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Abstract

The dynamic deployment and configuration (D&C)
of components in response to environmental changes
or system mission mode changes is essential to facil-
itate runtime resource allocation for component-based
distributed real-time and embedded (DRE) systems. This
paper provides several contributions to the study of pre-
dictable DEC for component-based DRE systems. First,
we describe how the predictability of component-based
DEC can be affected by application dependency relation-
ships and priorities. Second, we describe how a multi-
graph algorithm called partial priority inheritance via
graph recomposition (PARIGE) can improve DEC pre-
dictability. Third, we empirically evaluate the effective-
ness of PARIGE on a representative DRE system based
on NASA FEarth Science Enterprise’s Magnetospheric
Multi-Scale (MMS) mission system. The results show
that PARIGE can avoid unbounded deployment time pri-
ority inversion when component assemblies with differ-
ent priorities have complex dependencies among each
other, thereby significantly improving the responsiveness
of mission-critical tasks with higher priorities.

Keywords: Component middleware, Distributed
Real-time and Embedded systems, Deployment and
Configuration.

1. Introduction

Emerging trends and challenges. Develop-
ing distributed real-time and embedded (DRE)
systems whose quality of service (QoS) can be as-
sured even in the face of changes in available resources
or QoS requirements is an important and challeng-
ing R&D problem. Systems with such characteristics
are called open DRE systems [1] since they oper-
ate in open environment and must be prepared to
accommodate changing operating conditions or re-
quirements, such as power levels, CPU/network band-
width or mission modes. Examples of open DRE sys-
tems include shipboard computing environment [2],

and intelligence, surveillance and reconnaissance sys-
tems +[3].

Open DRE system are often large and complex, e.g.,
a shipboard computing system may consist of thou-
sands of software components that run a wide range
of missions, such as ship navigation, ship structural
health monitoring, vision-based object tracking and ob-
ject characterization. To manage the overall complex-
ity of such systems, the missions are often decomposed
into many domain-related tasks that can be modeled
as operational strings [4], which are assemblies of soft-
ware components that capture the partial order and
workflow of a set of executing software capabilities for
particular domain tasks.

Operational strings have the following properties
that make them useful building blocks for open DRE
systems:

e Distributable, i.e., operational strings can be de-
ployed onto multiple nodes of the target running
environment, and different components in opera-
tional strings can communicate remotely with each
other.

e Concurrent, i.e., operational strings can run con-
currently in the same target environment and
share many system resources, such as CPU, mem-
ory, and network bandwidth.

e On-demand, i.e., operational strings can be dy-
namically populated at system runtime and then
deployed into the target running environment on-
demand to accommodate changing mission goals.

e Cooperative, i.e., to achieve certain mis-
sion goals different operational strings can co-
operate with each other through their ports,
which delegate to the ports of monolithic compo-
nents that consist of the operational strings.

e Prioritized, i.e., different operational strings can
be assigned with different priorities by system ar-
chitects or online planners to reflect their impor-
tance to certain mission tasks or to the overall sys-
tem.



The dynamic nature of open DRE systems requires
the deployment and configuration (D&C) of scores of
operational strings at runtime to ensure that execut-
ing systems keep in sync with changing mission goals
and resource availability. The runtime management of
operational strings in DRE systems is hard since the
D& C framework must be scalable and predicable. It is
therefore essential that D&C frameworks be able to dy-
namically deploy and configure operational strings in a
timely and predictable manner.

In complex DRE systems, many operational strings
may be deployed dynamically, e.g., in response to mis-
sion mode or environmental changes. If dependencies
exist among these operational strings, deployment pri-
ority inversions can occur at runtime. A deployment
priority inversion occurs when a higher priority opera-
tional string cannot be deployed before lower priority
operational string(s) because of the dependencies be-
tween them. Existing D&C frameworks [5, 6, 7] only
consider the dependency between operational strings
and ignore their priorities, which can cause unbounded
deployment priority inversions for DRE systems.
Solution Approach — Partial Priority Inheri-
tance via Graph Recomposition.

To address the challenges of open DRE systems de-
scribed above, we developed a technique based on an
algorithm called partial priority inheritance via graph
recomposition (PARIGE). This algorithm analyzes the
dependencies between operational strings and removes
all the dependencies from higher priority operational
strings to lower priority ones by promoting! compo-
nents from lower priority operational strings to higher
priority ones. By applying our technique, a D&C frame-
work can avoid potential priority inversions when mul-
tiple operational strings are deployed at runtime.

Figure 1 shows the three three main steps of our ap-
proach:

e Step 1 converts a deployment descriptor (which
contains metadata describing a set of operational
strings) into an in-memory directed graph repre-
sentation. Each vertex in the graph represents a
component in the operational string and each edge
represents a connection between two components.

e Since a deployment plan may have multiple op-
erational strings with different priorities having
dependencies among each other, step 2 analyzes
the dependency relationship between all the opera-
tional strings by perform a graph-based algorithm

1 In the context of this paper, promoting a component means
that before this component is deployed it is temporarily moved
from a lower priority operational string to a higher priority op-
erational string for deployment purpose only.
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Figure 1: Overview of Our Approach

called partial priority inheritance via graph recom-
position. This algorithm removes all the priority
inverted dependencies between operational strings
by promoting component(s) from the lower prior-
ity operational string to the higher priority string.

e After graphs are recomposed, step 3 converts them
back to deployment descriptor format and fed to
the D&C framework for deployment. For the oper-
ational strings with dependencies with each other,
the D&C framework can then deploy the opera-
tional strings from the highest priority to the low-
est priority.

When a DRE system has many operational
strings with complex dependencies it is hard to de-
termine manually which components in which op-
erational strings should be migrated and which
operational string to migrate. This paper there-
fore makes the following three contributions to the
research on D&C for component-based DRE sys-
tems:

e Analyze dependency relationships among opera-



tional strings to determine how each relationship
can affect deployment predictability.

e Present a multi-graph algorithm called “partial
priority-inheritance via graph recomposition” to
avoid deployment priority inversion.

o Empirically evaluate the multi-graph algorithm to
determine how effective it is on a representative
DRE system.

Paper organization. The remainder of this paper is
organized as follows: Section 2 describes a represen-
tative DRE system case study that elicits key chal-
lenges to ensure the predictability of operational string
D&C; Section 3 presents the PARIGE algorithm based
on a multi-graph recomposition technique that resolves
these challenges; Section 4 presents results of exper-
iments that evaluate our techniques empirically; Sec-
tion 5 compares our work with related research; and
Section 6 presents concluding remarks and lessons
learned.

2. Motivating Case Study

This section describes different configurations of op-
erational strings in DRE systems that can cause de-
ployment priority inversion to occur due to the de-
pendencies among the strings. To make our discussion
concrete, we use NASA’s Magnetospheric Multi-Scale
(MMS) mission system [8] as a case study. We first
present the case study and then identify key challenges
that must be addressed to ensure D&C predictability
for the case study.

2.1. Overview of NASA MMS Mission Sys-
tem

The NASA Earth Science Enterprise’s MMS mission
system system uses five satellites with multiple sensors
on each satellite to perform solar-terrestrial probe task.
The satellites orbit the earth in formation and collect
electromagnetic and particle data in the earth’s mag-
netosphere. The MMS mission operates in three data
modes: slow, fast, and burst. These data modes may
also include different goals, orbits, and data priorities.
Each satellite must be capable of determining the nec-
essary task sequences to achieve prescribed goals based
on the current environmental and system conditions, as
well as revising task sequences in response to changing
conditions.

