
Towards A Model-Based Autonomic Reliability Framework for Computing
Clusters

Abhishek Dubey Steve Nordstrom Turker Keskinpala Sandeep Neema
Ted Bapty Gabor Karsai

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science

Vanderbilt University, Nashville, TN 37203, USA
{dabhishe, steve-o, tkeskinpala, sandeep, bapty, gabor}@isis.vanderbilt.edu

Abstract

One of the primary problems with computing clusters is
to ensure that they maintain a reliable working state most of
the time to justify economics of operation. In this paper, we
introduce a model-based hierarchical reliability framework
that enables periodic monitoring of vital health parameters
across the cluster and provides for autonomic fault mitiga-
tion. We also discuss some of the challenges faced by auto-
nomic reliability frameworks in cluster environments such
as non-determinism in task scheduling in standard operat-
ing systems such as Linux and need for synchronized execu-
tion of monitoring sensors across the cluster. Additionally,
we present a solution to these problems in the context of our
framework, which utilizes a feedback controller based ap-
proach to compensate for the scheduling jitter in non real-
time operating systems. Finally, we present experimental
data that illustrates the effectiveness of our approach.

1. Introduction

Reduced cost of commodity computers and the advent of
high capacity networks have made cluster computing eco-
nomical. Clusters are used for solving complex problems
that traditionally required the use of a supercomputer [8, 3].
Their advantage lies in the ubiquity of their components -
commodity computers interconnected using high-speed net-
works such as Myrinet [22] and Infiniband [14]. This in
turn delivers high performance computing at a fraction of
price associated with supercomputers. However, only ap-
plications that can be parallelized by splitting into a number
of smaller job-units can truly reap their benefits.

Several such large computing clusters are maintained
at Fermi National Accelerator Laboratory (FNAL), some

of which are primarily reserved for solving lattice quan-
tum chromodynamics (LQCD) computations1 (see table 1).
LQCD is a challenging field of study that employs large-
scale numerical calculations in order to extract fundamental
parameters of the standard model of nuclear physics from
experiments [11].

Table 1. FNAL LQCD clusters
Cluster CPU Nodes OS

QCD 2.8 GHz Pentium 4 127 Linux
PION 3.2 GHz Xeon 518 Linux

KAON 2.0 GHz Dual Opteron 600 Linux

One of the primary problems with clusters is to ensure
that they maintain a working state most of the time to justify
economics of operation. Unfortunately, reliability is not a
prime design consideration for the hardware, operating sys-
tems, and middleware in commodity computers that are of-
ten built for higher performance per dollar. However, when
these computers are used together in a cluster, reliable op-
eration is expected.

Large analysis campaigns like the ones involved in
LQCD are composed of a number of inter-dependent tasks
that have to be successfully performed to complete the full
workflow2. In such cases, failure of even a single node
can halt progress on all nodes assigned to the job, result-
ing in loss of both time and money. These failures can be
(but not limited to) power outages, hardware failures, non-
responsive job-units, or even ambient cooling failures.

While applications can be written to be fault-tolerant, the
development cost will be significantly greater and the per-
formance lower. Instead, these applications are constructed

1See http://lqcd.fnal.gov/
2A workflow is a specification of a set of tasks or jobs to be performed,

their execution order and their input/output dependencies

for absolute performance. When hardware failures occur,
an application-specific set of tasks have to be done. For
some LQCD jobs, for example, the distributed job is killed
and restarted from a checkpoint. If done manually, this ap-
proach can be expensive, slow to respond, and limit scala-
bility. Instead, an autonomic approach is required that can
ensure that the resources of the cluster are used to best pos-
sible extent and achieve the best possible start to comple-
tion ratio of jobs, even in the presence of hardware/software
failures. Such a system will also improve response time in
problem solving.

Figure 1. Overview of SCARF

The Scientific Computing Autonomic Reliability Frame-
work (SCARF), being developed by our research group for
the LQCD computing clusters, is one such framework. Fig.
1 illustrates its conceptual architecture. The monitoring
and mitigation portions of SCARF are based on the hier-
archical Reflex and Healing (RH) framework, presented in
[6, 18, 23, 20]. The basic components of this framework
are distributed monitoring units, fault-mitigation units and
a system wide planner for dealing with resource realloca-
tion in case of severe failures. The primary monitoring
units are sensor programs that execute periodically and on-
demand across all nodes in the cluster. On the top is a de-
sign environment for deploying analysis campaigns and set-
ting up monitoring and mitigation policies. The algorithm
and components for the resource reallocation for a workflow
have been presented in [19].

SCARF is a model-based reliability framework. It re-
lies upon the use of a model-based specification of work-
flows, jobs, cluster resources and important monitoring pa-
rameters. It also provides for specification of models of
mitigation policies based on a well-defined model of com-
putations, along the same lines as those presented in [6].
Furthermore, it allows the realization of the monitoring and
mitigation constituents of the framework using model trans-
formations [12].

