

Model Integrated Computing: A Framework for Creating Domain

Specific Design Environments

James R. DAVIS
Vanderbilt University, Institute for Software Integrated Systems

Nashville, TN 37203, USA

ABSTRACT

Model Integrated Computing (MIC) is a technology
developed to aid in the rapid design and implementation
of complex computer based systems. These systems
typically are characterized by the integration of their
information processing systems and the physical
environment of the actual system. MIC employs multiple
aspect, domain-specific modeling technology to represent
the system software, the system hardware, its
environment, and their relationships. Model interpreters
are used to transform the information captured in the
models into the artifacts required by the chosen analysis
tools or run time system. One of the largest advantages
to using MIC is the ability to reason and design a
complex system at a higher level of abstraction. This
paper will describe one framework for applying MIC to
system tool design. A selected project where the
framework is being applied will be introduced. The
advantages to using MIC for this project will be
discussed.

Keywords: modeling, model translation, modeling
language specification, simulation integration

1. Introduction

Complex computer-based systems are often
characterized by the tight integration of information
processing and the physical environment of the actual
system. In addition, these systems are often mission
critical systems; their failure is unacceptable. Model-
Integrated Computing (MIC) is a technology that is well
suited for the rapid design, implementation, and evolution
of such systems [1]. MIC employs domain-specific
models to represent system software, its environment,
and their relationships. With Model-Integrated Program
Synthesis (MIPS), these models are then used to
automatically synthesize the embedded software and
hardware applications and generate inputs to COTS
analysis tools. The MIPS technique is possible only due
to the capturing of the relationships between the software
and the system’s environment. This approach speeds up
the design cycle, facilitates the evolution of the

application, and helps system maintenance, dramatically
reducing costs during the entire lifecycle of the system.

2. Model Integrated Computing

The Multigraph Architecture (MGA), developed at

the Institute for Software Integrated Systems at
Vanderbilt University, is a toolkit for creating multiple
aspect, domain-specific MIPS environments. The MGA
is shown in Figure 1. The metaprogramming interface is
used to formally specify the application domain’s
modeling paradigm. The modeling paradigm captures all
the syntactic, semantic, and presentation information
regarding the domain – which concepts will be used to
construct models, what relationships may exist among
those concepts, how the concepts may be organized and
viewed by the modeler, and rules governing the
construction of models. The modeling paradigm defines
the family of models that can be created using the
resultant modeling environment. All modeling
paradigms additionally adhere to a set of specifications
regarding the presentation features allowed by the MGA
configurable model editor.

With MIC, modeling paradigms are represented by
metamodels. The metamodels are used to automatically
configure the MIPS modeling environment for the
domain. This MIPS environment consists of a domain
specific model editor, a customized model database, and a
set of model translators or interpreters. An interesting
aspect of this approach is that a MIPS environment itself
is used to build the metamodels [2].

The generated domain-specific MIPS environment is
then used by the system user to build domain models that
are stored in a model database. These models are used to
automatically generate the applications or to synthesize
input to different COTS analysis tools. This process is
called model interpretation. Model interpreters are those
entities that automatically translate the models into other
useful artifacts while ensuring the semantics between the
modeling domain and external tools are kept consistent.

The Generic Modeling Environment

The Generic Modeling Environment (GME 2000), is
a Windows-based, domain-specific, model-integrated
program synthesis tool for creating and evolving domain-

specific, multi-aspect models of computer based
engineering systems. The GME 2000 is part of the
Multigraph Architecture (MGA) tool suite. In particular,
GME 2000 provides the domain specific model editor
that is used in the MGA systems [3].

The GME 2000 is configurable, or meta-
programmable, which means it can be “programmed” to
work with vastly different domains. Another important
feature is that GME 2000 is configured from formal
modeling environment specifications or meta-models.
This ensures that it can be quickly and safely evolved as
modeling requirements change [4]. GME 2000 is used
primarily for model-building. The models take the form
of graphical, multi-aspect, attributed entity-relationship
diagrams. The static semantics of a model are specified
by explicit constraints that are enforced by a built-in
constraint manager. The dynamic semantics is not the
concern of GME 2000 – that is determined later during
the model interpretation process.

