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ABSTRACT 
 

Model Integrated Computing (MIC) is a technology 
developed to aid in the rapid design and implementation 
of complex computer based systems.  These systems 
typically are characterized by the integration of their 
information processing systems and the physical 
environment of the actual system. MIC employs multiple 
aspect, domain-specific modeling technology to represent 
the system software, the system hardware, its 
environment, and their relationships.  Model interpreters 
are used to transform the information captured in the 
models into the artifacts required by the chosen analysis 
tools or run time system.  One of the largest advantages 
to using MIC is the ability to reason and design a 
complex system at a higher level of abstraction.  This 
paper will describe one framework for applying MIC to 
system tool design.  A selected project where the 
framework is being applied will be introduced.  The 
advantages to using MIC for this project will be 
discussed. 
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1. Introduction 
 

Complex computer-based systems are often 
characterized by the tight integration of information 
processing and the physical environment of the actual 
system.  In addition, these systems are often mission 
critical systems; their failure is unacceptable.  Model-
Integrated Computing (MIC) is a technology that is well 
suited for the rapid design, implementation, and evolution 
of such systems [1].  MIC employs domain-specific 
models to represent system software, its environment, 
and their relationships.  With Model-Integrated Program 
Synthesis (MIPS), these models are then used to 
automatically synthesize the embedded software and 
hardware applications and generate inputs to COTS 
analysis tools.   The MIPS technique is possible only due 
to the capturing of the relationships between the software 
and the system’s environment.  This approach speeds up 
the design cycle, facilitates the evolution of the 

application, and helps system maintenance, dramatically 
reducing costs during the entire lifecycle of the system. 

 
2.   Model Integrated Computing 

 
The Multigraph Architecture (MGA), developed at 

the Institute for Software Integrated Systems at 
Vanderbilt University, is a toolkit for creating multiple 
aspect, domain-specific MIPS environments. The MGA 
is shown in Figure 1. The metaprogramming interface is 
used to formally specify the application domain’s 
modeling paradigm. The modeling paradigm captures all 
the syntactic, semantic, and presentation information 
regarding the domain – which concepts will be used to 
construct models, what relationships may exist among 
those concepts, how the concepts may be organized and 
viewed by the modeler, and rules governing the 
construction of models. The modeling paradigm defines 
the family of models that can be created using the 
resultant modeling environment.  All modeling 
paradigms additionally adhere to a set of specifications 
regarding the presentation features allowed by the MGA 
configurable model editor.   

With MIC, modeling paradigms are represented by 
metamodels.  The metamodels are used to automatically 
configure the MIPS modeling environment for the 
domain. This MIPS environment consists of a domain 
specific model editor, a customized model database, and a 
set of model translators or interpreters.  An interesting 
aspect of this approach is that a MIPS environment itself 
is used to build the metamodels [2]. 

The generated domain-specific MIPS environment is 
then used by the system user to build domain models that 
are stored in a model database.  These models are used to 
automatically generate the applications or to synthesize 
input to different COTS analysis tools.  This process is 
called model interpretation.  Model interpreters are those 
entities that automatically translate the models into other 
useful artifacts while ensuring the semantics between the 
modeling domain and external tools are kept consistent.   

 
The Generic Modeling Environment  

The Generic Modeling Environment (GME 2000), is 
a Windows-based, domain-specific, model-integrated 
program synthesis tool for creating and evolving domain-



specific, multi-aspect models of computer based 
engineering systems. The GME 2000 is part of the 
Multigraph Architecture (MGA) tool suite.  In particular, 
GME 2000 provides the domain specific model editor 
that is used in the MGA systems [3]. 

The GME 2000 is configurable, or meta-
programmable, which means it can be “programmed” to 
work with vastly different domains. Another important 
feature is that GME 2000 is configured from formal 
modeling environment specifications or meta-models. 
This ensures that it can be quickly and safely evolved as 
modeling requirements change [4].  GME 2000 is used 
primarily for model-building. The models take the form 
of graphical, multi-aspect, attributed entity-relationship 
diagrams. The static semantics of a model are specified 
by explicit constraints that are enforced by a built-in 
constraint manager. The dynamic semantics is not the 
concern of GME 2000 – that is determined later during 
the model interpretation process. 
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Figure 1 : The Multigraph Architecture 

 
Modeling Concepts: The GME 2000 supports 

various techniques for building and managing the 
complexity of large-scale, complex models. The 
techniques include: hierarchy, multiple aspects, sets, 
references, and explicit constraints.  The GME 2000 users 
manual [4] details the different relationships between the 
major modeling components.  A brief overview of the 
general concepts will be given here. 

