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ABSTRACT
Engineering systems are becoming increasingly

complex as state of the art technologies are incorporated
into designs. Surety modeling and analysis is an
emerging science which permits an engineer to
qualitatively and quantitatively predict and assess the
completeness and predictability of a design. Surety is a
term often used in the Department of Defense (DoD) and
Department of Energy (DOE) communities, which refers
to the integration of safety, security, reliability and
performance aspects of design. Current risk assessment
technologies for analyzing complex systems fail to
adequately describe the problem, thus making
assessment fragmented and non-integrated.  To address
this problem, we have developed a methodology and
extensible software toolset to address model integration
and complexity for high consequence systems.  The
MultiGraph Architecture (MGA) facilitates  multi-
domain, model-integrated modeling and analyses of
complex, high-assurance systems.  The MGA modeling
environment allows the engineer to customize the
modeling environment to match a design paradigm
representative of the actual design. Previous modeling
tools have a predefined model space that forces the
modeler to work in less than optimal environments.
Current approaches force the problem to be bounded and
constrained by requirements of the modeling tool and not
the actual design problem.  In some small cases, this is
only marginally adequate.   The MGA facilitates the
implementation of a surety methodology, which is used to
represent high assurance systems with respect to safety
and reliability.  Formal mathematical models are used to
correctly describe design safety and reliability
functionality and behavior.  The functional and
behavioral representations of the design are then
analyzed using commercial-off-the-shelf (COTS) tools.

INTRODUCTION

The current high consequence system design
environment is highly fragmented.  The disciplines of
safety, reliability, performance and security are typically
considered in isolated scenarios by organizations
separated physically and philosophically.  This can result
in highly suspect complex systems, which have a
tendency to perform below design expectations and fail in
unanticipated scenarios.  Methods for inter-relating
safety, reliability, performance, and security models are
needed to ensure a complex design will meet system
requirements.

The principle tools used in elements of surety
analysis consist of fault tree analyses, failure mode and
effects analysis, barrier analysis, adversarial analysis, and
some form of global risk analysis.  Under some toolset
modeling environments, state space representations are
used to capture the reactive nature of the system under
consideration.  There appears to be a consensus that state
space descriptions are currently the best technology for
dealing with complex reactive systems.  See [1] for more
information on state space descriptions.

Each of the above techniques has varying degrees of
utility depending on the application and expertise of the
systems engineer, component designer or analyst.
Identifying a technique’s strengths and employing these
methodology fragments in a hybrid structure to complex
design problems has the potential of solving
inconsistencies in complex design problems.  In the area
of Surety at Sandia, the current technologies being
applied have proven difficult in solving the complex
predictive problems that will enable an engineer to certify
a design solution.
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This paper discusses a new approach for integrated
safety and reliability analysis using Model-Integrated
Computing principles and tools. The essence of the
approach is to perform system modeling using a
modeling environment that allows an integrated,
consistent representation of system models. This
integrated model is translated into the input languages of
COTS analysis tools, thereby maintaining the consistency
among the tool-specific models.

BACKGROUND

Several key technologies necessary for representing
and analyzing integrated system surety are examined in
this paper.  Sandia’s paradigm for surety and methods
for modeling high assurance systems are discussed.
Model Integrated Computing, a technology for software
integrated modeling environments, will be introduced.
Ordered Binary Decision Diagrams (OBDD-s) are
incorporated into the toolset to enable mathematical
representation of surety models.

Sandia’s Paradigm of Surety

Paradigms for surety involve the design and
development of complex systems whose failure can result
in significant loss of human life or corporate resources.
Within the Department of Energy (DOE) complex, high
consequence operations comprise the design and
manufacture of nuclear weapon systems.  The issues
regarding the high consequence aspect are directed
toward the inadvertent detonation, intentional or
non-intentional, the dispersal of nuclear materials, or the
loss of system control.  These events will have significant
environmental and political impacts as well as the
potential loss of human life.  As a result, significant
effort is expended to ensure acceptable system behavior is
achieved under all circumstances.