Model
Interpretation

Model Interpreters

Models

DSME
Environment

Application
Domain

App.
1 App.

2 App.
3

Application
Evolution Environment

Evolution

Meta-Level
Translation

Metaprogramming
Interface

Formal Specifications

Model Builder

Figure 1 : The Multigraph Architecture

Modeling Concepts: The GME 2000 supports

various techniques for building and managing the
complexity of large-scale, complex models. The
techniques include: hierarchy, multiple aspects, sets,
references, and explicit constraints. The GME 2000 users
manual [4] details the different relationships between the
major modeling components. A brief overview of the
general concepts will be given here.

Models are the centerpieces of a MIC environment.
They are compound objects that can have parts and inner
structure. Models can contain other models, atoms (parts
that cannot be further decomposed), sets, references, and
connections. Notice that since models can contain other
models, hierarchical systems can be constructed. Textual
attributes can be attached to most GME objects. This
allows for capturing information that cannot be
efficiently modeled graphically.

Associations between objects are captured using
Connections, References, and Sets. Connections and
References model relationships between at most two
objects. References are used to associate objects in

another part of the model hierarchy. Sets can be used to
specify a relationship among a group of objects. The only
restriction is that all the members of a set must have the
same parent and be visible in the same Aspect.

Another key feature of GME 2000 is the ability to
partition the models visually using Aspects. Using
multiple aspects grants the ability to hide part of the
modeled information from certain classes of users. Every
Model has a predefined set of Aspects. Each component
can be visible or hidden in an Aspect. Every component
has a set of primary aspects where it can be created or
deleted. There are no restrictions on the set of Aspects a
Model, and it’s parts, can have; a mapping can be defined
to specify what Aspects of a part is show in what Aspect
of the parent Model. A specific class of user may only
want to see objects in the model that pertain to hardware.
By carefully crafting the modeling language, the tool
designer can allow this behavior.

When a particular type of model is created in a GME
2000 domain, it becomes a type (class). It can be sub
typed and instantiated as many times as the user wishes.
Please see [4] for more information about sub-typing with
GME 2000. One, often confusing, issue is that the
concept of the Model is one level higher in the meta
hierarchy than that of the class in an OO language. A
particular kind of Model in a modeling paradigm is
equivalent to the concept of the class. In the resulting
environment, the end user of the MIC system can create
specific instances of the Model, which is similar to
instantiating a class in an OO language.

It is important to note that when using GME 2000,
the user deals with components in their domain. They do
not need to understand models, atoms, references, etc.
Instead, they need to understand how to use the features
of their paradigm to construct models for their domain.
In one of our projects [5], the users constructed models of
a discrete manufacturing plant as a process model. The
users dealt with processes, buffers, and conveyers; they
did not deal with abstract models and atoms. A large part
of the power of using MIC comes from the customization
of the tools to a particular problem domain.

 Interfacing to GME 2000

GME 2000 has a modular, Microsoft COM-based
architecture depicted in Figure 2. Details of the different
components are outside the scope of this paper. Two
important components that will be discussed here are the
Add-On and Interpreter.

The MGA and Meta components expose a set of
COM interfaces that can be used to write model
interpreters and add-ons. The GME 2000 user interface
has its own COM interface that supports program-driven
visualization of models. Notice that all GME 2000
components interface through the use of the MGA and
Meta component COM interfaces. Through these
interfaces, the user can write interpreters and add-ons that
access the model information and provide some type of
translation.

MGA

Core

FileMSR

RepStorage FileStorage

…

Meta

GME 2000 GUI Browser Constraint
Manager Interpreter Add-On…

Figure 2: GME 2000 Architecture

In addition to these COM interfaces, GME 2000
provides an interface for non-COM programmers. A
high-level component interface sits on the top of the
MGA and Meta COM interfaces and provides a C++ API
for interpreter writing. It implements a set of C++ classes
that are instantiated immediately upon interpreter
invocation. A network of objects (called the Builder
Object Network) is built that mirrors the structure of the
whole project before the interpreter gets control. It is
important to note that the whole project is mirrored – for
potentially very large projects, the native COM
interpreter interface is preferred. The high level interface
unburdens the user from making relatively low-level
COM calls. The user can use these services through the
public interfaces of the C++ objects.