Models are the centerpieces of a MIC environment.  
They are compound objects that can have parts and inner 
structure.  Models can contain other models, atoms (parts 
that cannot be further decomposed), sets, references, and 
connections.   Notice that since models can contain other 
models, hierarchical systems can be constructed.  Textual 
attributes can be attached to most GME objects.  This 
allows for capturing information that cannot be 
efficiently modeled graphically. 

Associations between objects are captured using 
Connections, References, and Sets. Connections and 
References model relationships between at most two 
objects.   References are used to associate objects in 

another part of the model hierarchy.  Sets can be used to 
specify a relationship among a group of objects. The only 
restriction is that all the members of a set must have the 
same parent and be visible in the same Aspect. 

Another key feature of GME 2000 is the ability to 
partition the models visually using Aspects.  Using 
multiple aspects grants the ability to hide part of the 
modeled information from certain classes of users.  Every 
Model has a predefined set of Aspects.  Each component 
can be visible or hidden in an Aspect.  Every component 
has a set of primary aspects where it can be created or 
deleted.  There are no restrictions on the set of Aspects a 
Model, and it’s parts, can have; a mapping can be defined 
to specify what Aspects of a part is show in what Aspect 
of the parent Model.  A specific class of user may only 
want to see objects in the model that pertain to hardware.  
By carefully crafting the modeling language, the tool 
designer can allow this behavior. 

When a particular type of model is created in a GME 
2000 domain, it becomes a type (class). It can be sub 
typed and instantiated as many times as the user wishes.  
Please see [4] for more information about sub-typing with 
GME 2000.  One, often confusing, issue is that the 
concept of the Model is one level higher in the meta 
hierarchy than that of the class in an OO language. A 
particular kind of Model in a modeling paradigm is 
equivalent to the concept of the class.   In the resulting 
environment, the end user of the MIC system can create 
specific instances of the Model, which is similar to 
instantiating a class in an OO language.  

It is important to note that when using GME 2000, 
the user deals with components in their domain.  They do 
not need to understand models, atoms, references, etc.  
Instead, they need to understand how to use the features 
of their paradigm to construct models for their domain.  
In one of our projects [5], the users constructed models of 
a discrete manufacturing plant as a process model.  The 
users dealt with processes, buffers, and conveyers; they 
did not deal with abstract models and atoms.  A large part 
of the power of using MIC comes from the customization 
of the tools to a particular problem domain. 
 
  Interfacing to GME 2000 

GME 2000 has a modular, Microsoft COM-based 
architecture depicted in Figure 2.  Details of the different 
components are outside the scope of this paper.   Two 
important components that will be discussed here are the 
Add-On and Interpreter.  

The MGA and Meta components expose a set of 
COM interfaces that can be used to write model 
interpreters and add-ons. The GME 2000 user interface 
has its own COM interface that supports program-driven 
visualization of models.  Notice that all GME 2000 
components interface through the use of the MGA and 
Meta component COM interfaces.  Through these 
interfaces, the user can write interpreters and add-ons that 
access the model information and provide some type of 
translation. 
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Figure 2:  GME 2000 Architecture 

In addition to these COM interfaces, GME 2000 
provides an interface for non-COM programmers. A 
high-level component interface sits on the top of the 
MGA and Meta COM interfaces and provides a C++ API 
for interpreter writing. It implements a set of C++ classes 
that are instantiated immediately upon interpreter 
invocation. A network of objects (called the Builder 
Object Network) is built that mirrors the structure of the 
whole project before the interpreter gets control. It is 
important to note that the whole project is mirrored – for 
potentially very large projects, the native COM 
interpreter interface is preferred.  The high level interface 
unburdens the user from making relatively low-level 
COM calls.  The user can use these services through the 
public interfaces of the C++ objects. 

This interface can be extended using C++ 
inheritance.  The user can derive from the built-in classes 
and the interface will automatically instantiate the user-
defined classes instead of the built-in ones using the 
object factory design pattern.  In a graduate-level course 
on MIC, the extension of the BON is stressed as almost 
essential for complex projects. 

Interpreters are the model translators discussed 
earlier in this paper.  They are executed on demand, take 
the models as input, and deliver some type of output 
based on the models.  One can think of the model 
interpreters as applying the semantics to the models. 