Surety constitutes the integrated consideration of
safety, security, reliability, and performance throughout
the system life cycle.  Security is comprised of two basic
sub-elements:  physical security and functional security,
sometimes called use- control in the weapons
communities.  Reliability is achieving a high probability
of successful operation under normal environments.
Safety is preventing accidental nuclear detonation or
dispersal of nuclear material under abnormal
environments.  The elements of surety can be applied to a
broad spectrum of design activities including, but not
limited to, weapon systems, national infrastructures,
banking, chemical processing and biological technology.
Surety concepts apply to any system designed to operate
and perform high consequence actions.

Modeling of Surety Systems

Current surety designs represent the safety,
reliability, performance and security of a system as
disjoint, separate models and analyses.  Separate
organizations are responsible for evaluating and
reporting the safety, reliability, and security of the system.
These organizations are somewhat disjoint through out
the product life-cycle process.  Each organization has
their preferred modeling and analysis techniques and
applies these techniques for system verification and
validation.  Figure 1 represents the system surety
engineering process [2].
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Figure 1. The System Surety Process

Initially, small organizational entities receive
problem input and define the problem.  Subsequently,
designers, manufacturing engineers, quality engineers
etc. interact to build separate models and utilize different
tools to design and manufacture the system. However, the
models defined by each organization of the system are
often disjoint and do not represent the same system.
Utilizing a Model-Integrated approach for model
construction allows for modification of the integrated
system model in one aspect, which should affect the other
aspects [3].

An integrated model for surety systems is based on
system models.  Safety, reliability and fault views of the
models can be abstracted from a single common
integrated model.  Using an integrated approach, system
level changes will show up in the other system model
views if the modification affects the specific view.

A key element of integrated modeling involves the
interaction of different modeling aspects.  Previously
these areas of overlap had to be dealt with manually.  By
using an integrated approach, changing the model in one
aspect may affect many different aspects of the model.
Instead of requiring separate safety and reliability models
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of a system, the system can be modeled in a manner that
is more natural and intuitive to system designers and
analysts.  This system model is then augmented with
safety and reliability characteristics.  For example, the
system may be modeled using a behavior model.  The
safety and reliability information about the system could
then be incorporated to reflect specific behavioral traits of
the system.  When performing a safety or reliability
analysis, the necessary fault information can be extracted
from the augmented behavioral model and used to
perform the necessary analysis.

Model-Integrated Computing

In Model-integrated computing, integrated,
multiple-view, domain-specific models capture
information relevant to the system under design. Models
explicitly represent the designer’s understanding of an
entire system, including the information-processing
architecture, physical architecture, and operating
environment. Integrated modeling explicitly represents
dependencies and constraints among various modeling
aspects.

The Multigraph Architecture (MGA) is an
infrastructure for model-integrated computing and is
described in detail by Sztipanovits [4]. The integrated
environment includes Modeling Tools, an Integrated
Model Database, Analysis Tools, and Application
Synthesis Tools. The Analysis Tools work with tool-
specific analysis models; the applications are specified
in terms of executable models. The modeling paradigm
of the analysis tools and the executable models are
domain independent. In a given domain, the relevant
information about the design artifact is captured by a
multiple-view, domain specific modeling paradigm.
Key components of the model server are the “Model
Interpreters”. The role of the Model Interpreters is to
translate the domain specific model into the analysis
models for the tools and the executable models of
applications to be synthesized. This architecture allows
that the analysis and synthesis tools to share design
information that is common without requiring that the
tools use the same modeling paradigm.

An integrated tool environment is built in the
following steps using the MGA infrastructure:

1. Systems and domain experts conduct domain
analysis and specify an integrated modeling
paradigm, which is designed to capture key
aspects of the system. The modeling paradigm is
comprised of the concepts, relationships, model
composition principles and constraints that are
specific to the domain.

