
A MODEL BASED DATA VALIDATION

SYSTEM

By

James Richard Davis

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial ful�llment of the requirements

for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

December, 1995

Nashville, Tennessee

Approved: Date:

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. Janos Sztipanovits, for his support

and guidance over the past two years. I also need to thank Dr. Gabor Karsai, who

had a great deal of input into my research. If he had not answered all of my questions

by forcing me to think the problem through and �nd my own solution, I would not be

at this stage yet. Dr. Csaba Biegl and Dr. Karsai are responsible for the MultiGraph

Architecture, without which this research would not have been possible.

Several other members of the Measurement and Computing Systems Laboratory

have been a great help through my graduate studies. I would like to especially thank

Dr. Ben Abbott, Dr. Ted Bapty, Dr. Amit Misra, and Dr. Akos Ledeczi for all the

helpful hints along the way. Mike Moore and Jason Scott have su�ered along with

me. They also provided a great service by putting up with my stupid jokes.

My family deserves a great deal of credit. Without the encouragement from Mom,

Dad, and Jenn, this would not have been possible. Someone had to keep telling me

all the late nights would be worth it someday. My Grandfather has also been a source

of inspiration for me. I need to thank him for all of his support throughout the years.

Artemis, thanks for pushing me at an early age. I am glad someone made me strive

to be my best. Also, Ms. T., thanks for pushing me. Without your encouragement

long ago, this would not have been possible.

Finally, I would like to thank Tom Tibbals, Don Malloy, and Greg Hollis of Sver-

drup Technology, AEDC Division, for the insight into the problem. Many bad de-

cisions might have been made along the path of this research without their input.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS : iii

TABLE OF CONTENTS : iv

LIST OF FIGURES : vi

Chapter

I. INTRODUCTION : 1

Problem Motivation : 1
Validating Data : 2
Original Data Validation System : : : : : : : : : : : : : : : : : : : 5

Steady{State Data Validation System : : : : : : : : : : : : : : 5

II. LEGACY SOFTWARE : 11

Modifying Legacy Software : 11
Reuse or recon�guration : 12
Addition of features : 12
Modernization : 13

Methods for modifying legacy codes : : : : : : : : : : : : : : : : : 13
Porting the software : 14
Reengineering the software : 16
"Wrapping" the software : 17
Comparison of the proposed methods : : : : : : : : : : : : : : 19

III. DIAGNOSTICS : 20

Levels of Diagnostics : 21
Structural : 22
Behavioral : 23
Functional : 23

Improving Diagnostics : 24
Diagnostic System for Data Validation : : : : : : : : : : : : : : : : 25

IV. NEXT GENERATION DATA VALIDATION : : : : : : : : : : : : : 26

MGA : 26
Prototype Data Validation System : : : : : : : : : : : : : : : : : : 31
Production Data Validation System : : : : : : : : : : : : : : : : : : 33
DatEdit : 35
DatVal : 41

Basic DatVal Features : 42
Diagnostics : 49

iv

V. DATA DEPENDENCY ANALYSIS : : : : : : : : : : : : : : : : : : : 52

Available Tools : 53
Source Code Dependency Analyzer : : : : : : : : : : : : : : : : : : 56

The Algorithm : 59
Performance Analysis : 62

VI. CONCLUSIONS : 63

Future Research : 63
Lessons Learned : 64

REFERENCES : 67

v

LIST OF FIGURES

Figure Page

1. A Data Validation System : 4

2. \Wrapping" Existing Software : 18

3. Diagnostic Levels : 21

4. MultiGraph Architecture : 27

5. The New MultiGraph Micro{kernel : 30

6. MGA Domains : 31

7. Prototype Modeling Environment : 32

8. Data Validation Development System Interaction : : : : : : : : : : : : : 33

9. Data Validation Run{Time System : 34

10. DatEdit Main Interface : 36

11. Filters Flowchart : 38

12. DatEdit User Screen Editor : 39

13. DatEdit Dependency Graph : 40

14. DatVal Main User Interface : 43

15. Sorted Errors Display : 44

16. DatVal Tolerance Popup Window : 45

17. DatVal Parameter Popup Window : 46

18. DatVal Sorted Error Messages Window : : : : : : : : : : : : : : : : : : 48

19. DatVal User Screen : 49

20. Sage++ Language Restructurer : 55

21. Equivalence Indirection : 58

22. Samples From a Con�guration File : 61

vi

CHAPTER I

INTRODUCTION

In this thesis, a model based data validation package is introduced. A data val-

idation system takes input data and determines if there are problems with the data.

This is done by comparing the data values to the data values generated by some test

article system model. In order to facilitate this system design, several key areas were

examined. This areas are discussed in detail in this thesis. Brie
y, they are the data

validation process, the MultiGraph Architecture, re{engineering of legacy software,

diagnostic systems, and data dependency analysis. The major problem encountered

during this research e�ort was the extraction of structural information from legacy

codes for diagnostic purposes. This drove the development of a data dependency

analyzer.

Problem Motivation

Arnold Engineering Development Center (AEDC) is a United States Air Force

Base responsible for testing and development of aerospace systems. AEDC is the ma-

jor testing center for the U.S. Air Force. Testing of both propulsion and aerodynamic

systems of aircraft undergoing development occurs there. Supersonic and transonic

wind tunnels support the aerodynamic testing of aircraft models; actual engines are

tested, at simulated altitude, in one of several test cells available on base. Unlike most

military operations, testing at AEDC is performed on both commercial and military

aircraft. At AEDC, they also test missile and rocket engines along with performing

some X-ray research for the military. By ground testing components under develop-

ment, the USAF is able to save signi�cant amounts of money. Even ground testing

1

is expensive, but with ground testing no prototype aircraft can be lost. Also, ground

testing allows a test to be stopped if a signi�cant problem arises. Obviously, this

cannot be attempted in an actual
ight test.

AEDC is always searching for more e�cient, and more
exible, methods for testing.

This search not only includes new physical tools, but also new software systems

to enhance testing. As with any large plant, numerous software systems are used

throughout AEDC. By improving these systems, AEDC can decrease the cost of

testing and improve the test results supplied to their customer.

This thesis describes a software system built for AEDC to perform steady{state

data validation. An existing data validation system has been in use at AEDC for

many years. However, the system would be considered outdated by most software

engineers. The rest of this chapter is devoted to describing the process of validating

data and describing the data validation system AEDC wants to upgrade. Next, the

problem of modifying legacy codes will be discussed. This is an important problem

for this system, due to AEDC's constraints upon the new system. In Chapter III,

general diagnostics systems will be discussed. A diagnostic system is one of the

major additions required for the data validation system. Chapter IV will describe the

modeling method used in producing the new data validation system. Also, the actual

implemented system will be described here. In order to solve some problems with

con�guring the new system, a data dependency analyzer was written. It is outlined in

Chapter V. Lastly, Chapter VI will examine the results of this research.

Validating Data

One of the �rst questions to arise in the course of this project was, \What is a

data validation system?" A data validation system plays an extremely important role

in the veri�cation of aerospace systems. As part of these veri�cation e�orts, testing of

2

components and full systems must occur. These tests are useless if the data produced

during a test are not complete and valid.

Other major users of AEDC's facilities are commercial companies. AEDC has a

large investment in capital equipment. Commercial businesses buy testing time to

test some of their key systems. For companies such as GE and Pratt-Whitney, testing

time and facilities cost tens of thousands of dollars per hour. The only deliverables a

company receives from AEDC after these test periods are the data recorded during

the test session. If this data is incorrect, the test period was a failure; the test must

be repeated.

One of the problems engineers face with testing aerospace systems is the system

being tested is often viewed as reliable. An error that appears in a turbine engine test

is usually �rst attributed to a faulty data system or a faulty diagnostics system. The

actual test article is assumed to be correct and working. One of the goals of a data

validation system is to enable an engineer to better determine the cause of an error,

whether it be an acquisition system error or a test article failure.

One of the data validation systems used at AEDC takes steady-state data from

a data acquisition system. Figure 1 diagrams the data validation system in use at

AEDC. Based on the values of this data and the predicted behavior of the engine,

the data is validated. If some data items are not within the expected ranges an error

message is generated to inform the engineer of a suspected problem. It then becomes

the engineer's responsibility to determine if a problem does exist. He must either:

correct the problem; set the faulty data values to don't care states; or stop the test.

Another extremely important question is, \How do we know the values used for

validating the data are correct?" Engine testing has produced, over a long period of

time, a knowledge base capable of predicting certain parameters' values for an engine.

Currently, no engine model can predict the engine's physical parameters before testing

3

Turbine

Data Reduction

Data Validation

Error Notification

Data Acquisition

Figure 1. A Data Validation System

has taken place within an acceptable range. After some tests have been performed,

adaptive modeling [7] can be used to predict engine behavior. Most of the knowledge

about engine behavior is either stored in data recorded from past tests or is available

only from an experienced test engineer.

It is the responsibility of the data validation system, in conjunction with the test

engineer, to ensure all data transferred to the company sponsoring the test is valid.

While the data validation program cannot automatically complete this job, it can

enhance the engineer's ability to validate the data. It is important to remember the

data validation system is a tool. It is not intended to (and cannot) assume the test

engineer's responsibility for ensuring correct data. It can help the test engineer by

alerting him to possible problems. This way, the test engineer can concentrate on

4

his other responsibilities until the need for human interaction with the data validation

system arises.

One goal of test engineers is the development of better engine models for data valid-

ation. With the combined use of adaptive modeling and a model-based data validation

system, a more accurate engine model can be built. This model can then be used to

increase the accuracy of the data validation system. As this process iterates, a much

more accurate data validation system can be produced. The advantages of a better

validation system are evident. Mainly, an engineer can spend less time dealing with

false alarms. He can then concentrate on other duties and on solving real problems

when the data validation system recognizes them.

Original Data Validation System

Several data systems are in use at AEDC to help validate the test data before

shipping to a customer. All data systems referred to in this thesis are data systems

for propulsion testing. Their dynamic data system has recently been upgraded to

the CADDMAS system that was developed by AEDC, Vanderbilt University, and the

University of Tennessee, Space Institute [6]. However, the steady{state and transient

data systems currently used are not state{of{the{art systems. Upgrading the current

steady{state data validation system was the motivation for the research described in

this thesis.