Add-ons can be considered event-driven model 
interpreters. A set of events, such as “Object Deleted”, 
“Set Member Added”, and “Attribute Changed” are 
exposed by lower level GME components.  External 
components can register for a set of these events.  They 
are automatically invoked by the GME 2000 components 
whenever the events occur.  Add-ons are generally used 
for extending the capabilities of the GME User Interface.  
When a particular domain calls for some special 
operations, they can be supported without requiring the 
modification of GME 2000.  This architecture is very 
flexible and supports extensibility of the entire 
environment.  The GME 2000 Users Manual provides 
detailed documentation on the high-level component 
interface [4]. 

3.   Domain Specific Language Specification 
 
Defining a domain specific modeling paradigm is 

itself a problem domain.  Metamodeling is a term used to 
describe the process of modeling the domain specific 
modeling language.  Semantics, syntax, and presentation 
are all captured in the metamodel.  It is quite natural that 
GME 2000 is used to construct these modeling language 
models, or metamodels.  

There is a metamodeling paradigm defined that 
configures GME 2000 for creating metamodels. These 
models are then automatically translated into GME 2000 
configuration information through the model 
interpretation process. Originally, the metamodeling 
paradigm was handcrafted. Once the metamodeling 
interpreter was operational, meta-metamodels were 
created and the metamodeling paradigm was generated 
automatically. This is similar to writing a C compiler in 
C. Note that meta-metamodels is the point where the 
meta hierarchy ends. Since we use the metamodeling 
environment itself to create the meta-metamodels, there is 
no need for an additional level; there are no meta-meta-
metamodels [2, 6]. 

The metamodeling paradigm is an extension of the 
Unified Modeling Language (UML). In fact, the syntactic 
definitions are defined using pure UML class diagrams 
and the static semantics are specified with constraint 
using the Object Constraint Language (OCL). The 
specification of presentation/visualization information 
necessitated extensions to UML, mainly in the form of 
predefined object attributes for such things as icon file 
names, colors, line types etc. These could be specified 
using UML attributes. However, a design decision was 
made that, since the visualization information only 
pertains to GME 2000 and using GME 2000 features 
would make the environment more user-friendly, 
extensions to UML were justified. 

It is important to examine the use of constraints in 
defining a modeling language.  Some semantic rules 
cannot be visually specified using UML or the extended 
UML.  These rules require the use of textual (OCL) 
constraints.  However, the constraints can be parsed and 
evaluated during the construction of models.  GME 2000 
ensures that the constraints are met by verifying that the 
model does not violate any constraints defined for the 
paradigm.  The tool designer can even specify when to 
check certain constraints and whether or not a constraint 
can be overridden.  Some models may need to 
temporarily violate a constraint.  For example, if the 
constraint says that every Process must be connected to at 
least one Conveyer, and every Conveyer must be 
connected to at least two Processes, how do you begin 
construction of a new model?  You must allow the user to 
temporarily violate the constraint so they can complete 
the model.  However, all constraints should be verified 
before model interpreter occurs. 

Another feature that metamodeling allows is the 
evolution of the system over time.  In Figure 1, two types 



of evolution are shown: application evolution and 
environment evolution.  For application evolution, the 
MIC environment must support the ability to add new or 
modify existing modeling interpreters to compensate for 
changing application requirements.  For example, if the 
run time system changes from a Unix system to a 
Windows platform, some changes to the generated 
system may be required.  In this case, changes to the 
modeling language are not needed. 

For environment evolution, the system needs the 
ability to modify the modeling environment as the system 
requirements change over time.  This could be due to a 
new analysis tool that requires information that cannot be 
captured in the current modeling language or to improve 
the expressivity to the language.  With MIC, the 
metamodel can be modified to improve the domain 
specific language and then a new configuration for GME 
2000 can be generated.  One important aspect of 
environment evolution is the problem of model 
migration.  Models need to be migrated to the improved 
paradigm to eliminate the need to reconstruct them 
manually.  For some cases, the GME 2000 tools support 
model migration.  In the general case, research is ongoing 
as to how to perform this translation process. 

For more information a detailed description of the 
metamodeling environment can be found in [4]. 
 

4.   Verification of Domain Specific Models 
 

An added benefit to using MIC is the ability to 
perform some verification and validation at the model 
level.  At this higher level of abstraction, the user can 
concentrate on the models and their intended meaning 
instead of trying to decipher source code to determine 
whether some problem was an implementation or design 
flaw.  Additionally, the user can perform diagnostics as to 
why a verification routine failed rather than employing 
implementers to check the validity of their source code. 