2. Using the formal representation of modeling
paradigms, systems and domain experts specify

and create a domain specific model building,
model analysis, and software/system synthesis
(model integrated program synthesis)
environment. The environment includes
reusable domain specific components, general
building blocks, domain specific model
analysis tools, and software synthesis tools.
Completion of this step is supported by MGA
meta-tools.

3. Within the modeling environment framework,
domain and application engineers build
integrated multiple view models of systems to
be designed and implemented. The multiple
view models typically include requirement and
design models.

4. Domain and application engineers analyze the
models according to the nature and needs of the
domain. The domain specific models are
translated into the input languages or input
data structures of the selected analysis tools.
MGA model interpreters complete the model
translation.

Multi-Domain Modeling

High consequence, high assurance engineering
design and development is a complex process that often
incorporates diverse, often conflicting requirements,
new technologies, and involves many diverse
disciplines.  System engineers must identify objectives
and requirements and formulate metrics that can be
used by the design teams to assess the viability of the
concepts in satisfying the design and development
objectives.

The model-integrated computing approach has the ability
to incorporate strengths from various modeling and analytical
techniques and employs methodology fragments in a hybrid
structure to solve complex design problems.  In the specific
problem domain of surety, the current technologies being
applied in a non-integrated fashion cannot solve the complex
predictive problems that will enable a designer to certify a
design solution.  System certification is crucial in the design of
High Consequence systems.  The approach taken with model-
integrated computing is to take the strengths of a number of
analytical techniques and define/develop an integrated
approach that surpasses current approaches and also provides a
venue for inclusion of new technologies that can be
incorporated into the MGA framework and tools.

Integrated Safety and Reliability

Integrating safety and reliability addresses both
complex design and coupled modeling simulation.  To



4

accomplish these objectives, formal languages [1]
representative of the problem and solution domains are
incorporated to specify all functions and relationships for
the specific domains (e.g. reliability, safety).

The objective of reliability modeling and analysis is
to represent the major functions of the design in terms of
expected and desired sub-system and component
behaviors.  This process is referred to as modeling and
the usual result is a diagrammatic representation of the
inter-relating component behaviors and a corresponding
set of "reliability mathematical equations".  Assumptions
affect the accuracy of the mathematical equation and its
evaluation. Successful design functions require successful
operation of all events modeled.  Single objects represent
some operations, while others have two or more objects -
any of which can provide the needed operation.  These
functional relationships lead to a mathematical
expression relating design failure probability to
component behavior failure probabilities.

Safety modeling and analysis must address external
and internal events which, when subjected to a design,
can lead to unsafe operation or conditions.  Safe design is
directed toward minimizing non-engineered or poorly
engineered hazard controls.  Safety modeling is an
extension of reliability modeling and includes an
assessment of how frequently an excursion from the
design results in a hazard.  The analysis is extended to a
more formal manner to include consideration of event
sequences, which transform the hazard into an accident.

Integrating safety and reliability approaches under
the framework of the MGA requires safety and reliability
domain experts to possess and maintain in-depth
knowledge of individual sub-systems and components
used in the problem domain (the system being designed)
that affect the solution domain.  It is the responsibility of
the domain experts to formalize the design under a
common formal language.  The use of a common formal
language suitable for integrated modeling and analysis
allows the synthesis of the multi-domain problem
structure to be synthesized into singular aspect domain
model structures.  It is the singular aspect domain
structures that allow domain experts to perform specific
analyses in the area of concern. This methodology allows
both complexity and coupled model simulation issues to
be addressed.

Ordered Binary Decision Diagrams (OBDD)

Safety and reliability analyses use discrete models and
operations over finite domains. The most general
difficulty in all of the analysis techniques is the size of
the state space in large-scale systems. Combinatorial
explosion is the result of the exponential increase in the

number of discrete elements (states, events, hypotheses,
etc.) during operations, which eventually makes access
to the individual elements unfeasible. By introducing a
binary encoding for the elements, the individual
elements, and sets of the elements, the relations among
them can be expressed as Boolean functions. Using
Boolean function representations, we can express
operations and algorithms in diagnosis and safety
analysis in symbolic form, by means of symbolic
Boolean function manipulations.

