bandwigtHowever, this
into two types, the load imposed by server directly stregmirs changed with the presence of. In what follows, we plot
to peers, and the load imposed by P2P streaming. Thus, We for all methods under different values pf
denote the network load imposed by a peetbs+r(1— B), B. Network Load

where Mp refers to the P2P streaming load imposed @y _ _
with server-peer distance andr(1 — B) refers to the server With the knowledge of\/ 5, we now derive the total network

streaming load, which is the bandwidth provision from servéPad M as the summary of the load from the server-support
S to the peer multiplied by their distance. For peers in the se[€9i0n, and the load from the self-sustained region.

Now we turn to derive the network loatll. M is define

sustained region, only/ is considered since server support o L
is unnecessary. M = PSH[/O r=1[Mp +r(1 - B)ldr +/T = Mpdr]
Mg is defined as the peer bandwidth provision is weighted ’ (9)

by the distance fron®’ to its supplying peers. Fig. 5 illustrates Evident from Eq. (9), merely serves as the linear weight
how Mg is derived in the same spirit &, only in this case to M, Therefore, when plotting/, we choose to show the
the distance is originated from the pe@rinstead of servef. special case when there are 500 nodes in the network sphere.



200000 I —— arbitrary value ofH in the H-sphere. Referred in Tab. I, this
180000 ~[andom — | is true to the definitions ofip in Eq. (2), Ay in Eq. (3), B
160000 | [fixed, t=0.1 | in Eq. (4),L in Eq. (7), Mg in Eq. (8), andM in Eq. (9). In
140000 fixed, t=0.3 the next section, we will verify our analytical obsevatioia

fed 505 ooo- 1 simulation on network topologies.
120000
100000

80000

V. SIMULATION RESULTS

To validate our analytical observations obtained fromihe
60000 |- sphere model, we map them back to the real-world domain,
and examine them via simulation over the topological nekwor

40000 e e . .

e betsstb ey Aen el A model, where the peer-to-peer distance is measured by the ho
20000 [ ] count of their shortest path.
0 2 4 6 8 10 .

outbound bandwidth (p) A. Smulation Setup

network load (M)

Using the popular BRITE Internet topology generator, we
create a 6000-router topology, whose node degree distibut
follows the power law withH = 4.6.

) ) We also redefine the search range in each peer selection
The network load imposed by different methods showlieiqq in accordance with the change of network model.

in Fig. 6 demonstrates an almost reverse performance orgen o random selection method, the download region of a
compared to the server load case ( Fig. 4). The randqferc consists of peers whose hop count to the sef/és

selection me?hod introd_uces the highest r_1etwork load at t88 4jier than itself, and its uploading region consists afrge
cost of seeking bandwidth from peers distanced away. ose hop count t& is larger. To enforce the geographical

the other hand, although VR selection method has the IOWﬁ%tpendency constraing' neither downloads or uploads to
server utilization, it imposes minimum load to the networbeers with identical hop count. In the VR selection meth@d,
since a significant portion of the bandwidth is directly imted include into its downloading region the peers whose hop toun
from the server. The FR selection method manages to strik§as 44 ¢ are both smaller than the hop count betwegn
balance between these two methods. Moreover, enlarging (e s |n the FR selection method; only consider peers
search range allows a peer to seek bandwidth from peerg;ihin jts search range in terms of hop count. Here, each
further distanced away, thus increases the network load. peer either belongs to the downloading region if its distanc
Also notable is the behavior of/ when p is in the 5 g is smaller than the hop count betwedhand C, or
range between 0 and 2, which showcases the benefitygd uploading region if the distance is greater. Finallyerpe
proximity-aware peer selection methods compared to thth equal distance is excluded to enforce the geographical
random method. Whep is approximate to 0, all methOdeependency constraint.
have comparable performance since all peers have to strean, oyr experiment setting, the server is attached to the
from the serverS. As p grows, the network load of randommost-connected router, i.e., the one with the highest @egre
method slightly increases as the result of gaining Mofgsers are randomly attached to other routers. We vary the
bandwidth per share from its distanced peers. On the othgfmber of peers from 50 to 2000. Different average out-
hand, able to accumulate more bandwidth from the peghund bandwidthg are chosen in the selection space of
proximity, both VR and FR selection methods rapidly reducq@_L 0.3,0.5,0.7,0.9,1,1.5,2,4,10}. In each runp is set to
their network loads. Interestingly, further increasmmbeyond pe randomly distributed betwedn, 2p).
2 help little in reducing the network load. This phenomenon | what follows, we selectively demonstrate the results
of diminishing return turns out to be the same as the 0R® key metrics including percentage of self-sustained sode

real outbound bandwidth normalized by streaming bit rat@aq per peed/.