To achieve autonomy, an automated planner is de-
ployed within the MMS system to handle autonomous
mode changes driven by the satellite position and the
results of analyzing collected data. The task sequences
are implemented by components for coordinating the
trajectory and orientation of satellites, sensor selec-
tion and data collection for individual satellites, and

data integration and compression to create telemetry
streams that are beamed down to earth stations.
Figure 2 shows three operational strings that a plan-
ner generates for a mission task of one of the satel-
lites. Each operational string has different deployment
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Figure 2: Operational Strings Generated by Planner

priority (i.e., high, medium, and low) that are deter-
mined by how each operational string is accessed by
the overall MMS system. The three operational strings
are briefly described as follows:

e Operational string A defines a mission-critical
task that collects field data when a satellite moves
to particular locations. To ensure this task is per-
formed properly, the operational string must be
deployed as fast as possible to avoid loss of data.
Operational string A can store the collected data
in its own data store, but can also send the data to

other operational strings through its event sources.
e Operational string B is designed for a domain-

centric data analysis. Different scientific analy-
sis tasks can be configured through the facets of
components of this operational string. For exam-
ple, Science Agent components can be configured
to achieve scientific objectives, such as analyz-
ing models of complex phenomena like extended

weather forecasting.
e Operational string C is for less essential data

analysis task and can collect auxiliary field data,
such as Sun zenith, satellite view zenith [9], which
can be served as additional input for analysis.
This operational string only operates occasionally,
e.g., when the data analysis component in oper-
ational string B explicitly issues a request to re-
quest such data as additional input for scientific
analysis models. The components in operational
string C are driven by events exchanged through
their event sources and sinks.

Operational strings are organized from domain per-
spective, e.g., each operational string is designed to ac-
complish certain domain tasks, such as collecting cer-
tain field data, or perform certain analysis on different



data models. In our MMS scenario, operational string
A services (e.g., collecting essential field data for sci-
entific analysis) are most important for the MMS sys-
tem, so it has the highest deployment priority among
the three operational strings. Conversely, operational
string C' has the lowest deployment priority among the
three since it is designed a less essential, i.e., collect-
ing auxiliary data only when necessary. Finally, opera-
tional string B is designed to have medium priority be-
cause its scientific analysis role is less important than
operational string A, but more important than opera-
tional string C. Operational string B, however, needs
to send events to operational C' to notify it to collect
auxiliary field data and perform analysis when neces-
sary.

As shown in Figure 2, there are two dependencies be-
tween operational strings: from A to B and from B to
C. These dependencies cross the boundary of an indi-
vidual operational string. We therefore call them ez-
ternal dependencies, in contrast to those dependencies
within an operational string.

2.2. Challenges of Ensuring D&C Pre-
dictability in the MMS Case Study

Below we describe four challenges that arise when
operational strings are deployed dynamically in open
DRE systems, such as the NASA MMS mission case
study described above.

Challenge 1: Avoid deployment priority inver-
ston between two operational strings. In conven-
tional D&C technologies, such as the OMG D&C spec-
ification [10, 6], when a component of an operational
string has a connection (either facet /receptacle or event
sink /source) to another component in a separate opera-
tional string, an external reference must be specified to
indicate the remote component and the provided port
in the other operational string upon which it depends.
To deploy this operational string successfully, the exter-
nal reference endpoint of the other operational string
must be activated before the deployment of source op-
erational string can occur. When such a dependency is
from a higher priority operational string to a lower pri-
ority operational string, however, the low priority op-
erational string must be deployed before the high pri-
ority operational string can be deployed to avoid de-
ployment failure caused by the dependency, which re-
sults in a priority inversion at deployment-time.

For example, in our MMS system case study de-
scribed in Section 2.1 the dependency from operational
string B (medium priority) to operational C (low prior-
ity) can cause a deployment priority inversion between
operational strings B and C. This dependency requires
the deployment of operational string C before opera-

tional string B to resolve the dependency. Not all com-
ponents in operational string C need be deployed to
resolve the external dependency between B and C.

Subsection 3.2.1 describe how we address this chal-
lenge by promoting components from the lower prior-
ity string to the higher priority string.

Challenge 2: Avoid deployment priority inver-
ston propagation effect. A more general priority in-
version situation involves multiple operational strings.
In this case, to resolve a dependency from a higher pri-
ority string to a lower priority string, not only must the
lower priority string be deployed before the high prior-
ity operational string, but also the operational strings
the lower priority string depends on. When these oper-
ational strings have lower priority than the high prior-
ity string, however, deployment priority inversion will
occur between operational strings.

For example, in our MMS system case study opera-
tional string A has a high priority and an external de-
pendency on operational string B. More specifically, it
is the Data Analysis component of operational string
B that A depends on. The Data Analysis component
further depends on the Messaging component in op-
erational string C), however, which can cause another
deployment priority inversion between A and C.

Subsection 3.2.2 describes how we address this chal-
lenge by recursively tracing dependencies from the high
priority string to all lower priority strings.

Challenge 3: Avoid deployment failure when
circular dependency exists among multi-
ple operational strings. Conventional D&C tech-
niques [10, 6] will fail if a circular dependency exists
among multiple operational strings. The central co-
ordinated phased deployment technique applied in
conventional D&C technologies can effectively ad-
dress the circular dependency problem within a sin-
gle operational string. Conventional D&C technologies
cannot handle cases, however, where a D&C re-
quest involves multiple operational strings and if
a circular dependency exists among these opera-
tional strings.

Limitations with circular dependencies arise because
the deployment of an operational string is treated as
an indivisible process, i.e., conventional D&C technolo-
gies treat operational strings as primitive units. If a de-
pendency exists between two operational strings, there-
fore, one must be deployed before another to resolve
such dependency requirements. Such treatment, how-
ever, makes it hard to handle circular dependencies
among different operational strings.

For example, in our MMS system case study a circu-
lar dependency will exist between A, B, and C' if the less
essential operational string C' depends on operational



string A because it needs to access a type of service
provided by A. Since conventional D&C approaches
treat each operational string deployment as an indi-
visible process, such deployments cannot be handled
properly.

Subsection 3.2.3 describes how we address this chal-
lenge by promoting components in the circular depen-
dency trace among operational strings.

Challenge 4: Improve the overall utility of the
operational strings being deployed. The dynamic
nature of open DRE systems require on-demand de-
ployment of many operational strings that cooperate
with each other to ensure the system is kept in sync
with changing mission goals or environmental changes.
Since multiple operational strings with different impor-
tance to the entire DRE system may be deployed at
the same time, the goal of a D&C framework is to de-
ploy these operational strings in an effective way to im-
prove the overall QoS of DRE systems in the following
two dimensions:

e Since operational strings with the highest prior-
ity are the most important to the entire DRE sys-
tem, these operational strings should be deployed
as early as possible to ensure the DRE system re-
sponsiveness due to the changing environment or
mission modes. For example, in our MMS system
case study, operational string A should always be
deployed immediately since it has the highest pri-
ority.

e Since each operational string has a utility value as-
sociated with it, a D&C framework should try to
finish deployment of each individual operational
string as early as possible by taking its utility
value into account. For example, in our MMS sys-
tem case study there is a dependency from opera-
tional string A to operational string B. Although
the deployment of operational string A should fin-
ish first due to its higher priority, the time to fin-
ish deploying operational string B is also an con-
tributing factor to the overall system utility and
should thus be considered.