OBDDs provide a symbolic representation for
Boolean functions in the form of directed acyclic
graphs. [5] They are a restricted, canonical form version
of Binary Decision Diagrams (BDD). [6]  Bryant [7]
described a set of algorithms that implement operations
on Boolean functions as graph algorithms on OBDDs.
Taking advantage of the efficient symbolic
manipulations, researchers have solved a wide range of
problems in hardware verification, testing, real-time
systems, and mathematical logic using OBDDs that
would have been otherwise impossible due to
combinatorial explosion. Symbolic model checking is
extensively used in hardware design (see, e.g., [8]), and
has shown to be efficient in state space sizes 10120 and
beyond.

MODELING OF HIGH ASSURANCE,
HIGH CONSEQUENCE SYSTEMS

An integrated model for high assurance, high
consequence systems is based on system behavior models
and system hardware models.  Our work has focused on
integrating the safety and reliability aspects of surety.
Future work will entail adding the security and
performance surety aspects to the integrated toolset.
Safety and reliability views of the models can be
abstracted from the integrated model. Using an
integrated approach, system level changes will show up
in the other system model views only if the modification
affects the specific view.

A key element of integrated modeling involves the
interaction of different modeling aspects.  Previously
these areas of overlap had to be dealt with manually.  By
using an integrated approach, changing the model in one
aspect may affect many different views of the model.  The
system can be modeled in a more natural format.  Instead
of requiring safety and reliability models of a system, the
system can be modeled in a manner that is more natural
to system designers.  This integrated system model is
then augmented with safety and reliability features.  For
example, the system may be modeled using a model
describing the behavior of the system in terms of safety
and reliability.  The safety and reliability information
about the system could then be attached to specific
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behavioral traits of the system.  When performing a
safety or reliability analysis, the specific information of
interest can be extracted from the augmented behavioral
model.

Safety and reliability are not separate, independent
traits of a system.  Instead, both safety and reliability are
functions of a system’s components, how the
components are assembled, how the components can
fail, and the system’s environment.

SELECTION OF DOMAIN-SPECIFIC
MODELING PARADIGM

Safety and reliability analysis algorithms work with
a “model” (a suitable representation) of the system.  The
required depth of the analyses determines the level of
detail in the models.

Models for Safety Analysis. Safety analysis requires
the development of models that represent the
relationship between failure modes (or fault events) of
physical components and discrepancies (or discrepancy
events) in the high-level behavior of the system.  Taking
into consideration of the characteristics of the high
impact system category (complexity, dynamic behavior),
we selected the following model organization:

• The Behavioral Model represents the system
behavior in the discrete state space in terms of
hierarchical, parallel state machines. The
Behavioral Model includes both functional and
fault behaviors by representing functional and
fault states, and transitions among these states
triggered by input, local, and fault events. We
have selected the StateChart notation [1] for
behavior modeling because the StateChart
models are expressive, scalable, and support
incremental modeling.

• The Physical Model captures the component
hierarchy of the system. The physical
components are modeled as component
assemblies and sub-assemblies. Each physical
component has a fault model view. The fault
model view lists the physically possible and
functionally meaningful fault modes of the
components.

• The interdependencies between the Behavioral
Model and Physical Model are represented in
the form of references between these models.

Explicit representation of the interdependencies
between behavioral models and physical models is a
critical element of the integrated modeling paradigm. It
guides the model builder to understand their
relationship, and enforces the systematic analysis of the
effects of the fault modes of components.

Models for Reliability Analysis. The analysis
environment includes a reliability analysis tool, WinR

[9], utilizes fault trees for system model representation.
The fault tree represents the logical relationship
between a top event and fault modes in the form of an
AND-OR tree. Utilizing the fault tree models, and the
failure rate information of the components, the tool
calculates the expected rate for the occurrence of the
selected critical system state defined by the top event.