Steady{State Data Validation System

AEDC's current data validation system has been around for many years; the latest

date in the source code's comments is around 1988. But, part of the code is Fortran

66, an outdated version of Fortran. The systems architecture is shown in Figure 1.

First, several sensors, approximately three thousand, are placed in di�erent parts of

5

the test article and in the test environment. A data acquisition system monitors these

sensors and exports the sensor data to a computer running a data reduction program.

Currently, the data reduction program runs on a Convex vector{processor. This

program can be extremely large. In the past, this data reduction software has been

as large as �fty thousand lines of source code (Fortran). The data reduction program

performs numerical analysis on the data to produce information needed to further

examine the data. The output of the data reduction program aids the validation of the

raw data. After the data reduction process occurs, the reduced data is transferred to

another computer running the actual data validation program. This program currently

runs on a Digital Equipment Corporation VAX machine and is approximately �ve

thousand lines of source code (also Fortran). Whenever some of the data fails the

validation process, an error message is printed on a line printer. This message contains

important information with which the test engineer should be able to diagnose engine

or data system problems.

While this sounds like a reasonable implementation of a data validation system,

there are several problems with the current system. These problems include:

Multiple errors tend to occur at the same time. Diagnosis of the errors becomes

more di�cult as more errors occur. Determining which errors are causing errors

can be a di�cult procedure. Also, a printout of �fty error messages can be

di�cult to analyze in the two minutes between steady{state data points.

Modi�cation of the system is extremely di�cult. Currently, the only method

for modifying the system is to modify the source code. In order to modify the

source, a programmer must be brought in to do the coding. After modi�cations,

extensive testing should occur to ensure system consistency.

6

Time required for a modi�cation of the system to take e�ect is unacceptably

long. Due to the di�culty of making a modi�cation, an unreasonable amount of

time must pass between the realization that a modi�cation is necessary and the

actually modi�ed system being brought into use. Usually, a systemmodi�cation

cannot be made during a test period. Therefore, any errors to be corrected by

the modi�cations must be examined by the test engineer to ensure they are

not actual errors at each data point. The modi�cation procedure used will be

presented later in this thesis.

Addition of new features to the system is virtually impossible. In order to add

new features to the system, a complete design process must be undertaken. Even

in order to add one more data check to the system, a programmer must be used

to update the code. Then, the updated code must be tested prior to actual use.

This process is similar to modifying the source code. The major di�erence is

adding new features is a much more signi�cant undertaking and should require

much more testing before integrating into the system.

New test engineers have a di�cult time diagnosing problems during a test. As

engineers become more experienced in validating data, they become much more

e�cient in diagnosing problems based on empirical evidence. However, the

system learning time a new engineer requires is extensive. This is one of the

major concerns AEDC has with their current data validation system.

Some features of the current system need to be implemented in the new data

validation system. The current system has many problems, but it still has features

that AEDC will not allow to disappear in the new system. Two of the major features

that must be kept in the new system are:

7

The current system works. An engineer that has been trained in the use of the

current system can validate data on{line. If the new system makes errors in the

validation process, the system will not be used. AEDC cannot a�ord to return

faulty data to a customer. Also, the new system should be able to emulate the

outputs of the old system. This will allow engineers, who have mastered data

validation with the old system, to use the same methods for validating data with

the new system.

Even though the recon�guration of the current system takes a long period of time

and much e�ort, the personnel at AEDC know how to recon�gure the system. If

system recon�guration becomes extremely di�cult, they cannot a�ord to use the

new system. One key element here is the software complexity (in terms of system

recon�guration) cannot become so complex as to render AEDC's programmers

unable to manage the system.

Making modi�cations to correct the system's shortcomings without losing those

features which are desirable is a signi�cant problem. Several new capabilities are

needed for the data validation system. Relevant system requirements include:

A graphical user interface (GUI) is desired. Ease of use for new engineers has

become a critical problem that can be solved, in part, by using a GUI. This will

help decrease the system learning period for a new engineer.

Large vector computers are no longer being purchased at AEDC. A move to

a workstation environment is justi�ed by the transitioning of other software

to newly purchased workstations (Silicon Graphics Incorporated Indy 2). By

eliminating the vector computer, the system is no longer tied to a proprietary

system. This requires writing portable code.

8

System modi�cation and con�guration should be simpli�ed. Ideally, each test

engineer can set up the system to his liking. This reduces the time required for

modi�cations to the system to take e�ect.

Additional information should be made available to the test engineer. A simple

printout of an error message does not deliver enough information to an engineer.

After receiving the error message, the engineer should be able to look at any and

all data in the system. This allows the engineer to see the cause of an error more

readily. By having access to all data, the engineer can more accurately determine

the actual cause of an error.

Advanced diagnostic features need to be added to the system. A diagnostic

system can reduce the number of possible causes of an error into a manageable

set. With advanced diagnostics, the chances of mis{diagnosing an error during

a test decrease dramatically.

Overall, the system needs to be more user friendly. The goal is to minimize

the time di�erence between a new engineer and a more experienced engineer to

validate the same data point. Help menus and better system documentation are

a must.

Several di�erent approaches to the development of a new data validation system

were considered. After careful thought, a model{based [2] data validation system was

decided upon. The more important issues behind this decision will be explained later

in this thesis. However, in order to meet the needs of AEDC, we wanted to eliminate

as much user training as possible. No one at AEDC wishes to learn a completely new

system. Therefore, an e�ort was made to reuse as much of the old source code in the

9

new system. This also meant that, for the most part, system con�guration changes

could still be made as before. The next chapter shows the di�erent paths that could

be taken toward incorporating the old data validation source code in a modern system.

10

CHAPTER II

LEGACY SOFTWARE

With the evolution of the computer, industry has relied more and more on com-

puters to perform complex and tedious tasks. Some businesses rely on codes written

years ago (legacy software) for mission critical tasks. Software techniques and

abilities have matured greatly since the design and implementation of some legacy

software, but these legacy codes are still used for critical tasks. In order to meet

the increased competition in the business world today companies need to have bet-

ter facilities, including software, than their competitors. One method of improving

software is to improve or replace the legacy software currently used by more e�cient

software [4].

Modifying Legacy Software

Several needs can be met by modifying legacy codes. The three major areas where

modifying legacy software can most immediately impact a software system are:

Reuse or recon�guration;

Addition of features;

Modernization.

Only by understanding the signi�cance of these needs can one begin to understand

the decisions made in this research e�ort. For a problem this complex every decision

can e�ect the overall e�ectiveness of the system. Now, each area listed above is

examined in greater detail.

11

Reuse or recon�guration

Reusing existing software is an extremely desirable option for any company needing

to expand its current operations. By reusing existing software, no new development

projects are needed. While decreasing the time necessary to implement the new sys-

tem, this method can also greatly reduce risk and cost. If only recon�guration of the

software must occur, no major risk is involved. This is due to the existing software

having been previously veri�ed. Recon�guration should be a much less time and re-

source consuming task than completely designing and implementing a new system.

However, if no low{level understanding of the system exists, a system redesign would

be a better choice for system modi�cation. Based on the reduced risk, cost, and time,

most companies would rather reuse or recon�gure their existing software base than

begin a new development project.

Addition of features

Software is an ever changing endeavor. What was a perfect solution to a problem

three or four years ago no longer performs as needed. Consider the need to add a

diagnostic subsystem to an existing software system. Two options exist for adding this

subsystem: write new software or add these features to the existing software. Writing

new software has obvious disadvantages. Adding the features to the existing software

poses some new problems. Any data needed by the diagnostics must either be already

incorporated into the existing software or modi�cations must be made to the original

software to access the additional data. However, any modi�cations necessary to access

additional data should be much simpler than designing a new software system just to

implement the diagnostic subsystem. Again, a company is going to chose an option

based on the overall cost of the options.

12

Modernization

First, we must answer the question, \What is modernization of software?" In the

last few years, some areas of software engineering have improved greatly. We consider

adding a graphical user interface (GUI) to a piece of software as modernizing the

software. The advantages of a GUI have been apparent since the introduction of the

MacIntosh. The major advantages a GUI provides are increased user e�ciency and

lower learning curve for the software [21]. Other modernizations of legacy software

include new control methods (fuzzy logic, neural networks) and improved diagnostic

methods. The advantages of modernizing legacy code are many. Some of these ad-

vantages are: (1)increased knowledge extractable from the system; (2)improving the

e�ectiveness of the system user; (3)improving system and user e�ciency; and (4)en-

abling new users to become su�cient in the operation of the system in a much shorter

period of time.

Our experience in working with legacy codes has indicated that these are the four

biggest advantages of modifying legacy systems. Industry has a great deal of money

and time invested in legacy software systems and they would prefer to modify the

systems rather than discard all of the knowledge gained from these systems. Just the

continued use of these systems proves their usefulness and value to industry [4]. If

the systems were not performing a valuable operation, they would have already been

replaced by a better system. Modifying legacy codes is obviously a very attractive

proposition for companies who have a large previous investment in legacy codes.

However, modifying these legacy codes is not a trivial matter [23].

Methods for modifying legacy codes

During this e�ort, several di�erent methods for modifying legacy codes were iden-

ti�ed and examined. As with any signi�cant software development undertaking, all of

13

the issues were dealt with on a system wide basis. After examining all of the identi-

�ed methods for modifying legacy software, three di�erent methods were considered.

We feel these three paths provide a su�ciently broad base of reasonable methods for

revitalizing legacy codes. These paths are:

Porting the software;

Reengineering the software;

Providing a \wrapper" around the software.

All three methods require some allocation of resources in order to complete the

modi�cations. Although this is a common problem with any software system, some

companies cannot a�ord spending signi�cant resources to modify an already accept-

able system. However, making these modi�cations can greatly increase productivity.

Compared to the resources needed to completely design a new system from scratch,

all of these methods are cheap. One must note while these methods can solve many

problems, there are certain situations where the best method for modifying a legacy

system is a complete redesign. Only knowledgeable engineers can make the choice as

to which path to take for a given project.