Subsection 3.2.4 describes how we address this chal-
lenge by selectively applying the PARIGE algorithm to
the input of operational strings.

3. An Algorithm for Partial Priority In-
heritance via Graph Recomposition

This section describes how we resolved the chal-
lenges described in Section 2.2 using an algo-
rithm called partial priority inheritance wvia graph

recomposition (PARIGE). This algorithm converts

each operational string into a graph, where each ver-
tex and edge of the graph represent a component
and a connection/dependency between two compo-
nents, respectively. If there is an external dependency
between operational strings, then the graph con-
verted from one operational string will have a special
type of vertex that represents the external depen-
dency. This special vertex type contains informa-
tion about the actual refereed operational string and
the component in the operational string that it de-
pends on.

The PARIGE algorithm migrates components from
one graph to another based on operational string char-
acteristics, including their priorities and their depen-
dency relationships with other operational strings in
the same deployment request. After graphs for all the
operational string are recomposed to account for the
component promotion, a new set of operational strings
will be populated from these recomposed graphs. These
new strings avoid deployment priority inversion be-
tween operational strings and break the circular depen-
dency among all the operational strings. These new set
of operational strings can then be deployed by conven-
tional D&C technologies, such as J2EE or OMG D&C
models.

To demonstrate the effectiveness of PARIGE, we
integrated the algorithm into the central coordinator
ExecutionManager of OMG D&C model to perform
experimental analysis. The ExecutionManager is runs
as a daemon and is used to manage the deployment
process for a domain. In accordance with the D&C
specification, a domain is a target environment com-
posed of modes, interconnects, bridges, and resources.
An ExecutionManager plays the role of central coordi-
nator that manages the nodes in the DRE system en-
vironment. On each node, a NodeManager runs as
a daemon process and manages the deployment of all
components that reside on that node, irrespective of
which application they are associated with.

3.1. Overview of the PARIGE Algorithm

Although the PARIGE algorithm recompose opera-
tional strings by promoting components from one oper-
ational to another, it has also the following properties
that makes it well-suited for D&C of DRE systems:

1. The PARIGE algorithm does not af-
fect the functional behavior of component-
based DRE systems. Component-based DRE sys-
tems are deployed in the form of operational strings
that consist of multiple monolithic components con-
nected with each other via their ports. Two opera-
tional strings can have dependencies with each other.
A dependency between two operational strings is es-



sentially a connection from a monolithic component in
one operational string to a port of a monolithic com-
ponent in the other operational string.

The PARIGE algorithm evaluates the component
dependency relationships and their priorities and re-
composes these operational strings to avoid deployment
priority inversion. From the perspective of all opera-
tional strings to deploy, however, the individual mono-
lithic components and their connections among each
other are not modified by the algorithm. In particu-
lar, the effect of the PARIGE algorithm on operational
string recomposition is only visible for the D&C frame-
work, which does not affect the running system’s func-
tional behavior. This algorithm thus does not affect the
functionally of operational strings because the topology
of all the operational strings (including all the mono-
lithic components and connections) that fulfills func-
tional behavior of the system remains unchanged.

2. The PARIGE algorithm only migrates
components that can improve QoS behav-
ior of operational strings. When components are
migrated from a lower priority operational string
to a higher priority operational strings, the prior-
ity of the components is also bumped up to match
the priority of the higher priority string, which is es-
sential for a task to avoid priority inversion at
deployment-time [11]. Since the PARIGE algo-
rithm only migrates components that one or more
higher priority operational strings have dependen-
cies on—and does not migrate components without
such dependencies—the QoS behavior of the opera-
tional strings will only be improved and never wors-
ened.

Figure 3 presents an overview of the PARIGE algo-
rithm by showing an example with three operational
strings having priorities high, medium, and low. The
dotted and solid arrows represent dependencies be-
tween operational strings. In particular, the dotted ar-
rows in the figure represent priority inverted dependen-
cies, i.e., dependencies from higher priority operational
strings to lower priority operational strings. Likewise,
the solid arrows represents external dependencies with-
out causing priority inversion.

The numbered vertices in Figure 3 denote the ver-
tices migrated from one graph into another. For exam-
ple, in the first iteration of the algorithm, one vertex is
migrated from the medium priority operational string
to the high priority operational string and another ver-
tex is migrated from the low priority operational string
to the high priority string. In the second iteration, an-
other vertex is migrated from the low priority opera-
tional string to the medium priority string.

The PARIGE algorithm recomposes the graphs by
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Figure 3: An Overview of the PARIGE Algorithm

parsing the input set of graphs and removing dotted
arrows by promoting some component(s) from a lower
priority operational string to a higher priority string.
This process may introduce some new dependencies be-
tween operational strings due to component promotion.
The algorithm, however, only introduces solid arrows,
i.e., only dependencies from lower priority operational
strings to higher priority strings exist after the recom-
position.

When the algorithm finishes, all dotted arrows in
the graphs will be removed and there will be no de-
pendencies from higher priority operational strings to
lower priority operational strings. As a result, both pri-
ority inversion at run-time and deployment-time can be
avoided. Moreover, all circular dependencies among op-
erational strings, if any, will also be removed in the re-
composition process.

3.2. Analysis of Operational String Depen-
dencies with Deployment Priority In-
versions

The goal of the PARIGE algorithm is to remove all
dependencies from higher priority operational strings
to lower priority operational strings. To accomplish
this, the algorithm starts with the operational string
having the highest priority and processes all the exter-
nal dependencies of this operational string. After all



external dependencies from the highest priority opera-
tional string are removed, the algorithm then processes
the operational string with the next highest priority.
When multiple operational strings have the same pri-
ority, we apply the following tie-breaking policies se-
quentially: (1) evaluating the second metric of each op-
erational string, if given, (2) evaluating the number of
external dependencies to the same priority operational
strings and treat the operational string with the least
number of external dependencies as the higher prior-
ity than others, and (3) break the tie randomly if such
a tie still exists.

When processing an external dependency from a
higher priority operational string to a lower priority
operational string, the algorithm must trace the de-
pendency into other operational strings and migrate
components from them if the lower priority operational
string has dependencies to them. For example, if a high
priority operational string depends on a component X
in a medium priority operational string, and if compo-
nent X also has dependency on a component in a low
priority operational string, then the component in the
low priority string also must be migrated into the high
priority string.

We define a dependency trace as a totally ordered se-
quence S. Each element in the sequence is a component
of an operational string that has a priority value asso-
ciated with it. The starting element of the sequence
is the source component of the external dependency
of interest. The PARIGE algorithm analyzes all the
dependency traces in the operational strings and re-
composes the operational strings based on dependency
trace characteristics. To analyze the dependency trace
we classify the operational dependency relationships
into the three categories described below, which will
be used to address the first three challenges in Sec-
tion 2.2.

3.2.1. Handling Challenge 1 — Promotion of
Components Between Two Operational Strings
(Non-circular) In this case, a dependency occurs be-
tween two operational strings, where a high priority
operational string has a dependency to a lower prior-
ity operational string, as shown in Figure 4. We assume
no circular dependency exists in this case (circular de-
pendencies will be discussed in Section 3.2.3).