The models for reliability analysis have strong
overlap with the models for safety analysis and fault
analysis. The most important relationships regarding
reliability analysis are the following:

• The top event in reliability analysis
corresponds to a transition into a selected
critical system state, which is modeled as part
of the behavioral models.

• The fault events correspond to fault modes of
components that are contained in the physical
models.

• The fault tree can be derived from the set of all
possible state trajectories that lead to the
selected critical system state. These trajectories
are fully defined by the behavioral models.

The conclusion is that the behavioral and physical
models contain all the information required for
reliability analysis except failure rate data for the
component fault modes. Therefore, by extending the
component fault models with probabilistic information,
the modeling paradigm will allow safety, diagnosability
and reliability analysis from the same model set. It is
important to note that the relationship between the fault
tree models required by the reliability analysis tool and
the behavioral models is quite complicated.

FORMAL MODEL FOR INTEGRATED
ANALYSIS

The role of a formal model is to give a domain
independent, mathematical specification for the models.
The selected domain-specific form of the Behavioral
Model is the StateChart notation. While StateCharts are
convenient for building large-scale, parallel state
machine specifications, the analysis algorithms require
a formal mathematical model, which captures the
precise semantics of the hierarchical, parallel state
machines. We use Discrete Event System (DES) models
for this purpose.

A Boolean representation of the DES model can be
created.  [10]  The Boolean representation of the DES
model can be directly translated into an OBDD form,
allowing the symbolic evaluation of the analysis
algorithms.  See Figure 2.
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INTEGRATED ANALYSIS WITH OBDD-s

The primary difficulty with safety and reliability
analysis with state space modeling representations is
combinatorial state space explosion. For example, the
generation of a fault tree from the behavioral model
requires the exhaustive enumeration of all possible state
trajectories that may lead from an initial state (or a set
of possible initial states) to a critical state under all fault
conditions. By representing the Behavioral Model
symbolically as an OBDD, the required calculations can
be completed symbolically without explicitly
enumerating the exponential number of alternatives.

The application of OBDD-s for the analysis
requires the following steps:

1. Mapping the Behavioral Models into OBDD-s:
This step is completed automatically. In accordance to
the general framework of the Multigraph Architecture
(MGA), the StateChart models in the Model Database
are traversed by a Model Interpreter, which selects a
binary encoding for the sates and incrementally builds
up the OBDD representation for the relational model.

2. Safety analysis: The safety analysis tool
receives the OBDD representation of the Behavioral
Model and performs forward reachability analysis on
the state machine. Given a set of initial states S0,
reachability analysis calculates the set of reachable
states S*( S0) under all possible combination of x∈  X
input events, fS∈  FS  and fI∈  FI  fault events. The goal of
the safety analysis is to show that selected critical events
are not elements of the reachability set. The reachability
set is calculated symbolically, therefore the analysis is
feasible even for very large state spaces.

3. Reliability analysis: As it was mentioned
above, the reliability analysis tool, WinR , expects a
fault tree that represents all possible combinations of
fault events leading to a selected top event. The analysis
algorithm generates all of the state trajectories leading
to the top event using backward propagation, and
simultaneously builds up the logic relationship between
the fault events and the top event.

Figure 2: DES and relational models for
dynamic systems

SCALING ISSUES WITH OBDD-BASED
MODELS

The first approach to mapping the behavioral
models into OBDD-s involved creating one OBDD to
represent the transition relation for the entire behavioral
model (both hardware and system behaviors).    Upon
building models with a total design space of 240, the
monolithic transition relation grew too large to
compute.   Performance of the analysis tools was
unacceptable once the transition relation had to be
swapped to virtual memory.