As usual, this process is done through the use of a 
model interpreter.  Model interpreters can be provided 
that perform verification or that provide detailed 
information from the models to outside verification tools.  
Since the models should capture all of the information 
necessary to analyze and synthesize the system, they will 
also capture all of the information necessary to perform 
verification of the system models.  In many cases, it is 
cheaper, easier, and quicker to perform the verification at 
the model level instead of at the system code level.  By 
using the MIC interpreter interfaces, the system 
developers are able to “attach” model verification 
routines to the modeling tools instead of trying to verify 
the artifacts of the system generation process. 

One example of model verification using MIC is a 
project where the modeling language allowed for the 
behavioral modeling of high assurance systems [7].  
These models were converted into Ordered Binary 
Decision Diagrams (OBDDs) [8] and then symbolically 
evaluated.  This symbolic search through the models 

allowed extremely large modeled behavioral spaces to be 
examined.  The result of the analysis was a set of 
reliability and safety data derived from the models.  The 
system users dealt with behavior models and reliability 
and safety data, which was a natural form for the users.  
The system users were shielded from the details of the 
verification and model checking routines.   

A similar technique was used in to verify that 
selected models would meet run time performance 
constraints [9, 10] by checking the constraints against the 
models.  By assuring that only valid models would be 
evaluated, the user did not have to deal with interpreting 
and evaluating models that did not meet the constraints.   
 

5.   An Example MIC Application 
 

Now, lets take a quick look at an example 
application to show the utility of MIC in practice.  
MILAN is a model-based, extensible simulation 
framework that facilitates rapid evaluation of different 
performance metrics, such as power, latency, and 
throughput, at multiple levels of granularity for a large set 
of embedded systems by seamlessly integrating different, 
widely-used simulators into a unified environment. The 
MILAN framework is aimed at the design of embedded 
high-performance computing platforms, of System-on-
Chip (SoC) architectures for embedded systems, and for 
the hardware/software co-design of heterogeneous 
systems. MILAN is a multi-year effort; only preliminary 
results and future plans are discussed in this paper.  
MILAN is constructed using the MIC technology and 
GME 2000 [10]. 

Figure 3 shows the architecture of the MILAN 
framework. At the top is the Generic Modeling 
Environment configured to support the modeling 
language developed specifically for MILAN. There are 
three kinds of models in MILAN: resource models, 
application models and explicit constraints. The 
application models are based on a hierarchical signal flow 
representation with important extensions. Most notably, 
the modeling language allows for the specification of 
explicit design or implementation alternatives of any 
component.   Among the other features are the ability to 
model synchronous and asynchronous dataflows and the 
ability to mix synchronous and asynchronous dataflows.  
At the lowest levels in the model hierarchy, the user must 
specify the function to be executed.  The model 
interpreters, denoted by the circles containing Is, can take 
care of generating the “glue code” necessary to execute 
the system as well as any scheduling that needs to occur. 

The modeling of alternatives allows the entire design 
space of the application to be captured as opposed to a 
point solution. To manage this design space, application 
requirements, resource constraints and other 
specifications are captured as explicit constraints in the 
models. The resource models capture the available 
hardware components and their interconnectivity.   



The Design-Space Exploration and Pruning tool 
takes the potentially very large design space and applies 
the constraints using a symbolic constraint satisfaction 
technique to find the set of solutions that satisfy all the 
constraints. The modeling methodology and the design-
space exploration technique are described in detail in 
subsequent sections.  The goal of design space 
exploration is to identify a small number of valid 
candidate designs. To find the balance between an under-
constrained and an over-constrained model is a highly 
iterative, human-in-the-loop process. One of the design 
goals of the modeling environment and the design-space 
exploration tools is to support the automation of this 
activity. 

The next step in the design process is to utilize the 
integrated simulators to simulate the candidate designs 
one-by-one. Each supported simulator has a 
corresponding model interpreter that configures the 
simulator from the system models. 

MILAN supports several different classes of 
simulators. Functional simulators, such as Matlab or 
SystemC, verify the functionality of the application 
without regards to performance or power. The integrated 
high-level simulator provides a rapid, reasonably accurate 
estimate of different performance criteria of the system. 
Lower-level power and performance simulators, such as 
SimpleScalar or SimplePower, are also supported. While 
they can be very accurate, their slow speed may prevent 
the simulation of the whole system.   

One of the major challenges of an integrated 
simulation framework like MILAN is how to interpret the 
results of dissimilar simulators. In our architecture, model 
interpreters specific to each individual simulator take 
results and feed them back to the models. Results from a 
SimpleScalar simulation of a component can be stored in 
the models in the form of performance attributes that the 
high-level simulator can utilize in evaluating the 
performance of the whole system. This allows the 
different levels of simulation to interact through the 
models.  Note that the interpretation of the results can be 
a human-in-the-loop process. For example, we do not 
plan any automatic model modification based on a 
functional simulation in Matlab. 