Porting the software

Porting software is the process of transferring a software package to another

platform: either a new compiler, new operating system, or a new hardware system.

This is not a new process in the software engineering community. However, porting a

software system is usually only done to move the software to a new, updated computer

system. Porting can solve some problems with legacy code, but many problems may

be unresolved.

14

The main problems that can be solved by porting the software are performance

related. If the system has become too slow to meet it's requirements, porting to

another, updated computer system can resolve these problems. Some usability issues

can be resolved, but only if the operating system of the new system is more user

friendly than the previous system. This is a problem with the operating system of the

computer system and not the legacy software.

Among the problems not solved are: improved recon�guration; addition of features

to the system; and modernization of the code. While the method used to recon�gure

the system may be modi�ed during the process of porting the software, solving this

problem is another e�ort and not part of the porting process. Another issue not solved

by simply porting the software system is the addition of features to the system. In

the porting process, the original code is only modi�ed if their is a problem on the new

computer system with the original code. Thus, only changes necessary to keep the

legacy code functioning properly are made to the software. Lastly, no modernization

of the software occurs in the porting process. Even if the new operating system is GUI

based, the original code will still run with the old interface; albeit, the interface will

run in a window.

The key factors of porting legacy codes include the time necessary to port the code,

the cost of porting the code, and consistency of the software. By consistency, I refer

to the fact the new software must be tested alongside the old software to ensure no

problems were introduced into the system during the porting process. There is also the

possibility that the new software will have to be ported to another computer system

sometime in the future. It is easy to see that a vicious, expensive cycle could develop

here. Lastly, porting a legacy code does not solve many of the problems discussed

earlier.

15

Reengineering the software

Reengineering software involves going back to the original design documents

and rewriting the software to encompass any new features, new methods, or new

modernizations that need to be added to the system. This is not re{implementing the

legacy system since new features are added and legacy system problems are corrected.

Redeveloping a working software system (legacy system) is not a normal endeavor for

most companies. While all of the problems of the legacy system can be corrected in

the new system, there are some problems that can either be unresolved or created by

the redevelopment operation [5].

This process is commonly known as reverse engineering software. Working

from the actual application, an engineer works to determine the actual methods used

in the application. Commercial tools are available to aid in this process. One com-

mon reverse engineering tool used is Software Re�nery [19]. No single tool currently

available is su�cient for reverse engineering software in general. Each system to be

reverse engineered must be examined individual to determine the best method for

reverse engineering.

Problems solved by the redevelopment process include easier recon�guration of

the software, adding new features to the software, and modernizing the legacy system.

The problem of easy recon�guration of the system is not guaranteed to be solved

by the redevelopment process, but if careful consideration is given to the ease of

con�guration of the system improving the legacy system can be accomplished. New

features can be brought into the design process of the software, and therefore, can be

correctly implemented in the software without hacking the system. A clean design is

one of the key advantages of redeveloping a legacy system. Modernizing the software

can easily be accomplished. As in adding features, modernizing the code needs to be

considered in the design stage of the development process.

16

Some of the problems of reengineering a legacy system include the increased cost

and time of the development process. In the other methods for modifying legacy

systems the design process is much shorter than in the redevelopment processes. A

shorter design process will require less time by the software engineers; this translates

directly into less money. If the original documents from the legacy system's design

still exist they can be used to signi�cantly reduce the time required to redevelop a

software system. By using the information contained in the design documents the

group responsible for redeveloping the software can eliminate part of the design pro-

cess. In the case of missing legacy system development documents, the group must

either re{enact the entire design process or examine the source code to determine the

existing system design.

Several key issues involved with redeveloping a legacy code include the cost of the

system and the new additions that will be added to the system. If the additional value

of the new features and the updating of the old system outweigh the cost, in time and

dollars, of redeveloping a system, redevelopment is a reasonable option. However, it

can be cheaper to implement a new design. Another area that must be watched is

the consistency of the new system. There is no guarantee that the new system will

perform as well as, let alone better than, the legacy system. Redevelopment, without

proper system testing and veri�cation, is a risky endeavor.

"Wrapping" the software

The last option we considered is providing a wrapper around the legacy software.

Wrapping existing software is somewhere between porting and redevelopment as far

as risk and cost are concerned. Writing a wrapper around a legacy code involves using

the core routines of the legacy system as. These routines are interfaced to new input

and output routines. See Figure 2 for a representation of wrapping legacy code. Also,

17

Data Management Diagnostics

GUI

Old

Source Code

Figure 2. \Wrapping" Existing Software

interfacing to the internal data structures of the legacy code can be bene�cial as it can

allow easy incorporation of new features. By reusing the core routines of the original

system, testing to ensure the new and old systems are consistent can be minimized.

If the new system is on a new operating system, the core routines of the legacy system

must be ported to the new operating system. This adds some complexity to the issue

of adding a wrapper around the legacy system core routines [4].

Several requirements must be met by the existing code for wrapping to be a viable

option. First, if a new operating or computer system is needed, the old source code

must be able to run on the new system with a minimum of modi�cations. Also, a

good \black{box" model of the existing source code must be available. The input and

output routines of the legacy code must be well de�ned. This can be de�ned in either a

design document or the source code itself. Without the input/output speci�cations of

the legacy system, the interface points between the wrapping software and the legacy

18

software are not well de�ned. If either condition is not met by the legacy software,

providing a wrapper for the source code is not a good option.

Once again, the time and money required to provide a wrapper for a legacy system

are greater than simple porting of the code. However, the ease of adding features is

on the order of adding the new features in the redevelopment of a new system, as long

as the interfaces to the old core routines were implemented well. Interfacing to the

legacy software is a vital issue. If not done well, the new system may be unusable or

not o�er any signi�cant improvement over the old system.

Comparison of the proposed methods

While all of these methods have their advantages and disadvantages, a comparison

of the proposed methods is bene�cial. Depending on the legacy system and the goals of

the modi�cation project each modi�cation method could be used. The project should

de�ne which method is best suited for the present needs. The key areas where a

modi�cation method must perform are system modi�cation cost, system performance

after modi�cation, and additional usefulness of the system after modi�cation. Each

modi�cation method should be examined as to the costs and bene�ts in each of these

areas. Then, the best modi�cation method for providing improvements over a legacy

code can be chosen.

19

CHAPTER III

DIAGNOSTICS

A diagnostic system can be considered a mapping of inputs to outputs. The

diagnostic system takes a set of inputs, and if there is an error recognized in the

inputs, noti�es the system user of the error and of possible error causes. For a given

set of inputs, the system must assert the corresponding system outputs. A diagnostic

system receives some type of system input. The system then decides if a problem

exists. If an error exists, some subset of the system outputs are asserted. This is used

to alert the system operator of a possible failure in the system.

A large amount of research has been performed in the area of diagnostics. Dia-

gnostic systems for many di�erent problem domains have been designed and imple-

mented. A data validation system can be considered one type of diagnostic system.

It is given a set of inputs and then determines if a problem exists. If one exists,

the system must be able to determine the cause of the problem and alert an operator

to the problem. This is the task property of a diagnostic system. Several di�erent

types of diagnostic systems have been built. Using the knowledge gained from past

research projects can only improve the performance of a diagnostic subsystem. Due

to the similarities of data validation and a general diagnostic system, and the need

for adding diagnostics to the new data validation system, several di�erent diagnostic

methods will be examined.

Over the past few years several methods of diagnostics have been identi�ed. Fig-

ure 3 shows a diagram of di�erent diagnostic methods (Figure 3 was taken from

[32]). Methods higher in the �gure are generally considered capable of better, or

more complete, diagnostics. A method can be transformed into a better method if

20

Functional

Behavioral

Structural
Connectivity

Qualitative

Model

Functional

Simulation

 Capability

Increasing Diagnostic

Figure 3. Diagnostic Levels

enough information can be added to the diagnostic information already available. A

brief description of each of the di�erent methods will be given. Of course, some of

these methods are not currently applicable to the data validation process. Some of

these methods require information that is not available, not tractable in size, or not

obtainable. Only certain methods are candidates for immediate use, but the available

choices will grow as the information about the data validation problem grows.

Levels of Diagnostics

Three basic strategies of information representation for diagnostics exist. One key

element linking these strategies is knowledge present in one level can be used to derive

the information needed in a higher level diagnostic system. The ability to manipulate

21

the available knowledge into what is needed for a particular diagnostic system enables

us to choose the best form of diagnostics for a given system. Otherwise, the diagnostic

system used would be determined by the information currently available and nothing

else. By transforming the information readily available into a form usable in a higher-

level diagnostic system, system
exibility and expandability are improved. Now, for

a look at the major classes of diagnostic representation [31].

Structural

Structural diagnostics is the simplest representation method available. The in-

formation needed for structural diagnostics includes the connectivity of the system

being examined. For an electrical system, this would be the actual component inter-

connections. In a software system, this would entail the data dependency of the source

code's variables, for example. From this information, the diagnostic system can help

isolate the cause of a problem [13] [32].

A forest structure can easily be built from this structural dependency information.

By making each component of the system a node in the forest, connecting the nodes

according to the physical connections of the system builds an accurate system inter-

connection representation. Whenever an error occurs, a search on this forest structure

will identify all possible paths the error could have followed. It is important to have

a correct forest, otherwise the diagnostic system will produce erroneous results.

This information can be used by an engineer to quickly diagnose the root cause

of an error. Giving the system operator a reduced set of possible error causes allows

the operator to concentrate on the status of the components that map to these causes.

Checking fewer components for errors will obviously help reduce the time needed to

�nd and correct the true cause of an error.

22

Behavioral

The next method of diagnosis uses a behavioral model of the system. By basing

the diagnosis of any errors on system behavior and not just system interconnectivity,

a more concise diagnosis solution can be achieved. This is realized as a smaller set

of possible paths the error could have taken. By qualitatively modeling the system,

error causes identi�ed by a structural model can be eliminated if they do not actually

a�ect the component of the system that has experienced an error [33] [32].

Now, the question of how to transform a structural system representation into a

behavioral representation must be answered. This allows a smaller set of error paths

to be generated than with only structural diagnosis. Behavioral diagnostics is best

used to augment the results of a structural diagnosis. Only by studying the behavior

of the system can a behavioral model be determined. This can only be accomplished

by either qualitative simulation or consolidation. Using this information a mapping

between system behavior and system structure can be created.