A distributed method for computing the transition
relation was developed.  The transition relation is stored
in a tree structure that mimics the structure of the
behavioral models.  The transition relation nodes
corresponding to leaf states in the behavioral model
have OBDD-s to represent the transitions leaving the
corresponding state in the behavioral model.  Nodes
representing parallel states use a conjunction of their
children’s transition OBDD-s for their transition
relation.  Nodes that represent sequential states use a
disjunction of their children’s transition OBDD-s for
their transition relation.

With this new approach, models consisting of a
total design space size of 285 have been analyzed.
Further work on the scaling of OBDD based models is
still needed to better understand when scaling problems
will arise.

MODELING AND ANALYSIS TOOL
ARCHITECTURE

The Model-Integrated Safety and Reliability
Analysis tool architecture is an instance of the generic
architecture of Model-Integrated Computing
Environments discussed before.

 The domain specific models are built by the
Metaprogrammable Visual Model Builder, and are
stored in the Model Server. The constraints defined in
the meta-language representation of the modeling
paradigm. The capture constraints are enforced by the
Visual Model Builder and allow the user to create only
valid models.

There is a separate model interpreter for each
analysis tool. The model interpreters traverse the
domain specific models and collect/translate the
information into the required input data structures of the
tools. This solution enables the reuse of the tools even if
the domain specific modeling paradigm is changing.

System
Model

X, Fs Y

DES Model :
(X,Fs,S,Γ,f,s0,Y,g)

X

S

FsS’

Y

g

f

Relational Model :

f ⊆  X × FS ×S×  S’   ;  transition model

g ⊆  X × FS ×S × Y ;  output model

f(x,fs,s,s’)

g(x,fs,s,y)
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The WinR reliability analysis tool is an 'external'
component in the tool architecture. It is important to
note that the WinR  tool has a separate model building
interface, therefore the tool can be used independently
from the integrated environment. The advantage of
using WinR  in the configuration above is that the
overlapping modeling views are kept consistent by the
integrated modeling environment.

EXAMPLE

The example system is a simplified version of an
automotive braking system. Different sets discrete
failures trigger the transitions between states.  A
hardware failure can lead to other failures in the system.
For example, if the front brake line ruptures, the front
brake cylinders will become non-operational.  Then the
brake shoes cannot contact the brake rotors, so the front
brakes have failed.  When the system is analyzed, these
separate hardware state machines are analyzed as if they
are parallel components of the same FSM.

This event tree only contains Boolean AND,
Boolean OR, and the Boolean encodings for the failure
events. This event tree can be exported to WinR  for
fault tree analysis (the nodes of the event tree
correspond to component failures).  Probabilistic and cut
set information about the system is then assessed with
WinR

For our example, the number of failure trajectories
is quite large compared to the size of the system’s
Behavioral models. The fault tree generation algorithm
examines over 3 million trajectories for this small
example.  The simplified fault tree contains
approximately 40 nodes.  Even for this limited example,
the number of failure trajectories would be difficult to
discover manually.

SUMMARY

Integrated surety analysis is a difficult problem for
two primary reasons. First, the models to be used in
these analyses are not independent from each other.
Therefore guaranteeing the consistency of the analysis
results is a major concern. Second, the generally used
discrete, finite state modeling techniques require
analysis methods that are plagued by combinatorial
explosion of the state and event sets. The described
model-integrated modeling and analysis environment
and the described analysis methods address both
problems. The introduction of an integrated modeling
paradigm allows the construction of models that are
domain specific, and consistent for each analysis task.
The problem of combinatorial explosion is mitigated by

the use of relational models and OBDD representations.
Although symbolic manipulations offer tremendous
advantages in the analysis of large-scale systems,
scalability remains an important issue in analyzing
these systems. Our experience with the analysis of a
variety of systems has shown the feasibility of the
approach.

Future work must address analyzing systems with
regard to unintended consequences. Additionally, the
scalability of the described techniques must be
examined.  When adding a new type of analysis to the
desired analysis packages, the modeling environment
can change.  How this affects the desired analyses is
unknown.
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