As shown in Figure 4, the unique characteristic of
this category is that the dependency trace does not
cross the boundary of the lower priority operational
string. Since no other operational strings are involved
besides the two operational strings of interest, remov-
ing such a priority inverted external dependency only
requires promoting all components in the dependency
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Figure 4: A Dependency Trace Spanning Two Opera-
tional Strings Only

trace from the lower priority operational string to the
high priority one.

In the context of MMS case study, a priority inverted
external dependency exists between operational string
B and operational string C, as illustrated in the upper
half of Figure 5. Our solution removes this priority in-
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Figure 5: A Dependency Trace across Two Operational
Strings

verted external dependency by promoting components
Messaging and Data Fusion from operational C' to
operational B, as illustrated in the bottom half of Fig-
ure 5. After the promotion, operational string B does
not have any dependencies to operational string C. The
two newly created external dependencies from the two
Filtering components in operational string C' to op-
erational B are essential to make sure the functional be-
havior of the MMS system is not changed. Since these
two newly created external dependencies are not prior-
ity inverted, deployment priority inversion between the



two operational strings can be avoided.

3.2.2. Handling Challenge 2 — Promotion
of Components Across Multiple Operational
Strings (Non-circular) This more general case in-
volves multiple operational strings, with a dependency
trace that spans across the operational strings. As be-
fore, we assume no circular dependency exists since
that will be discussed as a separate case in Sec-
tion 3.2.3.

A dependency trace that spans across multiple oper-
ational strings can be further categorized into the fol-
lowing two situations.

1. Ordered dependency trace. Figure 6 shows
an ordered dependency trace. In an ordered depen-
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Figure 6: An Ordered Dependency Trace

dency trace the priorities of each element in the se-
quence have a non-increasing order, i.e., all external
dependencies in the sequence are priority-inverted. As
a result, all the priority-inverted external dependen-
cies must be removed through the component promo-
tion mechanism described in Section 3.1. The category
described in Section 3.2.1 where only two operational
strings are involved is a special case of an ordered de-
pendency trace. To remove all priority-inverted exter-
nal dependencies, the PARIGE algorithm simply mi-
grates all components in the dependency trace into the
operational string where the first component of the de-
pendency trace is located.

2. Unordered dependency trace. Figure 7 shows
an unordered dependency trace, where the priorities of
the elements in the dependency trace do not have a
particular order, i.e., some external dependencies are
priority-inverted (shown as dotted lines), whereas oth-
ers are not (shown as solid lines). The PARIGE al-
gorithm always starts with the highest priority opera-
tional string and removes all external dependencies on
it before moving to the next operational string. The al-
gorithm therefore ensures that in an unordered depen-
dency trace, the elements whose priorities are higher
than that of the starting element will have no external
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Figure 7: An Unordered Dependency Trace

dependencies, which ensures the convergence of the al-
gorithm.

For example, given the 3 operational strings from
Section 2, if the high priority operational string has an
external dependency to a component in low priority op-
erational string and this component must be migrated
into the medium priority operational string. When this
promotion happens, the high priority string will depend
on the medium priority string, which introduces addi-
tional priority-inverted external dependencies.

To remove all priority-inverted external dependen-
cies of an unordered dependency trace, we break the en-
tire dependency trace into two concatenated segments.
As shown in Figure 8, the first segment is a priority un-
ordered subsequence, where all the priorities of opera-
tional strings are lower than the priority of the source
of the dependency trace. The second segment is a prior-
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Figure 8: Two Partitions of An Unordered Dependency
Trace

ity ordered subsequence, where all priorities are higher
than the priority of the source of the dependency trace.
For the first segment, we can migrate all the compo-
nents in the subsequence into the operational string
where the first component of the dependency trace is
located, which will ultimately result in an ordered de-
pendency trace.

In the context of MMS case study, a priority inverted
external dependency exists between operational string



B and operational string C, and another priority in-
verted external dependency exists between operational
string A and operational string B, as illustrated in the
upper half of Figure 9. Our solution traverses the de-
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Figure 9: A Dependency Trace across Three Opera-
tional Strings

pendency trace across all the three operational strings,
and removes both priority inverted external dependen-
cies. By doing this, components Messaging and Data
Fusion are migrated from operational C' to operational
A, and components Data Analysis and Monitor are
migrated from operational B to operational A, as il-
lustrated in the bottom half of Figure 9. In our MMS
case study, only one priority inverted external depen-
dency exists from operational string A, so after travers-
ing it, operational string A does not have any more
priority inverted external dependency remaining. The
D&C service can then deploy operational string A be-
fore other operational strings due to its highest prior-
ity, therefore avoiding priority inversion between oper-
ational string A and other operational strings.

3.2.3. Handling Challenge 3 — Promotion of
Components in the Circular Dependency Trace
Among Operational Strings Circular dependencies
may exist among two or more operational strings,
as shown in Figure 10. When we discussed how the
PARIGE algorithm processed an unordered depen-
dency trace in Section 3.2.2, we showed that a depen-
dency trace can be divided into two subsequences. The
priority of each element in the first subsequence is less

Unordered subsequence — cycles may exist ‘

Ordered subsequence —no cycles can exist ‘

»»»»»»»»»»» » Dependency from Higher Priority to Lower Priority
—= Dependency from Lower Priority to Higher Priority

Figure 10: Circular Dependencies in a Dependency
Trace

than or equal to the priority of the source element of
the dependency trace. Likewise, the priority of each el-
ement in the second subsequence is greater than that
of the source elements of the dependency trace.

Since no components in the second subsequence can
have priority inverted external dependencies, cycles
among operational strings can only occur in the first
subsequence, as shown in Figure 10. To remove cycles
across multiple operational strings, only components in
the first subsequence must be migrated. The PARIGE
algorithm therefore only needs to migrate components
existing the first subsequence to bring cycles into the
same operational string.

In the context of MMS case study, a circular depen-
dency exists between operational string A and opera-
tional string B, as illustrated in the upper half of Fig-
ure 11. Our solution traverses the dependency trace
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across from the operational string A, and promoting
components Data Analysis and Monitor from oper-
ational B to operational A, as illustrated in the bot-
tom half of Figure 11. After such promotion, the circu-
lar decadency trace still exists but it is contained within
the operational string A rater than across the bound-
ary operational strings, thereby avoiding deployment
failure.

3.2.4. Handling Challenge 4 — Selectively Ap-
plying the Algorithm to Operational Strings
The deployment latency of an operational string is af-
fected by the size of the operational string. The de-
pendency trace technique described above will migrate
components from lower priority operational strings to
higher priority operational strings. Although this tech-
nique can ensure operational strings with the highest
priority be deployed as early as possible, it may re-
duce the overall utility by delaying the deployment of
lower priority operational strings in the worst case, as
described as Challenge 4 in Section 2.2. This delay oc-
curs when all components in the lower priority oper-
ational strings must be migrated into the higher pri-
ority operational string, which makes both operational
strings merge together and hence finish their deploy-
ment at the same time. Merging operational strings
can adversely affect the responsiveness of lower prior-
ity operational strings since these strings could have
been deployed first to satisfy the dependency require-
ments without affecting the responsiveness of higher
priority operational strings.

To overcome this difficulty, we apply an optimization
technique that is based on the results produced by all
the dependency traces of an operational string, as de-
scribed in Subsections 3.2.1, 3.2.2, and 3.2.3. If the de-
pendency traces of an operational string migrate all the
components of an lower priority operational string into
the higher priority operational string, the PARIGE al-
gorithm simply chooses the cached graph representa-
tion of these two operational strings before the depen-
dency traces techniques are applied. This optimization
improves the overall utility of the operational strings by
finishing the deployment of lower priority operational
string first. The deployment of lower priority string
can thus be finished earlier rather than at the moment
when all components in both operational strings are de-
ployed.