Once again, a positive error cause can not be determined from a behavioral dia-

gnostic package alone. As in structural diagnosis, a reduced set of possible errors

is given to the system operator that allows for less human diagnosis e�ort. Using

behavioral diagnosis will improve on the results of a structural diagnosis by giving a

potentially reduced set of possible error causes.

Functional

Moving to a higher level of diagnosis requires teleological reasoning. Teleological

reasoning involves viewing the system not only from a structural or behavioral view,

but also from the aspect that views the functionality of the system. The diagnosis

system is aware of the intended functionality of the system being examined. With

this additional information, an even smaller set of possible error paths is delivered

23

from the diagnostic system. Transforming the behavioral model of a system into the

functional model allows the diagnosis system to also examine the relationship between

system errors and system functionality [32] [30].

As in the structural and behavioral diagnostic systems, an exact cause of an error

can not be determined. Instead, an even further reduced set of possible causes can be

identi�ed to the system operator. In some cases the set of error causes can be limited

to only a small percentage of the original possibilities through functional diagnosis,

thereby improving upon the e�ciency of the diagnosis process.

Improving Diagnostics

Choosing a diagnostic system is easiest if the choice is based on the amount and

type of information available. Methods for moving from one diagnostic system to

another have been mentioned in this thesis. While the actual methods are better left

to the experts in this �eld, using the algorithms they develop allows many di�erent

choices for a diagnostic system. Information necessary for any method can be used

in developing a diagnostic system of another, possibly better, methodology. Over a

period of time a diagnosis system can be developed for a problem which performs

with great accuracy.

Using a simple diagnostic system can facilitate the gathering of more detailed

error{and{cause information. By using a modular approach to building a diagnostic

system, a simple diagnostic method can be used at �rst. Information gathered using

this simple method can be used in developing a more advanced system. When the

more advanced system is ready, it can replace the simple system. This process can

iterate until a very precise diagnostic system is available. In the meantime, the system

under scrutiny does not have to operate without a method for aiding in diagnosing

error causes.

24

Diagnostic System for Data Validation

For the steady{state data validation problem, a set of errors are identi�ed by

the validation system. Based on these errors, a set of possible causes needs to be

determined. System users can make more informed decisions if they know the actual

cause of an error. Using a diagnostic system can generate a set of possible error causes

for examination by the system engineer.

Currently, only structural diagnostics is a viable choice for the data validation

system. Only the source code for the original system is available; no documents used

to design this system exist. Due to this, the only system information available is the

structural information included in the source code. Extracting the data{dependency

graph from the source code is analogous to building a structural model of the system.

While work is underway on developing a model-based diagnostic routine for data

validation, it is not ready for production use at this time. Several other diagnostic

systems are better overall choices due to their improved performance. However, using

structural diagnostics is a vast improvement over the original data validation system.

Using these diagnostic routines can greatly improve the e�ciency of the system. One

must keep in mind the overall goal of the data validation system when making a

major design decision. Using one diagnostic routine without considering the future

migration to another could cripple this project. This is why diagnostics was a major

consideration in the development of the data validation package. By designing a

method to allow an easy change from one diagnostic routine to another,
exibility and

the ability for system growth and maturation was ensured.

25

CHAPTER IV

NEXT GENERATION DATA VALIDATION

A new data validation package has been constructed to overcome the shortcomings

of the previous system. The complexity involved in a data validation system is obvious.

In order to facilitate managing the system complexity, increase system
exibility,

and enable easy system modi�cation a software system known as the MultiGraph

Architecture (MGA) [2] is used. Using MGA to develop the new data validation

system greatly enhanced system development. The following sections of this thesis

will describe MGA and the new data validation (DATVAL) system in detail.

MGA

The MultiGraph Architecturewas developed at Vanderbilt University over a period

of several years. A diagram of the overall system structure is shown in Figure 4. The

basic concepts behind the design of MGA involve domain{speci�c system modeling.

By modeling a system in terms familiar to the system user, some of the complexity

of the system can be hidden from the user. This approach allows the system user to

modify and rebuild complex software systems with relative ease.

Typical software engineering practices are not practical for applications which

require frequent, sometimes major, modi�cations. The latency between modi�cations

to a conceptual state and an implementation of a new software system encompassing

these changes must be small. The DATVAL system requires modi�cations made

during a test to be available in just a few test points. This turn-around time is often

less than ten minutes. Using MGA facilitates meeting these requirements.

26

Modeling Enviroment

View 1 View 2 View N. . .

Appl. 1

Model Database

Appl. 2 Tool
Interface

. . .

Integrated

Application
Analysis Tools

MGK
Run-Time

Support Libraries

Operating System Services

Figure 4. MultiGraph Architecture

27

Some of the key elements of MGA will now be looked at in more detail. The more

important features of MGA include:

Graphical Modeling: Using diagrammatic models allows for easy system

changes. The system engineer works with icons from his domain of expertise.

This allows the engineer to work with familiar items, in a familiar way. This

is one method of abstraction that removes the system user from the computer

engineering aspects of a system [3].

Multiple Aspect Modeling: One major concern when dealing with graphical

system modeling is complexity management. In MGA, multiple{aspects of the

same model can be viewed. This allows the user to only deal with those features

of the model he is concerned with. Hierarchy is supported in the MGA modeling

environment as another means of managing complex model structures.

Domain Speci�c Model Interpreters: Domain speci�c model interpreters

take the models produced by the graphical model builder and convert the models

to MultiGraph Kernel (MGK) commands. These interpreters must be written

for each modeling domain and are usually written by a software engineer who

is also familiar with the problem domain to be modeled. After development,

system models are interpreted into scripts executable on the MGK [15].

Domain Independent Analysis Tools: Analysis tools are often very general

in nature. Since all model interpreters produce MGK scripts, analysis tools

designed for MGK speci�c scripts can be used in many diverse problem domains.

By building analysis tools designed to analyze MGK scripts, the same analysis

tool can be used for many di�erent domains. Using domain independent tools

allows code to be reused in many di�erent disciplines.

28

Domain Independent Kernel: The MGK is domain independent. Many

diverse domains are modeled with MGA and all produce scripts that run on the

MGK. A domain independent kernel allows for all modeled domains to use the

same basic execution environment. This has bene�ts in debugging, code reuse,

and information exchange between applications.

Modular Kernel: The MGK has been re{implemented as a micro{kernel.

See Figure 5 for a diagram of the MGA when utilizing the new MGK. This

new approach allows the kernel to support many high{level features and still

retain the ability to remain small in size. Only those feature sets needed by

the current domain are actually loaded into the kernel used by their produced

applications [1].

The overall system interaction enables the multi-aspect, domain speci�c modeling

approach to be applied in many diverse areas. Figure 6 shows the di�erent do-

mains MGA has been successfully applied in. All of the domains have some features

in common, but are vastly di�erent. MGA has been used to produce: CADDMAS

(Computer Assisted Dynamic Data Measurement and Analysis System), a high-speed

turbine engine diagnostic and monitoring system [6]; IPCS (Intelligent Process Con-

trol System), a chemical engineering control and monitoring system [11]; MIRTIS

(Model Integrated Real{Time Imaging System), a real-time image processing system

[8]; DTOOL, a fault diagnosis and isolation tool [10]; and a discrete manufacturing

monitoring, diagnostic, and control system.

Based on the previous success of MGA, we chose MGA as the methodology to

be used in developing DATVAL. The overall
exibility of MGA had a great deal to

do with this decision. In fact, the prototype demonstration system for DATVAL was

produced using IPCS with some minor modi�cations. This allowed a quick prototype

29

Model Builder
Domain-1

Model Builder
Domain-2

RT System Design 1

Module A Module B

Modular Kernel

Platform 1

C

Model Database

Interpreter

Analysis

Model Analyzer

Real-Time Platform-
Dependent Synthesizer

Real-Time Platform-
Dependent Synthesizer

RT System Design n

Modular Kernel
Module X Module Y C

Platform n

Model Interpreter

Domain-Independent Intermediate Layer

Figure 5. The New MultiGraph Micro{kernel

30

Real-Time
Instrumentation

Chemical Plant
Mon, Diag. & Control

Mon, Diag. & Control
Discrete Mfg

Integration
System
Legacy Aerospace

System
Diagnostics

Image
Processing

Figure 6. MGA Domains

system to be built. After a successful session of demonstrations, a production{quality

DATVAL was approved. MGA was the only logical course of action at this point;

after all, it had been used to produce a successful prototype system.

Prototype Data Validation System

As a �rst step in developing the data validation system, a prototype was designed

and implemented. In order to facilitate the quick generation of the prototype, Intelli-

gent Process Control System, a MGA tool intented for use in the chemical industry, was

used to construct the data validation system prototype. This prototype was demon-

strated at AEDC in actual turbine engine tests. After the successful demonstrations,

work began on a production quality data validation system.

Figure 7 shows one of the models used to generate the data validation run{time

system. During the demonstration phase of the system, the engineers at AEDC decided

graphical modeling was not necessary, and not wanted, for this problem. Therefore,

31

Figure 7. Prototype Modeling Environment

in the production system a new modeling method was devised. The production run{

time system re{used many features of the prototype system and the model editor built

upon features of the prototype modeling environment.

The next sections will discuss the production data validation system in detail. Since

the same problem was solved with both generations of the new data validation system,

the prototype system will not be discussed further. It should be noted, while James

Davis designed and implemented the prototype system, the current data validation

system, with the exception of the data dependency analysis work, was developed by

Dr. Gabor Karsai.

32

Legacy

Code

Analyzer

Dependency

Source Code

GUI

Model Editor

System User

Data

Base

Figure 8. Data Validation Development System Interaction

Production Data Validation System

A block diagram of the production data validation modeling system is shown in

�gure 8. The system user has two interface points: the model editor (DatEdit) and the

GUI (DatVal). From the model editor, the legacy code routines are incorporated in

the system. The user can then make con�guration modi�cations; these modi�cations

will be described later in this chapter. The model editor then stores the system

models in the model database. This database is shared by the model editor, GUI, and

source code analyzer. The model editor can interface with the source code dependency

analyzer to determine the software structure of the validation system. This information

is returned to the model editor and is stored in the database. The GUI has access to

this information and uses the dependency analyzer's output for system con�guration

at run{time. Using these tools, the user then builds the GUI (DatVal) to be used for

the actual data validation process.