This interface can be extended using C++
inheritance. The user can derive from the built-in classes
and the interface will automatically instantiate the user-
defined classes instead of the built-in ones using the
object factory design pattern. In a graduate-level course
on MIC, the extension of the BON is stressed as almost
essential for complex projects.

Interpreters are the model translators discussed
earlier in this paper. They are executed on demand, take
the models as input, and deliver some type of output
based on the models. One can think of the model
interpreters as applying the semantics to the models.

Add-ons can be considered event-driven model
interpreters. A set of events, such as “Object Deleted”,
“Set Member Added”, and “Attribute Changed” are
exposed by lower level GME components. External
components can register for a set of these events. They
are automatically invoked by the GME 2000 components
whenever the events occur. Add-ons are generally used
for extending the capabilities of the GME User Interface.
When a particular domain calls for some special
operations, they can be supported without requiring the
modification of GME 2000. This architecture is very
flexible and supports extensibility of the entire
environment. The GME 2000 Users Manual provides
detailed documentation on the high-level component
interface [4].

3. Domain Specific Language Specification

Defining a domain specific modeling paradigm is

itself a problem domain. Metamodeling is a term used to
describe the process of modeling the domain specific
modeling language. Semantics, syntax, and presentation
are all captured in the metamodel. It is quite natural that
GME 2000 is used to construct these modeling language
models, or metamodels.

There is a metamodeling paradigm defined that
configures GME 2000 for creating metamodels. These
models are then automatically translated into GME 2000
configuration information through the model
interpretation process. Originally, the metamodeling
paradigm was handcrafted. Once the metamodeling
interpreter was operational, meta-metamodels were
created and the metamodeling paradigm was generated
automatically. This is similar to writing a C compiler in
C. Note that meta-metamodels is the point where the
meta hierarchy ends. Since we use the metamodeling
environment itself to create the meta-metamodels, there is
no need for an additional level; there are no meta-meta-
metamodels [2, 6].

The metamodeling paradigm is an extension of the
Unified Modeling Language (UML). In fact, the syntactic
definitions are defined using pure UML class diagrams
and the static semantics are specified with constraint
using the Object Constraint Language (OCL). The
specification of presentation/visualization information
necessitated extensions to UML, mainly in the form of
predefined object attributes for such things as icon file
names, colors, line types etc. These could be specified
using UML attributes. However, a design decision was
made that, since the visualization information only
pertains to GME 2000 and using GME 2000 features
would make the environment more user-friendly,
extensions to UML were justified.

It is important to examine the use of constraints in
defining a modeling language. Some semantic rules
cannot be visually specified using UML or the extended
UML. These rules require the use of textual (OCL)
constraints. However, the constraints can be parsed and
evaluated during the construction of models. GME 2000
ensures that the constraints are met by verifying that the
model does not violate any constraints defined for the
paradigm. The tool designer can even specify when to
check certain constraints and whether or not a constraint
can be overridden. Some models may need to
temporarily violate a constraint. For example, if the
constraint says that every Process must be connected to at
least one Conveyer, and every Conveyer must be
connected to at least two Processes, how do you begin
construction of a new model? You must allow the user to
temporarily violate the constraint so they can complete
the model. However, all constraints should be verified
before model interpreter occurs.

Another feature that metamodeling allows is the
evolution of the system over time. In Figure 1, two types

of evolution are shown: application evolution and
environment evolution. For application evolution, the
MIC environment must support the ability to add new or
modify existing modeling interpreters to compensate for
changing application requirements. For example, if the
run time system changes from a Unix system to a
Windows platform, some changes to the generated
system may be required. In this case, changes to the
modeling language are not needed.