3.3. Design of the PARIGE Algorithm

The PARIGE algorithm uses multi-graph breadth
first search (BFS) to trace dependencies and graph re-
construction to migrate components and connections
between components. Each graph corresponds to an
operational string and can have two types of vertices:

e A regular vertex, which refers to a component
within the operational string.

e A reference vertex, which refers to a component
in another operational string on which it has a de-
pendency.

For example, two operational strings have dependen-
cies shown in Figure 12. Based on the dependency re-

Low Priority

High Priority

Low Priority

---------- -» Dependency from Higher Priority to Lower Priority

—» Dependency from Lower Priority to Higher Priority

Figure 12: Convert External Dependencies into Refer-
ence Type Vertices

lationship between these two operational strings, the
PARIGE algorithm converts them into two graphs with
one reference type vertex in each graph, with refer-
ence type shown as shaded vertices in the figure. Given
a reference type vertex, in O(1) time we can find
the referred operational string and referred component
within the operational string.

In our algorithm, we define the following two types
of operators against vertices in the graph:

e Promote(V): Promote a reference type vertex to
a regular type vertex.

e Demote(Vy,G1,V2,G2): Demote a regular type
vertex V7 in graph (7 in to a reference type ver-
tex, and the referred graph and vertex will be G
and Vs, respectively.

Algorithm 1 presents the PARIGE algorithm, which
uses a recursive procedure defined in Algorithm 2 to
process each dependency trace.



Algorithm 1 PARIGE Algorithm

Input: Set of Operational Strings (Represented
as Graphs)

Output: Set of Operational Strings (Repre-
sented as Graphs)
Sort strings with decreasing priority;
foreach String G; in the sorted array do
foreach FEzternal Dependency j of String G;
do
Get the source vertex Vj; of j;
Get the destination vertex Vjs of j;
if priority(Vj1) > priority(Vj2) then
Get the referenced string G, and ver-

tex V;
process_dependency_edge (G;, Vja,
Ge, Ve);
end
end
end

Algorithm 2 A Recursive Procedure to Process a De-
pendency Trace

Input: G: source graph with higher priority

G2: destination graph with lower priority

V7: source vertex (reference type)

Va: destination vertex (regular type)
Output: Recomposed graphs G; and Gs
Promote (V1);

Demote (Va, Ga, V1, G1);

Do a BFS (G, V) and foreach wisited edge E;
do

Get the source vertex Vjq;

Get the destination vertex Vjs;

if V;5 is reqular type then

Remove_Vertex (Ga, V2);

Add_Vertex (G1, Va);

Remove_Edge (G, E);

Add_Edge (Ga, E);

end

else
Get the referred graph Ge of Vis;
Get the referred vertex V. of Vjo;
process_dependency-edge (G1, Vi1, Gie,
Vie);

end

end

3.4. Analysis of the Algorithm

To show that it is possible to apply the PARIGE al-
gorithm at run-time to deploy operational strings dy-

namically, we now analyze the time complexity of the
PARIGE algorithm and evaluate different effects of ap-
plying this algorithm to different configurations of op-
erational string.

3.4.1. Time Complexity Analysis The input of
the PARIGE algorithm is defined as follows:

N: Total number of operational strings

C: Total number of dependencies between opera-
tional strings

|V|: Average number of components within an op-
erational string

|E|: Average number of connections within an oper-
ational string

As shown in Algorithm 1, the sort of all external de-
pendencies has a complexity of O(C # log(M)). The
recursive procedure shown in Algorithm 2 shows that
processing each dependency trace has a time complex-
ity of O(N * (|V]| + |E|)). The overall time complexity
of the PARIGE algorithm exhibits a linear complex-
ity of O(C' * N x (|V| + |E|). In practice, C tends to be
much smaller compared with |V| and |E|.

In summary, the linear property of our algorithm
makes it possible to apply it dynamically at run-time.
Section 4 evaluate the performance overhead empiri-
cally in the context of the NASA MMS mission system
case study.

3.4.2. PARIGE Algorithm Effects on Opera-
tional String Deployment Two effects that the
PARIGE algorithm could have on the predictability of
operational string deployment are described below.

Operational string growth effect. This effect
measures the cost of promoting a number of compo-
nents from lower priority operational strings to higher
priority operational strings. Since the deployment of
each component takes time and consumes resources,
the fewer components that are migrated, the more ben-
efits the algorithm can provide since priority-inverted
dependencies can be satisfied without deploying many
components in lower priority operational strings.

In the worst case, all components from lower prior-
ity operational strings could be migrated to higher pri-
ority operational strings, which essentially merges dif-
ferent operational strings together. In production DRE
systems, such worst cases happen rarely, i.e., all the
components in all operational strings have just only
one dependence trace. Even in such situations, the
PARIGE algorithm still performs the same as a con-
ventional approach that does not take priority into ac-
count and only accounts for dependencies among oper-
ational strings.

Component host distribution effect. This ef-
fect means that due to the promotion of compo-



nents, components that can be deployed by contact-
ing the NodeManager once now contacts the same
NodeManager multiple times during deployment. For
example, if an operational string A has 1 compo-
nent to deploy on Nodes and operational string B
has 2 components to deploy on Nodep these two op-
erational strings can be deployed by contacting the
NodeManager on each node only once. If the algorithm
moves one component from operational string B to op-
erational string A, then the NodeManager on Nodep
must be contacted twice, once when deploying the mi-
grated component in operational string A and once
when deploying the remaining component in opera-
tional string B.

Such an effect can increase the overall deploy-
ment time due to the increasing number of round trip
delays. One way to alleviate this problem is to in-
crease the parallelism among different nodes by using
asynchronous techniques between the Execution-
Manager and NodeManagers, such as the Asyn-
chronous Method Invocation (AMI) messaging pol-
icy provided by CORBA [12]. For example, AMI can
coordinate all the NodeManagers in the domain par-
allelism deployment can be achieved among all the
nodes, therefore alleviating the component host distri-
bution effects.

4. Empirical Results

To evaluate the benefits of our PARIGE algorithm,
we applied it to a representative DRE system proto-
type of the NASA MMS mission system described in
Section 2. This section first describes the characteris-
tics of the hardware and software testbed and explains
our experiment design. We then empirically evaluate
the effectiveness of our PARIGE algorithm in three di-
mensions: (1) Sections 4.2 and 4.3 empirically measure
the effectiveness of PARIGE to address challenges 1, 2,
and 3 in Section 2, Section 4.4 empirically measures the
effectiveness of PARIGE to address challenge 4 in Sec-
tion 2, which uses higher level metrics to measure the
DRE system D&C QoS, and (3) Section 4.5 empirically
measures the performance overhead of the PARIGE al-
gorithm.

4.1. Hardware and Software Testbed

We used the ISISlab open testbed (www.dre.
vanderbilt.edu/ISISlab) for all our experi-
ments. Our experiments used up to 6 nodes run-
ning Linux FC4 with Ingo Molnar’s real-time kernel
patches. When operational strings are deployed we use
one node to run the central coordinator Execution-

Manager and the rest of the nodes as the deployment
targets.