33

Actions
User Defined Interactive

Data
Displays

Diagnostic

System

Data

Source

User Interface (DatVal)

Compiled

Legacy

Code

Data

Dependecy

Information

Figure 9. Data Validation Run{Time System

Figure 9 diagrams the interaction of the seperate parts of the run{time system. All

aspects of the run{time system are access through the system GUI. Data is transferred

into the run{time system where it is analyzed by the legacy code, the user de�ned code,

and the diagnostic system. All of these components are speci�ed with the modeling

enviroment. The interactive data displays allow access to all data in the system. The

diagnostic system recieves a list of errors identi�ed by the legacy code and a structural

description of the system that was generated by the data dependency analyzer. This

system then alerts the user to possible error causes.

The interaction of all three elements (model editor, dependency analyzer, and GUI)

is important to the structure of the system. The model editor allows the system user

34

to input information necessary for system operation. Structural information stored in

the legacy code is extracted by the dependency analyzer. The GUI allows interactive

use of the system and allows access to all system information. The overall system

composed of these parts is the data validation system now in use at AEDC.

DatEdit

DatEdit is the data validation system model editor. It is used to model and

automatically build DatVal (the runtime system). Unlike some of the previous MGA

modeling environments, DatEdit is not a graphical editor. One of the key lessons

learned from the prototype system was the engineers at AEDC did not want to learn

a new method for modifying the data validation package. They especially did not want

to leave behind the current method of con�guring the system to move to a graphical

representation. Since the most often made change to the system was the mapping of

input variables to di�erent internal variables, the use of a graphical modeling package

was not warranted. However, the new modeling environment is much more complex,

although easy to use, and has much more functionality than the previous system.

This system can be con�gured in the same manner as the legacy system. Fortran

code will be mentioned throughout this chapter and refers to sections of the original

data validation package. Utilizing the existing Fortran code allows for more
exibility

in system con�guration.

Figure 10 shows the main user interface to DatEdit. From this interface, the

user can open, save, and create both projects and tests. A project is used to de�ne

di�erent engine test programs at AEDC. AEDC performs many concurrent tests;

projects allow the engineers to keep test projects separate. A test is used to de�ne a

unique identi�er to the current test article and conditions. Tests allow for quick test

condition recall. Multiple projects exist to allow many di�erent DatVal con�gurations

35

Figure 10. DatEdit Main Interface

to be saved at one time. The need for multiple tests came from allowing each engineer

to model a run{time system to meet his speci�c needs. The user can also move

into the edit menu, which allows the user to edit the system to meet the current

needs. If the engineer wants to automatically con�gure the system, he can use the

Analyze Modules selection to con�gure the system and the diagnostics subsystem.

A set of tools allows the user to easily update nomenclature �les (�les containing

detailed information about the legacy system variables), Fortran subroutines, and

images (graphic �les used for backgrounds). A tool for starting the image editor is

also included in the main user interface. Last, the build option allows the user to build

a new DatVal from the current con�guration. A feature of this system is the ability to

modify the con�guration on-line, build a new DatVal, and then start the new DatVal

while stopping the previous version. This allows for a seamless transition to a new

con�guration.

36

In the editor sub-menu there are several selections the user can choose from. These

include:

Fortran Modules: This is where the user can insert the standard Fortran

code used in the system. These are a set of standard subroutines and an include

�le listing all of the common block variables. This is where the legacy code is

incorporated in the system.

Standard Checks: From here, the user can modify the standard checks used

in the data validation system. These standard checks are usually de�ned in the

Fortran modules, but can be modi�ed here, leaving the original source code

unchanged. The standard checks originate in the legacy code. They remain

unchanged for most projects and tests.

Temporary Checks: A new feature of DatVal is the inclusion of temporary

checks. These checks are included by the user to perform simple to extremely

complicated computations. These checks are not part of the standard checks.

Item Number/Parameter Names: This allows the user to modify the stand-

ard nomenclature �les used to map array indices to variable names. This is a

reference only. It is not used in the actual source code, but is used when dis-

playing data.

Subroutines: Also a new feature of Datval, the user can add subroutines (For-

tran) that can be called from either temporary checks, Fortran modules, or

post/pre �lters.

37

Data Reduction

Program

Pre-Filters

Legacy Data Validation

Code

Post Filters

GUI

Figure 11. Filters Flowchart

Filters: Filters are segments of Fortran source code that are executed either

before (pre{�lter) or after (post{�lter) the Fortran modules are executed. Filters

can be used for further data manipulation than was previously available (see

�gure 11).

Critical Parameters: A user can input a list of critical parameters that are

used in DatVal error displays. A critical parameter is any variable used in

the system designated as critical by the system user. If a check uses a critical

parameter, the display for that check is highlighted.

38

Figure 12. DatEdit User Screen Editor

User Screen: Here, a user can specify a new screen layout that meets his needs.

No longer are engineers restricted to common screen layouts that do not meet

their speci�c needs. A sample user screen layout session is shown in Figure 12.

This can be used to show the relation between some data item and a physical

system component. The background images used in the user screens are often

CAD drawings of the test article.

Dependency Graph: The data dependency graph for the current con�guration

can be viewed. See Figure 13 for an example dependency graph. The data

dependencies present in the system are shown by the dependency graph. This

graph is a representation of the structure of the system. By clicking on an

39

Figure 13. DatEdit Dependency Graph

input variable or a check (output) variable, the display highlights all variables

connected to the selected one. This is useful as a graphical display of system

connectivity.

Fortran code is used throughout the system. This was due to a requirement from

AEDC that the system con�guration was to continue to be performed using Fortran

source code. We decided to use Fortran throughout the system, but to give users

another method for performing some system con�guration. In order to interface the

40

pre{existing Fortran source code with our GUI code (C and C++) we use AT&T's

F2C Fortran to C converter. This utility converts Fortran source code to C source

code, allowing easy integration of the Fortran into the new data validation system [22].

However, this requirement also created the need for an automatic system con�g-

uration tool. This tool needs to con�gure the basic data validation system and the

diagnostic subsystem. This tool will be described in Chapter V. This tool has been

demonstrated to work to our satisfaction and shows great promise in ful�lling all of

the automatic con�guration needs.

DatVal

DatVal is the runtime system of the data validation system. It is produced automat-

ically from the models built using DatEdit. Most test engineers at AEDC only need

to come in contact with DatVal. Since DatVal is used in the actual test cell, it is the

most important piece of the system to the users at AEDC. Without a properly working

DatVal they must resort to the old, out{dated method of validating data. Based on

feedback from the test engineers, returning to the old data validation system would

cause great di�culty. This is mainly due to the many new, performance{enhancing

features included in DatVal.

The new DatVal had to meet several requirements handed down from AEDC. For

the runtime system, the boundary conditions required by AEDC were:

Workstation Environment: This system must run on a workstation under

Xwindows. Speci�cally, the system was implemented on an Silicon Graphics

Incorporated Indy 2 workstation.

41

Interface must access Fortran data: Since some code was written in Fortran,

the user interface must be able to access data used in the Fortran code. This

was solved in DatEdit. Please see the section on DatEdit for further details.

Diagnostics: A diagnostic system must be implemented in the current sys-

tem. Some rudimentary diagnostics were implemented. The description of the

diagnostics system follows in this chapter.

No need to maintain foreign code: AEDC desired a system that would

allow them to keep evolving the data validation process without resorting to

rewriting foreign (i.e. non{AEDC written) code. While some code will not need

to be re-written, some aspects, such as modifying the system for a new data

acquisition system, will require modi�cations of the system source code.

Basic DatVal Features

DatVal overcomes many of the shortcomings of the original system. To begin, a

graphical user interface (GUI) is used instead of a line printer for system output.

Figure 14 shows the main user interface. This interface was designed to be small in

size so other programs can be run on the same workstation if the need arises.

Several key pieces of information are shown on the main user interface. Some of

this information includes: total number of errors reported for the current data point;

the current data point and the time the current data point was recorded; the current

tolerance set in use; and any error messages printed to the main user interface. From

this interface, the user can select from several di�erent options. The user can display

errors by either deviation value or error message. Other options include viewing

any speci�c check or any user{de�ned screen. These options are selected from the

applicable pull{down boxes. For the steady{state data validation system, data is

42

Figure 14. DatVal Main User Interface

received in discrete quantities. These quantities are referred to as data points.

From this interface the user can activate one of many screens. These include: errors

sorted by a calculated severity; messages produced by these errors (also sorted); checks

(with and without errors) in a prede�ned order; and any user de�ned screens. This

simple interface also allows the user to search for a given parameter (variable used for

calculation of errors) or a given sensor number (an array index that correlates directly

to an input sensor).

While the main user interface relays a great deal of information to the user, in-

depth study of problems that arise requires the use of some other features of DatVal.

Figure 15 shows one of the most important features of DatVal: the ability to view

errors sorted by severity. Each check produces a deviation value. This deviation is

a calculation of how close a given check is to its tolerance. A check is de�ned in

the system as a possible error condition. The components of this error condition are

evaluated to determine if the error has occured. A tolerance is a quantity used to

43

Figure 15. Sorted Errors Display

determine if an error condition exists. By modifying the tolerance associated with

a check, the behavior of the check can be changed. The user interface displays this

deviation value on a bar-graph display. It can display values between 0% and 200%.

In addition to showing the deviation of a check, the deviation display bar changes

from green (0% to 75%) to yellow (75% to 100%) to red (100% or over) depending on

the deviation value.

In addition, the sorted errors display shows the user the current data point and

recording time and the current tolerance set. The user also has the option of disabling

a check. This does not stop the check's computation, but prohibits the display of the

check. A popup window with a list of disabled checks appears whenever a check is

disabled. By clicking on a check name in this popup window, a check is re-enabled.