For environment evolution, the system needs the
ability to modify the modeling environment as the system
requirements change over time. This could be due to a
new analysis tool that requires information that cannot be
captured in the current modeling language or to improve
the expressivity to the language. With MIC, the
metamodel can be modified to improve the domain
specific language and then a new configuration for GME
2000 can be generated. One important aspect of
environment evolution is the problem of model
migration. Models need to be migrated to the improved
paradigm to eliminate the need to reconstruct them
manually. For some cases, the GME 2000 tools support
model migration. In the general case, research is ongoing
as to how to perform this translation process.

For more information a detailed description of the
metamodeling environment can be found in [4].

4. Verification of Domain Specific Models

An added benefit to using MIC is the ability to
perform some verification and validation at the model
level. At this higher level of abstraction, the user can
concentrate on the models and their intended meaning
instead of trying to decipher source code to determine
whether some problem was an implementation or design
flaw. Additionally, the user can perform diagnostics as to
why a verification routine failed rather than employing
implementers to check the validity of their source code.

As usual, this process is done through the use of a
model interpreter. Model interpreters can be provided
that perform verification or that provide detailed
information from the models to outside verification tools.
Since the models should capture all of the information
necessary to analyze and synthesize the system, they will
also capture all of the information necessary to perform
verification of the system models. In many cases, it is
cheaper, easier, and quicker to perform the verification at
the model level instead of at the system code level. By
using the MIC interpreter interfaces, the system
developers are able to “attach” model verification
routines to the modeling tools instead of trying to verify
the artifacts of the system generation process.

One example of model verification using MIC is a
project where the modeling language allowed for the
behavioral modeling of high assurance systems [7].
These models were converted into Ordered Binary
Decision Diagrams (OBDDs) [8] and then symbolically
evaluated. This symbolic search through the models

allowed extremely large modeled behavioral spaces to be
examined. The result of the analysis was a set of
reliability and safety data derived from the models. The
system users dealt with behavior models and reliability
and safety data, which was a natural form for the users.
The system users were shielded from the details of the
verification and model checking routines.

A similar technique was used in to verify that
selected models would meet run time performance
constraints [9, 10] by checking the constraints against the
models. By assuring that only valid models would be
evaluated, the user did not have to deal with interpreting
and evaluating models that did not meet the constraints.

5. An Example MIC Application

Now, lets take a quick look at an example
application to show the utility of MIC in practice.
MILAN is a model-based, extensible simulation
framework that facilitates rapid evaluation of different
performance metrics, such as power, latency, and
throughput, at multiple levels of granularity for a large set
of embedded systems by seamlessly integrating different,
widely-used simulators into a unified environment. The
MILAN framework is aimed at the design of embedded
high-performance computing platforms, of System-on-
Chip (SoC) architectures for embedded systems, and for
the hardware/software co-design of heterogeneous
systems. MILAN is a multi-year effort; only preliminary
results and future plans are discussed in this paper.
MILAN is constructed using the MIC technology and
GME 2000 [10].

Figure 3 shows the architecture of the MILAN
framework. At the top is the Generic Modeling
Environment configured to support the modeling
language developed specifically for MILAN. There are
three kinds of models in MILAN: resource models,
application models and explicit constraints. The
application models are based on a hierarchical signal flow
representation with important extensions. Most notably,
the modeling language allows for the specification of
explicit design or implementation alternatives of any
component. Among the other features are the ability to
model synchronous and asynchronous dataflows and the
ability to mix synchronous and asynchronous dataflows.
At the lowest levels in the model hierarchy, the user must
specify the function to be executed. The model
interpreters, denoted by the circles containing Is, can take
care of generating the “glue code” necessary to execute
the system as well as any scheduling that needs to occur.

The modeling of alternatives allows the entire design
space of the application to be captured as opposed to a
point solution. To manage this design space, application
requirements, resource constraints and other
specifications are captured as explicit constraints in the
models. The resource models capture the available
hardware components and their interconnectivity.

The Design-Space Exploration and Pruning tool
takes the potentially very large design space and applies
the constraints using a symbolic constraint satisfaction
technique to find the set of solutions that satisfy all the
constraints. The modeling methodology and the design-
space exploration technique are described in detail in
subsequent sections. The goal of design space
exploration is to identify a small number of valid
candidate designs. To find the balance between an under-
constrained and an over-constrained model is a highly
iterative, human-in-the-loop process. One of the design
goals of the modeling environment and the design-space
exploration tools is to support the automation of this
activity.