The NASA MMS mission system prototyped used
for our experiments was developed using the CIAO [13]
and DAnCE [7] component middleware. This appli-
cation consists of 45 components grouped together
into 3 operational strings Figure 13 shows an example
operational string consisting of a science agent com-

Gizmo 1 }D—D{ Filter 1 }D—D-{ Analysis 1
O—D{ Gizmo 2 }D—D-{ Filter 2 }D—D{Ana\ysst
Gizmo 3 J—D—D-{/ Filter 3 }D—D{Ana\ys\ss
Gizmo 4 }D—D{ Filter 4. }D—D{Ana\ys\sA

Figure 13: A Sample Operational String of the Exper-
iments

Science
Agent

ponent that decomposes mission goals into navigation,
control, data gathering, and data processing applica-
tions. Multiple gizmo components are connected to the
science agent and are also connected to different pay-
load sensors. Each gizmo component collects data from
the sensors, which have varying data rate, data size,
and compression requirements.

The collected data is passed through filter compo-
nents, which remove noise from the data. The filter
components pass the data onto analysis components,
which compute a quality value indicating the likeli-
hood of a transient plasma event. Finally, the analyzed
data from each analysis component is passed to a comm
(communication) component, which transmits the data
to the ground component at an appropriate time.

An operational string can span across multiple phys-
ical nodes. The assignment of components to nodes
is determined by a planner using high-level resource
planning algorithms, and was available as input to our
PARIGE algorithm. We intentionally choose different
assignments for our experiments to compare how they
could affect the predictability and performance differ-
ent operational strings deployments.

4.2. Effects of Operational String Recom-
position

Hypothesis. The hypothesis of this experiment is
that the PARIGE algorithm should not change the
functional correctness of the input operational strings
but should produce correct dependencies between op-
erational strings. In particular, the PARIGE algorithm
must ensure (1) all the dependencies between compo-
nents of original operational strings should remain the



same after the recomposition and (2) the dependen-
cies between operational strings must be changed such
that no dependencies exist from higher priority opera-
tional strings to lower priority operational strings.

Experimental design. The experiments consist of
3 operational strings with each operational string hav-
ing 15 components. The high priority operational string
has one dependency to the medium priority operational
string and the medium operational string has one de-
pendency to the low priority operational string. We
measure the total number of components, number of
nodes, and number of dependencies (both internal and
external) of each operational string before and after ap-
plying the PARIGE algorithm.

Empirical results and analysis. Table 1 summa-
rizes the number of components, number of nodes, and
number of dependencies for each operational string be-
fore and after we run the PARIGE algorithm.

4.3. Deployment Latency vs. Deployment
Priority

Hypothesis. The hypothesis of this experiment is
that the PARIGE algorithm can avoid priority inver-
sion when deploying multiple operational strings where
higher priority operational strings have dependencies
on lower priority operational strings.

Experimental design. We conducted two experi-
ments on different configurations of operational string
dependencies. Our first experiment consisted of 3 op-
erational strings, each of which having 15 components
evenly distributed into 5 nodes. Therefore, each node
has 9 components. The high priority operational string
has one dependency on the medium priority opera-
tional string, which in turn has one dependency on
the low priority operational string. The dependency be-
tween two operational strings is shown in Figure 14.
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Table 1: PARIGE Effect on Operational Strings

The results in the figure indicate that the number
of components of high priority operational string in-
creases from 15 to 19, while that of both medium prior-
ity and low priority operational strings decreases from
15 to 13, so the total number of components do not
change. In addition, before the experiment, the 3 op-
erational strings have 60 internal dependencies and 3
external dependencies, with 63 dependencies in total.
After the experiment, the number of internal depen-
dencies decreases by 1 to 59 and the total number of
dependencies increase by 1 to 4, with the total num-
ber still remains the same, which is in accord with the
first part of our hypothesis. Finally, after applying the
PARIGE algorithm, all dependencies from higher pri-
ority to lower priority operational strings are removed,
which validates the second part of our hypothesis.

Figure 14: Operational String Configuration with Low
Growth Rate

Next we conducted another experiment with the ex-
ternal dependency between two different components
in the operational strings, as shown in Figure 15. We
measured how the end-to-end deployment latency of
each operational string can be affected in this config-
uration. In this experiment, there are only two oper-
ational strings, each having 15 components. The high
priority operational string has one dependency on the
low priority operational string, as shown in Figure 15.

Both experiments first measured the end-to-end la-
tency for deploying each operational string without
applying the PARIGE algorithm. We then measured
the end-to-end latency for deploying each operational
strings with the PARIGE algorithm to see how latency
relates to their priorities.
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Figure 15: Operational String Configuration with High
Growth Rate

Empirical results and analysis.

Figures 16 and 17 shows the end-to-end latency of
D&C request for each operational string in the two ex-
periments described above. As shown in the Figure 16,

End-to-End Deployment Latency of Operational String Deployment

5000000,
4500000
4000000
3500000
3000000}
2500000
2000000

Latency
(us)

@ Without PARIGE
B With PARIGE

L
1500000¢
1000000F
500000¢]
Ld

0
Low Medium High Total Low  Medium High Total-
Prio  Prio Prio Prio-— Prio- Prio- AMI
AMT AMI AMI

Figure 16: D&C Latency Changes by the PARIGE Al-
gorithm

without applying the PARIGE algorithm, the high pri-
ority operational string yields the highest latency while
the low priority operational string yields the lowest la-
tency, while the latency of medium priority operational
string lies in between.

In our experiments, there is one dependency from
high priority operational string to medium prior-
ity operational string and another dependency from
medium priority operational string to low priority op-
erational string. Without applying the PARIGE al-
gorithm, therefore, the low priority operational
string must be deployed first among the three, fol-
lowed by medium priority and high priority opera-
tional strings, respectively. The PARIGE algorithm re-

moves the priority inverted dependencies which avoids
deployment priority inversion, as illustrated in the fig-
ure.

Figures 16 also shows how the component host dis-
tribution effect introduced by the PARIGE algorithm
is masked by applying AMI messaging policy, as de-
scribed in Section 3.4.2. In our experiment, applying
AMI improves the performance of the deployment in
two aspects. First, the deployment latency of each op-
erational string is reduced because of the Execution-
Manager can coordinate the NodeManagers to do de-
ployment in parallel. Second, it masks the component
host distribution effect, which results in a reduced to-
tal latency of all operational strings, as shown in the
figure.
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Figure 17: D&C Latency Changes by the Algorithm

High Operational String Growth Figure 17 shows
that after applying the PARIGE algorithm the high
priority operational string has the lowest latency since
it has no external dependency on any other operational
strings. The size change of each operational string is
also minimal since the number of migrated components
is small due to the dependency trace characteristics.

On the other hand, the dependency between the two
operational strings in our second experiment caused all
components from the low priority operational string to
migrate to the high priority string, essentially merging
the two operational strings together. As a result, the la-
tency of deploying the high priority operational string
is nearly the same as deploying it without applying the
PARIGE algorithm. However, in a DRE system with
multiple operational strings to deploy, it is rare that
all components have only one dependence trace, as de-
scribed in Section 3.4.2.