44

Figure 16. DatVal Tolerance Popup Window

Corresponding to each check is a box that activates a pull-down selection list of

possible popup windows a user can request. This box defaults to the Tolerance

selection. The possible popup windows and their descriptions follows.

Tolerance: This selection displays the current tolerance value(s) for the selec-

ted check. Figure 16 shows the popup window used for viewing and modifying

tolerances. From this popup, the user can modify the tolerance value(s), reload

the default values, or load a speci�c set of tolerances.

45

Figure 17. DatVal Parameter Popup Window

Internal Variables: Selecting this button will show the user a window listing all

of the variables, and their current values, used in calculating the selected check.

Input variables may or may not be listed, depending on system con�guration.

By selecting a variable (by clicking on its display), the variable is highlighted.

Then, the user can select other checks to examine and if the selected variable is

used in the newly selected check, it will be highlighted automatically.

Parameters: This popup window is very similar to the Internal Variables

popup. However, this window is used to show the input parameters to the check.

The selection procedure described above also works for this popup window. See

Figure 17 for a sample window.

46

Info Message: Selecting this button will result in a popup window with the

error message the check generates in a text box being displayed. This is the

same message used by the old data validation system and is mainly used in

order to keep all of the functionality of the previous system.

Diagnostics: By selecting the diagnostics button, the user can invoke the

DatVal diagnostic subsystem. This system will be discussed later in this chapter.

The next choice from the main interface is the sorted messages window. Fig-

ure 18 shows a sample sorted error messages display. By selecting this window, the

user again gets errors sorted by severity. But, the errors are displayed as error mes-

sages. This is the same message that was used in the old data validation system. Once

again, this feature is included to keep available all features of the previous system.

No popup windows can be requested from this menu.

By selecting one of the checks buttons, the user can view each check in the same

manner as the sorted errors. These check displays are shown in groups of twenty{four

checks. The look and feel of this windows matches that of the sorted errors window.

The di�erence is this window has the checks sorted in a prede�ned order. This order

is de�ned in the modeling environment and is input to the run{time system at system

initialization.

The last user selection from the DatVal main interface is the user screens. These

screens are de�ned by the user with the modeling environment. Figure 19 shows an

example user screen. The user can use a background picture to visually relate variable

values to physical quantities of the test article. Also, deviation displays, error message

displays, and variable value displays can be added to the screen. These displays are

shown in the foreground of the user screen. The user has unlimited
exibility in the

number and placement of these displays.

47

Figure 18. DatVal Sorted Error Messages Window

48

Figure 19. DatVal User Screen

Using this display methodology allows the system user to visualize muchmore data

than with the previous system. Great enhancements to the data validation process

were achieved by allowing the test engineer to examine more data and di�erent types

of data. Overall, the new data validation system has been well received at AEDC.

We feel this is due to solving the majority of problems in the previous data validation

system.

Diagnostics

As stated earlier, the diagnostic subsystem used in DatVal can be easily changed

to use another diagnostic model at any time. This section is intended to give a

brief description of the currently implemented diagnostics system. This system was

implemented as a �rst step in the evolution of the diagnostic system.

Whenever a user selects the diagnostics popup window, the diagnostic subsystem

is invoked. This diagnostic subsystem is a structural diagnostic system. Based on the

49

structural (data dependency) information available from the current DatVal con�gur-

ation, a set of possible error causes is determined. For each error identi�ed by the

data validation system, each data item included in the dependency set for that check

is identi�ed. Each time a data item is identi�ed as contributing to an error, a counter

is incremented. Sorting the data items by counter value, after all errors have been

evaluated, gives an ordering of possible error causes. Most error causes can trigger

multiple errors. The system user can then start the search for the true error cause

based on the ordered set of possible error causes.

The user then receives a popup window listing the system inputs involved in the

most errors. By enumerating the number of errors each input is involved in, the user

has an idea as to what degree each input e�ected the current set of errors. While this

does not generate the exact cause of a set of errors, it does give the user a reduced

set of inputs with which to begin the search for the real error cause. This can greatly

reduce the amount of time an engineer must spend searching for the source of system

errors.

By giving the system user a reduced set of possible error causes, the diagnostic

system can reduce the time necessary to correct an error. While better diagnostic

systems are realizable, this system performs a valuable operation. Any method that

can reduce the time needed to correct an error will aid the test engineer.

Since this system uses a structural diagnostic package, improvements to the dia-

gnostic system can be made. As information as to the functionality of the system

becomes available, a functional diagnostic system could be used to augment the res-

ults of the structural diagnosis. Extending the system to a behavioral model would

also require keeping the structural diagnostic system. Each system could augment

the current diagnostic system by further reducing the set of possible error causes.

However, the structural diagnostic system is still needed. Some error causes might

50

not be diagnosable with a functional or behavioral diagnostic system, based on the

system information available. These error causes could still be diagnosed with a

structural diagnostic system.

While the diagnostic system used in DATVAL is not optimal, it is a valuable asset

to DATVAL. Compared to the legacy system, which did not have a diagnostic system

incorporated, adding this diagnostic capability is a signi�cant improvement. In the

future, as more advanced diagnostic capabilities are realized, the diagnostic system

used in DATVAL can be augmented to include the new diagnostic techniques. This

modular approach allows system
exibility and the possibility for system growth.

51

CHAPTER V

DATA DEPENDENCY ANALYSIS

Though DatVal has been successful at AEDC, some problems exist with the current

system. In order to perform the diagnostics, a dependency graph mapping the

system inputs (sensors) to the system outputs (checks) is needed (see �gure 13). This

graph must also include any internal variables used in calculating the system checks.

While these nodes in the graph are not necessary for diagnostics, they are necessary for

displaying each check's input variables and variables used in the deviation calculation.

But, additional information is needed for an automatic con�guration of the system. To

fully con�gure the system, some tool must be able to extract the internal variables, the

input variables, the tolerance(s), and the standard error message for each check [16].

Some method for automatically con�guring DatVal was obviously needed. Oth-

erwise, many man hours would be required for each and every DatVal con�guration

change. Also, several people would need to be trained in how to make the modi�ca-

tions necessary for updating the DatVal con�guration. Due to the manpower required

to recon�gure DatVal, an automatic process for updating DatVal had to be devised.

Somewhere the information about the DatVal con�guration we needed was stored.

First, it was necessary to examine AEDC's internal documentation and the old data

validation source code. During this stage, we discovered the only source of the required

information was in the old data validation code. No other source of the information

existed; due to the age of the original system, all of the original design documents

were not available.

52

Available Tools

Once the problem of automatic con�guration appeared, several existing packages

were examined. The packages considered include FORGE, AT&T's F2C, Omega,

Sage++, extensions of Sage++, several parallelizing compliers, and custom perturba-

tion analysis tools. Each of these tools was examined independently. We were search-

ing for a tool that performed the necessary data dependency analysis and either allowed

access to the data dependency data or the source code to the tool could be obtained.

This would allow modi�cations to the tool which could output the needed dependency

information. A more detailed analysis of the tools we examined follows.

FORGE: Forge is a commercial package designed for automatic parallelization of

pre{existing Fortran code. Forge has been used successfully at AEDC for other

projects, so it seemed a viable alternative at �rst. Forge is a commercial package,

so we would not have access to the internal data structures that contain the data

dependency information. Another problem with Forge is the basic Forge design.

It is designed to mainly work on the parallelization of loops. Information as to

if Forge does a data dependency test on other variables is not available. Forge

does not deal with common block variables very well. This is the major problem

with Forge: the original data validation software contains many common blocks.

This last problem could not be overcome without a major e�ort [17].

Omega: Omega is another parallelization package for Fortran code. The source

code for Omega is available, so access to internal data structures posed no great

di�culty. As with Forge, Omega is designed to concentrate on parallelizing

loops. No information is available as to parallelization of source code without

time-consuming loops. Omega only works with Fortran source code. While this

is not a problem for this project, it would be preferable if the data dependency

53

analysis suite could have interchangeable front ends. Based on these shortcom-

ings, it was decided Omega did not �t our needs on this project [27].

F2C: As mentioned earlier in this thesis, AT&T's F2C Fortran to C source code

converter is used throughout DatVal for converting existing Fortran code to C

code. Since F2C is being used in the system already, it would be bene�cial

if we could also use F2C to extract the data dependency information. But,

F2C just performs a code conversion, no parallelization or data dependency

analysis is performed. Therefore, we chose not to use F2C for this section of

the DatVal [22].

Sage++: Sage++ is a language restructurer designed for converting old source

code into pC++ source code. pC++ is a parallel C++ language implemented

by the authors of Sage++. Sage++ has multiple front ends; that is, several

di�erent language parsers exist for Sage++. These parsers convert source code

into an object database representation of the source. See Figure 20 for a block

diagram of how Sage++ works. Sage++ was not used due to one major problem:

the basic tools available for Sage++ only look at loops for parallelization. The

data dependency information for non-loop variables could not be extracted from

Sage++ [24].

Sage++ Extensions: Several extensions for Sage++ exist. The most prevelant

of these tools are Omega for Sage++ and TAU. However, all of the extensions

had the same shortcomings as Sage++. For this reason, none of these extensions

were used in the system [25] [27] [28].

54

Fortran Code

C++ Code

 C Code

Sage++ Tools

Database pC++ Code

Figure 20. Sage++ Language Restructurer

Parallelizing Compilers: Both commercial and freeware parallelizing compilers

were examined. Every compiler either only parallelized loops and nothing more,

or did not make available the information needed for the data dependency ana-

lysis [26] [18] [20].

Perturbation Analysis: Performing a perturbation analysis consists of modifying

the inputs to a software system and then recording how the outputs of the system

change. However, we have over 2500 inputs to the system and these inputs can

either be very sensitive or very insensitive. To fully analyze the previous data

validation system required an extremely large search space to be examined.

Due to this requirement, the option of performing a perturbation analysis was

discarded.

After examining all of these tools, it became apparent that no available tool would

su�ce for performing the needed data dependency analysis. Faced with either making

signi�cant modi�cations to an existing software package or writing a data dependency

55

analysis tool from scratch, we chose the latter. It appeared much easier to start with

a clean design than to hack on another, already �nished, software package.