The next step in the design process is to utilize the
integrated simulators to simulate the candidate designs
one-by-one. Each supported simulator has a
corresponding model interpreter that configures the
simulator from the system models.

MILAN supports several different classes of
simulators. Functional simulators, such as Matlab or
SystemC, verify the functionality of the application
without regards to performance or power. The integrated
high-level simulator provides a rapid, reasonably accurate
estimate of different performance criteria of the system.
Lower-level power and performance simulators, such as
SimpleScalar or SimplePower, are also supported. While
they can be very accurate, their slow speed may prevent
the simulation of the whole system.

One of the major challenges of an integrated
simulation framework like MILAN is how to interpret the
results of dissimilar simulators. In our architecture, model
interpreters specific to each individual simulator take
results and feed them back to the models. Results from a
SimpleScalar simulation of a component can be stored in
the models in the form of performance attributes that the
high-level simulator can utilize in evaluating the
performance of the whole system. This allows the
different levels of simulation to interact through the
models. Note that the interpretation of the results can be
a human-in-the-loop process. For example, we do not
plan any automatic model modification based on a
functional simulation in Matlab.

Once a candidate design has been selected, through
the process of simulation and design space exploration,
the target application can be automatically synthesized.
This step is fairly similar to driving the simulators.
Instead of the semantics of the target simulator, the
semantics of the runtime system have to be observed by
the interpreter.

The MILAN Modeling Language

A preliminary representation method has been
selected that partitions the system into three distinct
classes of models: application models, resource models
and constraints. Application models describe the task to
be performed while the resource models describe the
physical hardware available. Constraints specify

requirements. A mapping between components of the
application and available resource models is used to
capture the space of possible design choices limited by
the design constraints.

Application
Models Constraints Architecture

Models

Design -Space
Exploration and

Pruning

DESIGN

Generic Modeling
Environment

SYSTEM

System Synthesis

High - Level
Simulator

Low - Level
Performance

Simulator
Low - Level

Power
Simulator

Functional
Simulator

i

i

i

i

i

i i

i

Figure 3: The MILAN Architecture

Application models are currently constructed using
asynchronous and synchronous dataflow diagrams.
These models are strongly typed. Mixed models are
supported – those that have synchronous and
asynchronous components. The models can include
explicit implementation alternatives, which represent the
application design space. At the leaf levels in the
hierarchy, the user must provide the implementations of
the data flow blocks.

Design constraints capture system requirements such
as timing, performance, power, cost, etc. Moreover,
resource constraints and other information also need to be
specified as part of the models. In MILAN, the Object
Constraint Language (OCL) is used to specify constraints
in a formal manner.

Design Space Exploration

The approach we have chosen for rapid exploration
of large design spaces relies on a symbolic representation
based on Ordered Binary Decision Diagrams (OBDD). In
this symbolic representation, a set (or space) is
represented mathematically by its characteristic function.
Constraints express complex relationships and bounds
over composite properties of elements. Constraint
application is a logical conjunction of the functions
derived from the models and the constraints. The
resultant Boolean function represents the pruned design
space. The principal advantage of this approach is that
constraint satisfaction is accomplished without the
enumeration of the entire space. Eliminating the need for
enumeration makes the approach highly scalable, and
particularly attractive to representing extremely large
design spaces.

Currently Integrated Simulators
Several simulation engines have already been

implemented in MILAN. Matlab can be used for
functional verification of the application models.
SimpleScalar can also be configured from the application
models. Hardware models are used to generate SystemC
simulations. A system level estimator has been
integrated. Minor modifications allowed the
SimpleScalar interpreter to support the use of
PowerAnalyzer, a power aware cycle accurate simulator.
Future simulation engines to be integrated include a
VHDL simulator and other power-aware processor
simulators.

Work is underway to solve the problem of
automatically updating model information based on
simulation results. The system level simulator should
utilize results gained from component simulators. This
“vertical simulation integration” allows for increased
clarity in the system level simulation results. “Feedback
interpreter generation” is part of our ongoing work in this
area.