4.4. Effectiveness of PARIGE Algorithm
Based on High Level Metrics

Hypothesis. The hypothesis of this experiment is
to reduce the quiescence time of operational strings
during the period when these operational strings are
deployed. This experiment measures the effectiveness
of the PARIGE algorithm based on human-perceivable
metrics. As described in Section 1, the dynamic nature
of open DRE systems require on-demand injection of
certain operational strings to ensure systems are kept
in sync with changing mission goals. When operational
strings with different importance to the entire DRE
system must be deployed at the same time, the D&C
framework must deploy these operational strings in ef-
fectively to ensure the overall system QoS. In this ex-
periment, therefore, each operational string is assigned
with a mission effectiveness value (MEV) to quantita-
tively represent its utility value for the entire system,
using two utility metrics described below.

Metric M1: average MEV loss. The following
utility function M measures the average MEV loss
caused by the operational string deployment cost.

Mi— i DeploymentTime(S;)
N p Total DeploymentTime

1)
Since each operational string has an associated deploy-
ment cost (measured by its deployment latency), this
cost will necessarily cause a period of quiescence time,
which results in a MEV loss.

M1 is computed by first dividing the deployment
time of each operational string by the total end-to-end
deployment time for all operational strings and then
multiply by the MEV of that operational string to pro-
duce the weighted MEV loss for that operational string.
Next, we sum up all weighted MEV loss of each opera-
tional string. In the context of our MMS case study as
descried in Section 2, M1 measures the weighted quies-
cence time of the the three operational strings and their
peer components during the period when the three op-
erational strings are deployed.

Metric M2: Highest priority operational
string MEV loss. The following utility func-
tion M2 is similar to M1.

DeploymentTime(Smaz)
M2 = 2
Z Total DeploymentTime 2)

Rather than measuring the weighted MEV loss of all
operational strings, however, M2 measures the MEV
loss the highest priority operational string(s) caused
by the deployment.

M2 is computed by dividing the total deployment
time of the highest priority operational string by total

end-to-end deployment time for all operational strings.
In the context of our MMS case study as descried in
Section 2, M1 measures the quiescence time of the
highest priority operational string A and its peer com-
ponents during the period when the three operational
strings are deployed.

Experimental design. These experiments con-
sisted of 3 operational strings having priorities high,
medium, and low, respectively, with each string having
15 components. The high priority operational string
has one dependency on the medium priority opera-
tional string, which in turn has one dependency on the
low priority operational string. The mission effective-
ness values of the three operational string are summa-
rized in Table 2. In general, higher priority operational
strings provide higher mission effectiveness values to
DRE system than lower priority operational strings.

String Priority || High | Medium | Low
MEV 3 2 1

Table 2: Mission Effectiveness Values of Operational
Strings

xMEV(S;), i=1.

The first experiment has a high promotion growth
effect, and the second experiment has a low promo-
tion growth effect, as described in Section 3.4. The ex-
act configuration of external dependencies in the ex-
periment are the same as those in Section 4.3.

Empirical results and analysis. Table 3 shows
that when the operational growth effect is low, M1
was reduced by 40% and M2 was reduced by 69%,
which indicates that the PARIGE algorithm can sig-
nificantly reduce the mission effectiveness loss for all
operational strings. In the high growth effect situation,

M1 | M2

Baseline (without PARIGE algorithm) || 4.71 1
Low growth effect 2.83 | 0.31

High growth effect 5.79 1

High growth effect w/ optimization 4.71 1

Table 3: Impact of Operational String Growth Effect

however, the worst case scenario happens when opera-
tional strings are merged together. The result in such
worst case scenario shows that M2 is the same as our
baseline case, i.e., without applying the PARIGE al-
gorithm. This operational string merge effect indicates
that the utility to the entire DRE system by the highest
priority operational string(s) remains the same, but M1




(which measures the weighted MEV of all operational
strings) is worse than before. To overcome this short-
coming, we applied an optimization technique that se-
lectively chooses the deployment descriptor before ap-
plying the PARIGE algorithm, as described in Sec-
tion 3.2.4, thereby avoiding the degradation of M1, as
shown in Table 3.

4.5. Performance Overhead of the
PARIGE Algorithm

Hypothesis. The hypothesis of this experiment is
that the performance overhead of the PARIGE algo-
rithm is small enough so it can be applied to deploy
operational strings at run-time. In contrast to off-line
analysis techniques, the PARIGE algorithm must be
deployed by ExecutionManager to handle requests at
runtime, therefore, the PARIGE algorithm should not
incur excessive performance overhead to the end-to-end
latency of deployment of operational strings.

Experimental design. The experiments consist of
3 operational strings each having 15 components and
2 external dependencies in total. The high priority op-
erational string has one dependency on the medium
priority operational string, which in turn has one de-
pendency on the low priority operational string. We
first measured the end-to-end latency for deploying all
the operational strings without applying the PARIGE
algorithm. We then measured the end-to-end latency
for deploying increasing number of operational strings
with the PARIGE algorithm to measure how much la-
tency overhead was contributed by running the algo-
rithm.

Empirical results and analysis. We first mea-
sure the PARIGE algorithm performance itself to de-
termine how its performance is affected by the size
of the problem, i.e., number of components (deter-
mined by number of operational strings) and number of
priority-inverted external dependencies. We then mea-
sure its performance overhead against an actual exam-
ple with 3 operational strings and 2 external dependen-
cies, as described above.

Figure 18 shows the performance result of PARIGE
algorithm itself with increasing number of components
and number of external dependencies. The results show
that the performance of PARIGE algorithm is roughly
linear to both the number of components and num-
ber of external dependencies, which is consistent with
the analysis performed in Section 3.4.1. The linear run-
time performance characteristics of PARIGE algorithm
makes it suitable for dynamically deploying operational
strings online at runtime because the deployment la-
tency of all operational strings exhibits a linear time
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Figure 18: Running Time of the PARIGE Algorithm

complexity to the number of components in the oper-
ational strings.

As long as the performance overhead of the
PARIGE algorithm is acceptable to deploy one com-
ponent, therefore, it should be acceptable to deploy
any number of components. To validate this claim, we
conducted an experiment that deployed up to 64 op-
erational strings with 960 total components. The
results in Figure 19 shows that the deployment la-
tency of all operational strings with and without the
PARIGE algorithm. The experiment measures differ-
ent number of operational strings and different num-
ber of components, ranging from 1 operational string
with 15 components to 64 operational strings with 960
components. These results show that the actual per-
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Figure 19: Performance Overhead of the PARIGE Al-
gorithm

formance overhead of PARIGE algorithm for our
experiment is consistently less than ~1%, which fur-
ther validates our earlier analysis.

5. Related Work

This section compares our work on the PARIGE al-
gorithm with related work. We classify the related work



into two categories. The first category includes formal
models and using various formal method techniques to
ensure consistency and dependency correctness issues
of software deployment. The second category includes
related work that addresses various QoS issues with
software deployment.

5.1. Dependency Management Models

Much prior research has been conducted on depen-
dency management of software components. Most liter-
ature in this area analyzes deployment installability via
formal models that explicitly express dependencies of
software components or software packages. For exam-
ple, [14] present a model to formalize deployment de-
pendencies of software components. These dependen-
cies are expressed in a logical language associated with
a D&C framework that allows proving properties (such
as whether the dependency is mandatory, optional, or
negative) of the deployment plan. [15] defines an ap-
plication buildbox as a software deployed environment
and defines a formal Labeled Transition System (LTS)
on the buildbox with transitions for deployment op-
erations that include build, install, ship, and update.
Formal properties of the LTS are introduced, includ-
ing version dependency and software component de-
pendencies. This Prior work, however, does not address
deployment predictability, which makes it unsuited for
DRE systems.