Using a source code dependency analyzer has signi�cant advantages when dealing

with data dependent dependencies. These are the dependencies found in, for example,

a for loop with an input variable used as a condition variable. Utilizing a source code

analyzer, a conservative method for extracting data dependent dependencies can be

implemented. A conservative method will ensure that all possible dependencies are

included. This is achieved by using the maximum, reasonable value for the condition

variables. However, when an individual data point is analyzed, the presence of all

of these dependencies cannot be guaranteed. It is fuller representation to build a

more dense dependency graph and ensure no dependencies are ignored than to build

a less dense graph. Extra dependencies would appear to the system user as possible

system faults that are not actually present. While not desirable, this is a much better

alternative to not alerting the user to a possible error cause.

Source Code Dependency Analyzer

After deciding to build a source code data dependency analyzer (SCDA) from

scratch, the �rst step was to decide what type of parser to write for the system. This

was necessary since we were going to design a source code dependency analyzer. The

only binary analysis method available is a perturbation analysis. Since writing a spe-

ci�c parser would limit the analyzer to only source code of one type, a better solution

was found. Sage++ [24] was chosen to be the parser for the dependency analyzer.

By using Sage++ to parse the code, the analyzer could be built to work on the object

database Sage++ uses to store parsed code. This not only allows multiple languages

to be used, thanks to Sage++ and it's multiple language parsers, but eliminated

56

the need to write a Fortran parser from scratch. This step was instrumental in the

resulting analyzer design.

Several types of programming statements were identi�ed as important to a data

dependency analysis [16]. These key statements are ones which actually have input

into the assignment of values in a program. The statements are:

Assignment: Assignment statements were the easiest. The variable on the left

hand side of the assignment obviously depends on all of the variables on the right

hand side. The only problem is when the right hand side contains a function

call. This is a special case, but the left hand side depends on the variables used

to �nd the result of the function call.

Control Flow: All control
ow statements (if, for, do) have some control para-

meter(s). Every statement contained in the body of the control
ow section

must depend on the parameter of the control
ow statement. This is simpler

than �rst expected, since the only statements that actually record a dependency

is an assignment statement. So, for each assignment statement in the body of

the control
ow section, the variables used as parameters in the control
ow

statement must be included as dependencies.

Loops: Loops are usually considered control
ow statements, but they require

special treatment. All loops must be unrolled so as to allow accurate dependency

information extraction.

There are several other situations that require special attention. Common blocks

must be dealt with in a special manner. All common block variables must be kept in a

linear array. This is due to Fortran using a pass by reference parameter passing con-

vention. In a large amount of code, a common block variable is passed as a reference

57

..

.

Equivalence ID

Object A

Object B

Object AA

Figure 21. Equivalence Indirection

and is used to access many di�erent elements in the common block. If the common

block variables are not dealt with in a linear array, consistency between the source

code and the dependency graph cannot be guaranteed. Equivalence statements also

require special attention. An equivalence is usually used to reference another vari-

able. Equivalence statements require a reference to the actual variable the equivalence

statement refers to. Equivalence statements are often used to access sections of data

in a linear fashion (i.e. an array). This indirection allows equivalence statements

to be dealt with e�ciently, e�ectively, and accurately. See Figure 21 for a graphical

explanation of this indirection. One other special situation involves temporary arrays.

These arrays are often used to group variables before issuing a function/subroutine

call involving the variables. This is dealt with in a method similar to the equivalence

statements. The di�erence is each element of the array must be a pointer to another

variable. Utilizing this method ensures the correct variable will be accessed through

the indirection.

58

The Algorithm

In order to perform the data dependency analysis, an algorithm for detecting de-

pendencies and recording them had to be developed. As stated earlier, the Sage++

object database is used to store the information available in the system source code.

This allows the dependency analyzer to operate on the objects in the database using

Sage++ library calls. Using these calls the database can be traversed in a statement{

by{statement manner. This allows each statement to be examined in the exact order

it will execute in. This is important due to the extensive use of temporary lists of

dependencies throughout the tool. All information needed to perform the analysis is

extractable from the object database using the Sage++ library calls.

The algorithm follows:

Find common blocks. A list of all common block elements is built. The reasons

for this were already explained. An object is built using each variables name as

an identi�er. These objects are in an array to ensure proper ordering.

Equivalence statements. For each equivalence statement, an object used for

redirection is created. These objects are identi�ed by the equivalenced variable's

name.

Examine each statement. Each statement is then examined in order and the

dependency information is stored internally.

Invoke output routine. The dependency information must be stored to disk.

This allows DatVal to read in the con�guration at run-time, without having to

re-run the data dependency tool.

59

Examining each statement should be discussed further. Examining each statement

is a complex procedure. In fact, it is best described by the following method:

A. Loops: If the statement is a loop, unroll the loop. This is done by examining

the body of the loop. This same algorithm is then applied to each statement

with one exception: elements that depend on the loop variable are appropriately

updated. Currently, nested loops are not supported, but are not used in the

original Fortran source code. Data dependent loops are not unrolled. To ensure a

complete data dependency graph, data dependent loops should be unrolled using

a conservative approach. This allows the maximum number of dependencies to

be extracted. This has not yet been implemented.

B. Control Flow: For each control
ow statement, build a temporary list of all

variables used in the statement. Then, recursively apply the algorithm described

in this chapter, adding the variables in the temporary list to each dependency

list stored. Nested control
ow statements are supported up to the limit of total

system memory.

C. Assignment Statements: For each assignment statement, record the necessary

dependency information including any temporary lists of dependencies.

D. Function Calls: Function calls are a special case. Every function call must be

evaluated to determine which input variables e�ect the returned value. This list

of variables is then added to the list of dependencies for the variables depending

on the function call's result. Currently, function calls are examined �rst and a

map of their inputs to outputs is stored in memory. Thus, the function call does

not have to be examined each time; instead, a table lookup can determine the

correct dependencies.

60

Common Block Declarations

var dvars adp2 adpam adt2 rpr dplsu wfet ducdpavg dlcdpavg dscdpavg;

var const1 p2tol pamtol t2tol rprtol tpttol;

Checks Section

check 2 kp2d :

names { p2 p2d dp2 }

sensors { 360..399 153 157..160}

tol {p2tol }

message {

"P2 HIGH OUT OF TOLERANCE, LOWER P2 BY %7.2f PSIA" adp2

};

Figure 22. Samples From a Con�guration File

E. Subroutines: Subroutines are sometimes dealt with in a method similar to

function calls. This is when the subroutine does not contain any references to

common block variables. If a subroutine does contain references to common

block variables it is expanded in{line, similar to a macro, and examined as if it

were normal source code.

After this analysis procedure runs, a con�guration �le is stored to disk for use by

DatVal. The output format can be changed to match the current target application

for the dependency analyzer. This allows great
exibility in the possible uses of the

dependency analyzer. For DatVal, the output format is a text �le divided into two

sections: a list of common block variables and a list of the information necessary for

con�guring each check in DatVal. A brief example taken from each section is shown

below in Figure 22. The actual con�guration �le produced has been as large as �fty

kilobytes.

61

Performance Analysis

The performance of the data dependency analyzer has been promising in the two

most important aspects: accuracy and speed. The tool needs to be fast to allow

con�guration changes during a test session. Currently, execution of the tool in the

background on a Pentium 90 requires approximately �fteen seconds for the current

DatVal Fortran source code. This is for an approximately �ve thousand line Fortran

program and includes the time necessary for Sage++ to parse the original source

code. This extracts approximately 750 data dependencies. This is well within the

time constraints for in{test con�guration and analysis. In the area of accuracy, on the

current con�guration, the tool �nds all data dependencies in the source code. This has

been veri�ed by hand using the above algorithm. This does not verify the algorithm,

but does verify the current implementation. No known problems with the algorithm

exist and they can/will be corrected as needed.

There are two pieces of con�guration information that cannot be extracted from

the source code. These items are the tolerances and the error messages. Tolerances are

seen as ordinary variables to the dependency analyzer. The only identifying aspect

of the tolerances are their names, which can change. Due to this, the system user

must input the names of each tolerance using DatEdit. This is not needed if the user

does not want the ability to modify tolerances on{line. F2C does not convert error

messages in the original Fortran code into usable C source code. If the user wants the

error messages displayed he must enter the messages into DatEdit. Since the error

messages change very seldom, this is not seen as a major shortcoming.

62

CHAPTER VI

CONCLUSIONS

While several problems were solved during the course of the work, some problems

remain unresolved. Other problems have solutions, but better solutions are thought

possible. In this chapter, additional research is outlined and then the work completed

is analyzed.

Future Research

Several new areas related to this research need to be explored. Some of the areas

where work related to this research should continue are:

Generalized SCDA: The source code dependency analyzer needs to be general-

ized. Some areas of the existing SCDA are closely related to the data validation

problem. While a truly general SCDA is not conceivable in the near future, a

SCDA capable of handling most common programming constructs can be de-

vised. This would allow the SCDA to be used in many diverse areas, such

as code parallelization. Currently, the SCDA contains some DATVAL speci�c

code. However, generalizing the SCDA would not be a di�cult task. The biggest

hurdle is adding the data dependent dependency analysis to the code. This does

not appear di�cult.

63

Parallelization: Also related to the SCDA is the topic of code parallelization.

By using the SCDA a person could determine the overall dependencies in their

code, not just in loops. This would allow for pipelined structures to be built.

This could greatly enhance performance in areas where traditional parallelization

methods are not applicable.

Diagnostics: Currently, the diagnostic system used in DatVal is very rudiment-

ary due to the structural information of the system being the only currently

available information. A higher{level diagnostic package could greatly enhance

the usefulness of DatVal.

Other areas of research could be explored, but these three areas are thought to

be the most bene�cial areas of enhancement to DatVal. Improving upon DatVal

does more than improve on one software system. Data validation as a whole is an

important problem with many possible uses in industry. A large percentage of the

research performed for this project can be applied to other problems.

Lessons Learned

Several valuable lessons have been learned throughout the course of this research

project. While legacy code does not always perform as expected, it represents a huge

investment in both time and money to industry. This is why many companies will

not entertain the thought of reengineering the vast amounts of legacy code they own.