All of these interpreters make use of the high level
interpreter interface provided by GME 2000. One of the
primary advantages of using MIC is that several
simulators can be configured from the same set of
models. In effect, a single system specification is reused
in providing the differing simulators their inputs. This is
possible due to invoking multiple interpreters on a single
model.

6. Conclusions

MIC is a proven technology for developing and
evolving complex computer based systems. Using MIC
allows for the creation of graphical models that define the
syntax, semantics, and presentation of a domain specific
language. These language specifications can be
automatically verified for legality and then used to
configure a new domain specific tool environment. GME
2000 is a cornerstone of these domain specific design
tools. A set of interfaces allows for access to the
modeled information. This information can then be used
to verify and validated the models as well as for
generation and configuration of the run time system. One
of the advantages of using MIC is the ability for the end
user to design in a natural domain instead of directly
writing source code. This allows the users to work with
their design environments at a higher level of abstraction
while ensuring actual run time systems can be created
from the higher level models.

The MILAN framework is an excellent example of a
MIC system. While it is currently being developed,
enough data is available to show the utility of the project.
It has been used to demonstrate the design and simulation
of several real-world problems. MILAN is only intended
to show the utility of the MIC technology. Model
Integrated Computing (MIC) will allow the system to
evolve with the ever-changing simulation requirements of

embedded computing applications.

7. Acknowledgements

I would like to thank DARPA for their support for a
portion of the work presented in this paper. MILAN is
funded by DARPA under contract number F33615-C-00-
1633, which is monitored by Wright Patterson Air Force
Base.

8. References

[1] Sztipanovits, J. and Karsai, G.: “Model-Integrated
Computing,” IEEE Computer, April, 1997.

[2] Ledeczi, A. et.al.: “Metaprogrammable Toolkit for
Model-Integrated Computing,” Engineering of Computer
Based Systems (ECBS), Nashville, TN, March, 1999.

[3] Ledeczi A., et.al.: “The Generic Modeling
Environment”, Workshop on Intelligent Signal
Processing, Budapest, Hungary, May 17, 2001.

[4] GME 2000 User’s Manual, available from
http://www.isis.vanderbilt.edu.

[5] Long E., Misra A., Sztipanovits J.: “Increasing
Productivity at Saturn”, IEEE Computer Magazine,
August, 1998.

[6] Nordstrom G.: “Formalizing the Specification of
Graphical Modeling Languages”, Proceedings of the
IEEE Aerospace 2000 Conference, CD-ROM Reference
10.0402, Big Sky, MT, March, 2000.

[7] Davis J., Scott J., Sztipanovits J., Martinez M.:
“Multi-Domain Surety Modeling and Analysis for High
Assurance Systems”, Proceedings of the Engineering of
Computer Based Systems, pp. 254-260, Nashville, TN ,
March, 1999.

[8] Bryant, R.E., “Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams”, Technical Report
CMU-CS-92-160, School of Computer Science, Carnegie
Mellon University, June 1992.

[9] Bapty T., Neema S., Scott J., Sztipanovits J., Asaad
S.: “Model-Integrated Tools for the Design of
Dynamically Reconfigurable Systems”, VLSI Design, 10,
3, pp. 281-306, 2000.

[10] Agrawal A. et. al.: “MILAN: A Model Based
Integrated Simulation Framework for Design of
Embedded Systems”, Workshop on Languages,
Compilers, and Tools for Embedded Systems (LCTES
2001), Snowbird, Utah, June 2001.

	Keywords: modeling, model translation, modeling language specification, simulation integration
	Introduction
	Model Integrated Computing
	The Generic Modeling Environment
	Modeling Concepts: The GME 2000 supports various techniques for building and managing the complexity of large-scale, complex models. The techniques include: hierarchy, multiple aspects, sets, references, and explicit constraints. The GME 2000 users manu

	Interfacing to GME 2000

	Domain Specific Language Specification
	Verification of Domain Specific Models
	An Example MIC Application
	The MILAN Modeling Language
	Design Space Exploration
	Currently Integrated Simulators

	Conclusions
	Acknowledgements
	References