this observation serves as a valuable reference to trateoff
choice of server load and streaming quality determined IBy Server Load

the streaming bit rate. We first plot in Fig. 7 the percentage of self-sustained
peers. As the number of peers increase, the percentagd-of sel

In summary, by evaluating the three peer selection methosigstained peers stay constant, except at the beginningtiveen

in terms of the server load and network load, we claim therendgimber of peers are small. This coincides with Eq. (6), which

no all-around winner that minimizes both metrics. Thereforshows that the threshold value determining the portion

the choice of these methods in P2P streaming must be baggdself-sustained peers is not related with the number of

on the application semantics and the availability of nelwopeers in the network, but determined by the average outbound

and server resources. bandwidthp. The percentage improves in a sublinear fashion
Finally, we stress that our analytical model is general @®s we increase.

Fig. 6. Network Load
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Fig. 8 plots the growing curve of server load as the number
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VI. CONCLUSION

of peers increase. Besides the fact that the performanes ord In this paper. we present our analvtical studv on the impact
of all methods is consistent with our analytical finding in Paper, P Y y P

Fig. 4, the clear linear relationship between the servet kel of proximity-aware methodology to the scalability of P2P

the peer population confirms our claim that the percentage Clsjtreammg. We propose A-sphere model, which maps the

off of streaming workload between server and P2P streamiﬂgw\{ork topology frgm the space of d'.s crete gr‘f"ph to the
continuous geometric domain, meanwhile capturing the the

is solely determined by the outbound bandwigthTogether Ipower—law property of Internet. Based on this model, we

with the observation in Fig. 7, it confirms that the systenf-se ; . .
R ; o analyze a series of peer selection methods (random, veriabl
sustainability in terms of streaming load share is independ , : . :
. range, and fixed-range) by evaluating their performance via
of peer population. " .
key scalability metrics, namely server load and networkiloa
Based on our analytical model, our major findings are as
Fig. 9 plots the network load per peer as the number Bqllé)ws.tFlrslt(, ?f e:j” peer ge(ljectlondmetthc;dtshstudled, telalelr i
peers increases, which confirms our analytical observétiain and network loads are independent of the peer popu/ation,
Rut solely determined by the average outbound bandwidth

the network load has no relationship with peer populatio S d. althouah d lect thod
Also consistent with Fig. 6, the random method induces tﬁ)é peers. second, afthougn random selection method can

highest network load, and the VR selection method induc??x'mally save the server resource, itintroduces the manim
the minimum network load. oad to the network. A better tradeoff can be acquired thhoug

Finally, Fig. 10 shows the accumulative distributionidfs, the fixed-range selection method. However, we are unable to

the network load imposed by each peer in our simulation. de an all-around winner able to minimize server and network

fact, this metric can be also regarded as the average def¥ simultaneously. Our analytical observations arehfut

d
experienced by each peer, i.e., summary of hop count W@IghYee?'f'ed via simulation on the Internet topologies.

by the proportion of traffic carried by the pair of peers).tro
the figure, we observe that the network load of a peer is
primarily determined by its distance to the server. Theyela[1] S. Ali, A. Mathur, and H. Zhang. Measurement of commdrgiaer-
i ; to-peer live video streaming. Im Proc. of ICST Workshop on Recent
IS furg.]e(; sggravateld t.)y the rr?ngom Sg(lfc.:tlon hmethog’ and Advances in Peer-to-Peer Sreaming, Weaterloo, Canadda, 2006.
remeaie y VR selection method. In addition, the out Ounﬁ] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Blealgpplication

bandwidthp has little effect on the change éf 5. layer multicast. InProc. of ACM SIGCOMM, August 2002.
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