Reengineering a complex software system requires a large allocation of resources.

Only if a system has unacceptable performance is a company likely to reengineer the

software. If the code performs at a minimal exceptable level it will not be replaced.

Due to this, methods for revitalizing legacy code need to be devised.

64

Using MGA as a means of handling the complexity of a data validation system

has been a success. Based on the success of MGA in other problem domains this

success was expected. By enabling the user to easily modify a complex system, MGA

removes the system user from the details necessary to implement a system. MGA

allows non{computer engineers to build complex computer systems. In fact, the users

of DatVal at AEDC are generally mechanical engineers with very limited experience

with computer systems. We feel MGA has been a major cause of the success of DatVal.

One of the methods for revitalizing legacy code that has been shown to be successful

is \wrapping" the legacy code with new, modern source code. This allows many new

features to be added to the legacy system without the risk of modifying the legacy

code. These additional features can be as complex as a full diagnostics package or

related to usability, such as adding a GUI. This also allows the legacy system to be

implemented in a \modern" language which should ensure the code can be maintained

with less e�ort.

One feature often needed to be added to legacy codes is a more advanced dia-

gnosis system. Legacy systems use diagnostic systems that are outdated both in

system design and user interaction. Several of the problems associated with dia-

gnostics and legacy codes can be solved using the methods described in this thesis.

At AEDC, we have successfully incorporated a more advanced diagnostic system in

the data validation system. In addition, we have left the possibility of replacing the

current diagnostic system with a newer, better system with minimal e�ort. Currently,

engineers at AEDC are in the process of designing a new diagnostics system. When

complete, they will interface this new system into DatVal. This should allow the data

validation system to grow gradually, instead of requiring major modi�cations.

One of the last items discussed here was a source code data dependency analyzer.

This tool shows great promise for aiding the revitalization of legacy codes. Whenever

65

information is only available in the source code, a source dependency analyzer can

extract this information and make it available to engineers or to other software systems.

Using this information as a basis, more information can be extracted from the system

while the system is in use. After a period of time, the equivalent of the information

used to design the legacy system should be available to the system users. Without a

doubt this can greatly enhance the use of any legacy system. Adding this knowledge

base to the engineers' existing knowledge base will result in more e�cient system use.

Overall, this research has been well received at AEDC. We feel this e�ort was

a success based on the use of the system and the lessons learned from the e�ort.

Continuation of this work shows promise as there is a large amount of legacy code

in use in industry today. Using the techniques described here, new systems can be

implemented that have the same functionality of the legacy system, but also add new,

needed features. This will help industry to be more e�cient and more e�ective.

66

REFERENCES

1. Bapty, T. Abbott, B.: \Portable Kernel for High-Level Synthesis of Com-
plex DSP-Systems," Proceedings of the International Conference on Signal

Processing Applications and Technology, Boston MA, 1995.

2. Sztipanovits, J., Karsai, G., Biegl, Cs., Bapty, T., Ledeczi, A., Misra,
A.: \MULTIGRAPH: An Architecture for Model-Integrated Computing,"
Proceedings of the International Conference on Engineering of Complex

Computer Systems, Ft. Lauderdale, Fla., October 1995.

3. Karsai,G.: \A Con�gurable Visual Programming Environment: A Tool for
Domain-Speci�c Programming," IEEE Computer, pp. 36-44., March 1995.

4. Bennett, K.: \Legacy Systems: Coping With Success," IEEE Software , pp. 19-23,
January, 1995.

5. Sneed, H.M.: \Planning the Reengineering of Legacy Systems," IEEE Software,
pp. 24-34, January, 1995.

6. Bapty, T.A., Abbott, B.: \Parallel Signal Processing for Turbine Engine Testing,"
Final Report for USAF-UES SRP, Contract no. F49620-88-C-0053, July 22, 1991.

7. Landau, Y.D.: Adaptive Control, Marcel Dekker, Inc., New York, 1979.

8. Moore, M.S., Karsai, G., Sztipanovits, J.: \Model-based programming for paral-
lel image processing," Proc. of the 1st IEEE International Conference on Image

Processing, 1994.

9. Abbott, B., Bapty, T., Biegl, C., Karsai, G., Sztipanovits, J.: \Model-Based
Approach for Software Synthesis," IEEE Software, pp. 42-53, May, 1993.

10. Misra, A., Sztipanovits, J., Underbrink, A., Carnes, R., Purves, B.: \Diagnos-
ability of Dynamical Systems," Proc. of the Third International Workshop on

Principles of Diagnosis, pp. 239-244, Rosario, WA 1992.

11. \Research on Intelligent Process Control Systems," Dept. of Electrical Engineer-
ing, Vanderbilt University, Technical Report #88-003, 1988.

12. Karsai, G.: \Hierarchical Description Language (HDL) User's Manual," Dept. of
Electrical Engineering, Vanderbilt University, Technical Report #87-004, 1987.

13. Sztipanovits, J., Bourne, J.R., \Architecture of Intelligent Medical Instruments,"
Journal of Biomedical Measurements Informatics and Control, London, UK.,
Vol.1, No. 3, pp. 140-146, 1987.

67

14. Sztipanovits, J., Biegl, C., Karsai, G., Bourne, J., Mushlin, R., Harrison, C.,
\Knowledge-Based Experiment Builder for Magnetic Resonance Imaging (MRI)
Systems," Proc. of the 3rd IEEE Conference on Arti�cial Intelligence Applica-

tions, Orlando, FL, pp. 126-133, 1987.

15. Ledeczi, A., Bapty, T., Karsai, G., Sztipanovits, J.: \Modeling Paradigm for
Parallel Signal Processing," The Australian Computer Journal, vol. 27, No. 3, pp.
92-102, August, 1995.

16. Banerjee, Utpal: Dependence Analysis for Supercomputing, Kluwer Academic
Publishers, Boston, 1988.

17. Friedman, R., Levesque, J., Wagenbreth, G.: \Fortran Parallelization Handbook,"
Applied Parallel Research, April 1995.

18. Malony, A., et. al.: \Performance Analysis of pC++: A Portable Data-Parallel
Programming System for Scalable Parallel Computers," Proceedings of the 8th

International Parallel Processing Symposium, Cancun, Mexico, April 1994.

19. Wilkening, D., Loyall, J., Pitarys, M., Littlejohn, K.: \A reuse approach to
computer{assisted software reengineering," Proceedings of the Fourth Systems

Reengineering Technology Workshop, pp. 83-90, February, 1994.

20. Bodin, F., et. al.: \Distributed pC++: Basic Ideas for an Object Parallel Lan-
guage," Scienti�c Programming, Vol. 2, Num. 3, Fall, 1993.

21. Merlo, E., et. al.: \Reengineering User Interfaces," IEEE Software, pp. 64-73,
January, 1995.

22. Feldman, S., Gay, D., Maimone, M., Schryer, N.: \A Fortran-to-C Converter,"
AT&T Bell Labs, Technical Report No. 149, 1995.

23. Weide, B., Heym, W., Hollingsworth, J.: \Reverse Engineering of Legacy Code is
Intractable," Ohio State University and Indiana University Southeast, Technical
Report OSU-CISRC-10/94-TR-55, October 1994.

24. Bodin, F., et. al.: \Sage++: An Object-Oriented Toolkit and Class Library for
Building Fortran and C++ Restructuring Tools," Proceedings of Oonski, Oregon,
1994.

25. Brown, D., Hackstadt, S., Malony, A., Mohr, B.: \Program Analysis En-
vironments for Parallel Language Systems: The TAU Environment," Pro-

ceedings of the 2nd Workshop on Environments and Tools for Parallel

Scienti�c Computing, Townsend, Tennessee, pp. 162-171, May 1994.

26. Mohr, B.: \A Portable Dynamic Pro�ler for C++ based Languages," available on
the WWW, 1992.

27. Pugh, W.: \The Omega Test: a fast and practical integer programming algorithm
for dependence analysis," Communication of the ACM, August 1992.

68

28. Mohr, B., Brown, D., Malony, A.: \TAU: A Portable Parallel Program Analysis
Environment for pC++," Proceedings of CONPAR94 - VAPP VI, University of
Linz, Austria, pp. 29-40, September, 1994.

29. Bodin, F., et. al.: \Implementing a Parallel C++ Runtime System for Scalable
Parallel Systems," Proceedings of the Supercomputing 1993 Conference, Portland,
Oregon, November, 1993.

30. Nawab, H., Lesser, V., Milios, E.: \Diagnosis Using the Formal Theory of a
Signal-Processing System," IEEE Transactions on Systems, Man, and Cybernet-

ics, Vol.SMC-17, No. 3, 1987.

31. Milne, Robert: \Strategies for Diagnosis," IEEE Transactions on Systems, Man,

and Cybernetics, Vol.SMC-17, No. 3, pp. 333-339, 1987.

32. Chandrasekaran, B., Milne, R.: \Reasoning about structure, behavior and func-
tion," SIGART Newsletter, no. 93, pp. 4-59, July 1985.

33. Milne, R: \Fault diagnosis through responsibility," Proceedings of the

Ninth International Joint Conference on Arti�cial Intelligence, Los Angeles,
Calif., Aug. 1985.

69

ELECTRICAL ENGINEERING

A MODEL BASED DATA VALIDATION
SYSTEM

JAMES RICHARD DAVIS

Thesis under the direction of Professor Janos Sztipanovits

A model based data validation system has been developed using the MultiGraph

Architecture. Several key issues were examined in this research including: the Multi-

Graph Architecture, data validation, diagnostic systems, legacy software reengineer-

ing, and data dependency analysis. An existing legacy data validation system was

used as the basis for this research. Several issues had to be resolved dealing with the

utilization of the legacy code. As part of the system, a diagnostics package was added

to the legacy software. In order to accomplish the addition of a diagnostics system,

structural information had to be extracted from the existing system knowledge base.

A source code data dependency analysis tool was implemented to extract the needed

information directly from the legacy code.

Each issue faced in the process of this research is described in detail. An overview

of how MultiGraph was used to control the complexity of the data validation system

is given. The algorithms for performing the data dependency analysis are outlined.

Lastly, the actual implementation of the new data validation system is discussed.

Approved Date