Once a candidate design has been selected, through 
the process of simulation and design space exploration, 
the target application can be automatically synthesized. 
This step is fairly similar to driving the simulators. 
Instead of the semantics of the target simulator, the 
semantics of the runtime system have to be observed by 
the interpreter. 

 
The MILAN Modeling Language 

A preliminary representation method has been 
selected that partitions the system into three distinct 
classes of models:  application models, resource models 
and constraints.  Application models describe the task to 
be performed while the resource models describe the 
physical hardware available. Constraints specify 

requirements. A mapping between components of the 
application and available resource models is used to 
capture the space of possible design choices limited by 
the design constraints.   
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Figure 3:  The MILAN Architecture 

Application models are currently constructed using 
asynchronous and synchronous dataflow diagrams.  
These models are strongly typed.  Mixed models are 
supported – those that have synchronous and 
asynchronous components.  The models can include 
explicit implementation alternatives, which represent the 
application design space.   At the leaf levels in the 
hierarchy, the user must provide the implementations of 
the data flow blocks. 

Design constraints capture system requirements such 
as timing, performance, power, cost, etc. Moreover, 
resource constraints and other information also need to be 
specified as part of the models. In MILAN, the Object 
Constraint Language (OCL) is used to specify constraints 
in a formal manner.  

 
Design Space Exploration 

The approach we have chosen for rapid exploration 
of large design spaces relies on a symbolic representation 
based on Ordered Binary Decision Diagrams (OBDD). In 
this symbolic representation, a set (or space) is 
represented mathematically by its characteristic function. 
Constraints express complex relationships and bounds 
over composite properties of elements. Constraint 
application is a logical conjunction of the functions 
derived from the models and the constraints. The 
resultant Boolean function represents the pruned design 
space.  The principal advantage of this approach is that 
constraint satisfaction is accomplished without the 
enumeration of the entire space. Eliminating the need for 
enumeration makes the approach highly scalable, and 
particularly attractive to representing extremely large 
design spaces.  



Currently Integrated Simulators 
Several simulation engines have already been 

implemented in MILAN.  Matlab can be used for 
functional verification of the application models.  
SimpleScalar can also be configured from the application 
models.  Hardware models are used to generate SystemC 
simulations.  A system level estimator has been 
integrated.  Minor modifications allowed the 
SimpleScalar interpreter to support the use of 
PowerAnalyzer, a power aware cycle accurate simulator.  
Future simulation engines to be integrated include a 
VHDL simulator and other power-aware processor 
simulators.   

Work is underway to solve the problem of 
automatically updating model information based on 
simulation results.  The system level simulator should 
utilize results gained from component simulators.  This 
“vertical simulation integration” allows for increased 
clarity in the system level simulation results.  “Feedback 
interpreter generation” is part of our ongoing work in this 
area. 

All of these interpreters make use of the high level 
interpreter interface provided by GME 2000.  One of the 
primary advantages of using MIC is that several 
simulators can be configured from the same set of 
models.  In effect, a single system specification is reused 
in providing the differing simulators their inputs.  This is 
possible due to invoking multiple interpreters on a single 
model.   
 

6.   Conclusions 
 

MIC is a proven technology for developing and 
evolving complex computer based systems.  Using MIC 
allows for the creation of graphical models that define the 
syntax, semantics, and presentation of a domain specific 
language.  These language specifications can be 
automatically verified for legality and then used to 
configure a new domain specific tool environment.  GME 
2000 is a cornerstone of these domain specific design 
tools.  A set of interfaces allows for access to the 
modeled information.  This information can then be used 
to verify and validated the models as well as for 
generation and configuration of the run time system.  One 
of the advantages of using MIC is the ability for the end 
user to design in a natural domain instead of directly 
writing source code.  This allows the users to work with 
their design environments at a higher level of abstraction 
while ensuring actual run time systems can be created 
from the higher level models. 

The MILAN framework is an excellent example of a 
MIC system.  While it is currently being developed, 
enough data is available to show the utility of the project.  
It has been used to demonstrate the design and simulation 
of several real-world problems. MILAN is only intended 
to show the utility of the MIC technology.  Model 
Integrated Computing (MIC) will allow the system to 
evolve with the ever-changing simulation requirements of 

embedded computing applications.   
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