Some software frameworks have been devel-
oped to support software component deployment
or redeployment. For examples, [16] and [17] uses
framework-guided reconfiguration mechanism for
component-based distributed systems. These frame-
works offer mechanisms to analyze dependencies
between peer components to deal with reconfigura-
tion consistency, which is similar to our work. Unlike
our approach, however, this work does not con-
sider how to improve the predictability of the de-
ployment process, but instead focuses only on consis-
tency.

5.2. QoS Assurance of Software Deploy-
ment

Prior related work has focused on improving the QoS
of software D&C frameworks. Existing literature in this
area focuses on performance related issue, but ignores
predictability related issues, which are important to
ensure DRE systems QoS. For example, The work re-
ported in [18] relies on pre-allocating resource (e.g.,
pre-load components in .NET dynamic reconfiguration
framework) to make the D&C process of components
more predictable. Unlike our approach, however, [18] is
only concerned with how to improve the response time

within a single deployment unit, rather than of man-
aging multiple deployment units at the same time.

The approach described in [19] uses a virtual ma-
chine (VM) technique that provides automated D&C of
flexible VMs that can be configured to meet application
needs and then subsequently cloned and dynamically
instantiated to improve the predictability of deploy-
ments. This approach supports a graph-based model
for the definition of customized VM configuration ac-
tions. Our work on PARIGE is complementary to this
work and can further improve the predictability of com-
ponent deployment by differentiating services of multi-
ple operational strings.

5.3. Comparison between PARIGE algo-
rithm and Priority Inheritance Proto-
col

The PARIGE algorithm has many similarities to the
priority inheritance protocol [20] used for synchroniza-
tion in real-time systems. The priority inheritance pro-
tocol ensures that when a thread blocks one or more
high priority threads, it executes its critical section at
the highest priority level of all the threads it blocks,
i.e., it inherits the highest threads priority. After exe-
cuting its critical section, the thread returns to its orig-
inal priority level.

In the PARIGE algorithm lower priority operational
strings execute at (i.e., “inherit”) the priority of higher
priority operational strings to avoid deployment pri-
ority inversions. The “critical section” in the prior-
ity inheritance protocol is thus similar to the “de-
ployment and configuration” activities in the PARIGE
algorithm. Our work differs from the priority inheri-
tance protocol in several ways, however. First, the pri-
ority inheritance protocol does not avoid deadlocks, but
PARIGE algorithm does not have such limitation be-
cause the algorithm removes all priority inverted de-
pendencies between operational strings and then de-
ploy operational strings from the highest priority to
the lowest priority sequentially. Second, only part of the
operational string is affected, i.e., the PARIGE algo-
rithm just increases the deployment priorities of com-
ponents with dependencies from higher priority opera-
tional strings. Third, the PARIGE algorithm is much
more complex than the priority inheritance protocol
because it needs to traverses multiple graphs to iden-
tify which components require promotion.

6. Concluding Remarks

The predictability and scalability of D&C frame-
works is essential to support the QoS requirements
of open DRE systems. This paper describes a multi-
graph algorithm that helps ensure the predictability of



deploying multiple operational strings. We first ana-
lyze how deployment priority inversion can occur when
operational strings have various dependency relation-
ships. We then empirically show how the partial priority
inheritance via graph recomposition (PXRIGE) algo-
rithm can effectively avoid deployment priority inver-
sions and thus improve the predictability of component
deployment in DRE systems.

The following summarizes our lessons learned thus
far from developing and applying the PARIGE algo-
rithm to ensure the predictability of deployment of op-
erational strings in DRE systems:

1. The overlap of deployment-time with run-
time makes D&C frameworks essential to en-
sure system QoS. The benefits provided by compo-
nent middleware significantly change the lifecycle of
DRE system development. Due to the complexities of
open DRE systems, D&C frameworks assume more re-
sponsibilities to ensure system QoS because deploy-
ment of system services/components occurs through-
out the lifecycle of the systems. By using information
available at deployment time, D&C frameworks can ef-
fectively identify the complex dependency relationships
among operational strings and perform various on-line
optimizations, such as the operational string recompo-
sition presented in Section 3.

2. Automated Recomposition of operational
strings can help ensure deployment predictabil-
ity of DRE systems. Although operational strings
can simplify the design of DRE systems, it is hard
to manually ensure deployment predictability of all
operational strings due to the complex dependencies
among many operational strings. The PARIGE algo-
rithm presented in this paper enhances the deployment
predictability of different operational strings by recom-
posing operational strings automatically based on the
input to the D&C framework and transparently to sys-
tem deployers.

3. Recomposition of operational strings by
the PARIGE algorithm is orthogonal to later
management of operational strings. As described
in Section 1, component-based DRE systems are of-
ten designed, deployed and managed in the form of
operational strings that are first class entities whose
lifecycles are managed by D&C frameworks. Although
our PARIGE algorithm recomposes operational strings
and modifies their topologies to avoid deployment pri-
ority inversion, it does not change the behavior of the
operational strings once the algorithm-modified oper-
ational strings are deployed. In particular, the D&C
framework’s ExecutionManager only recomposes op-
erational strings for its initial deployment, but once
deployed the metadata descriptors for the operational

strings are still the original ones without any modifi-
cation. Subsequent management of operational strings
will thus not be affected by the PARIGE algorithm.

4. The effectiveness of the PARIGE algo-
rithm depends on operational string character-
istics and their dependencies. The PARIGE algo-
rithm can improve deployment predictability of oper-
ational strings with negligible performance overhead,
as demonstrated in Section 4.5. The effectiveness of
the PARIGE algorithm varies for different configura-
tions of operational strings and the external dependen-
cies among them. As shown by the empirical results in
Section 4.3, the PARIGE algorithm is most effectively
when operational string growth is minimal and least ef-
fectively when growth is large. In the worst case sce-
nario, however, when there exits only a single depen-
dency trace across all the operational strings, all the op-
erational strings are merged into a single operational
string. In this case, no predictability improvement can
be made by the PARIGE algorithm. Since the perfor-
mance overhead of the PARIGE algorithm is negligi-
ble, however, the PARIGE algorithm based D&C ap-
proach will at least performs approximately the same as
without the algorithm being applied. Our future work
therefore will investigate how to quantify the gain of
the PARIGE algorithm by measuring the operational
string growth effect and the deployment cost of differ-
ent components based on the input of the operational
strings.

5. Advanced OS and middleware features are
important complements to the PARIGE algo-
rithm. The PARIGE algorithm can incur certain ef-
fects when recomposing operational strings, such as
the component host distribution effect discussed in Sec-
tion 3.4. Our experience shows that modifying the
multi-graph based PARIGE algorithm itself alone is in-
sufficient to address this undesired effect because the
algorithm introduces constraints on host collocation/-
distribution, which affects its performance. One way to
alleviate this problem is to apply asynchronous method
invocations, as presented in Section 4.3.

Our future work will also determine whether/how
the results from the PARIGE algorithm runs can pro-
vide feedback to system designers. For example, the
D&C framework can analyze the input and output to
the PARIGE algorithm for each deployment request.
Using this historical input/output information, a D&C
framework can potentially identify those operational
strings responsible for most deployment priority inver-
sion. We conjecture that this approach will help im-
prove DRE system D&C by reorganizing operational
strings more effectively.

The PARIGE algorithm is an integral part



of DAnCE,

open-source

and both DAnCE and CIAO are
and available for download at

www.dre.vanderbilt.edu/ciao.
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