In this paper, we will present the monitoring portion of
this framework. Primarily, the focus of this paper is con-

centrated on two main problems that affect SCARF’s per-
formance. We can summarize them as follows:

1. Operating systems such as Linux, widely used in clus-
ter environments, are designed for good average per-
formance rather than worst-case performance. This
leads to a non-deterministic task scheduling, which in
turn causes any periodic job running on that node to
accrue jitter between the expected start time and the
actual start time. This jitter has detrimental effect on
cluster management systems as they depend on pe-
riodic sampling and correlation of health status data
from every node in the cluster. We will discuss this
problem further in section 4.1.

2. Synchronization between the various periodic sensor
programs running across the cluster is necessary to en-
sure execution of all instances happen at the same time
on all nodes. This is required to prevent the worst-case
scenario where a parallel application, waiting for syn-
chronization across multiple nodes of the cluster, can
be blocked forever. This can happen if at any time at
least one of the nodes required for synchronization is
not ready as it is executing the sensors of the reliability
framework. This problem will be explained in further
detail in section 4.2.

It should be mentioned that these problems are generic
in nature and will affect any reliability framework designed
for large clusters. In the latter half of this paper, we will
present solutions to these problems by (a) using a discrete
event based sensor scheduler, and (b) employing a feedback
controller based approach that compensates for the schedul-
ing jitter in non-real-time operating systems. Additionally,
we will also present experimental data that illustrates the
effectiveness of our approach.

2. Related Research

Generalized frameworks are being increasingly used to
monitor the health and status of cluster resources. Early
tools such as ClusterProbe [13] concentrate on per node
monitoring and visualization without considering the health
of the cluster as a whole.

Many monitoring tools have been developed at cen-
ters for supercomputing at the national laboratories. Net-
Logger [9] was developed at the Lawrence Berkeley Na-
tional Laboratory and provides high performance event log-
ging channels for capturing status messages across clus-
ters into a centralized location. The Monitoring and Man-
aging Multiple Clusters (M3C) [2] was developed at Oak
Ridge National Laboratory, which provides a web-based
GUI administration tool that allows a human administra-
tor to monitor parameters across a federation of clusters on

demand. Further developments of cluster management sys-
tems include the Java Agents for Monitoring and Manage-
ment (JAMM) [25] system that was developed at Lawrence
Berkeley National Laboratory to facilitate monitoring of
more dynamic configurations of cluster environments us-
ing a publisher/subscriber methodology. These frameworks
were tailored for centralized, human-in-the-loop manage-
ment of clusters but little investigation was done to provide
autonomic monitoring and control of cluster computing en-
vironments.

OVIS [1] uses a more complex statistical method to de-
duce models for a cluster’s baseline status and provides a
mechanism for automatic detection of early failures based
on a node’s conformity to those models. However, the com-
putational costs of this approach are intensive, and can have
a detrimental effect on the available cluster resources. Other
tools such as the RVision [7] monitoring system have been
investigating the effects of the monitoring framework on
the performance of the cluster. Metrics for measuring how
the RVision monitoring system interferes with the perfor-
mance of hosted cluster applications is given by Ferreto in
[7]. While the results were promising, no special considera-
tion was given to mechanism for ensuring that the monitors
do not interfere with the applications. Moreover, no consid-
eration is given to the necessary failure mitigation portions
of a truly autonomic monitoring and control framework.

In recent years, many modern frameworks such as Gan-
glia [17], Nagios [10] have been undergoing development.
These frameworks are very well suited toward cluster mon-
itoring and even simple control, and their open source li-
censes promote their use within the scientific community.
While many of these frameworks are easily extended, they
provide no mechanisms for bounding either the invocation
time or execution time of components within the system be-
yond mechanisms given by the operating system. Neverthe-
less, there is a need for modern monitoring frameworks that
considers the effect of non-determinism of commercial op-
erating systems and compensates for the same.

3. An Introduction to SCARF

Figure 1 shows the basic components of the framework:
distributed monitoring units, fault-mitigation units and a
system wide planner for dealing with workflow re-planning.
The benefit of using the model-based approach is the possi-
bility of policy verification as presented earlier in [5, 6]. In
this paper, we will be limiting the description to the moni-
toring and mitigation portions.

This framework employs a hierarchical network of de-
centralized fault management entities called reflex engines.
A reflex engine comprises of several state machines, which
change states and perform actions associated with the tran-
sitions upon occurrence of certain predefined events. Fig. 2

Figure 2. Implementing the reliability frame-
work using hierarchical reflex engines.

shows the deployment of reflex engines in the framework.
To manage scalability, all reflex engines are divided into
three logical hierarchical levels, which are global, regional
and local.

Fig. 2 describes the hierarchical aspect of SCARF. Local
managers are the closest to a worker node in the cluster. In
response to a mitigation command given by a superior level
manager, they can deploy or remove various sensors on their
node or even make changes in the configuration, such as a
change in periodicity of a particular sensor. These sensors
provide monitoring for different health parameters. In ef-
fect, they realize the “system health monitor” block from
Fig. 1. Local managers are also responsible for actuat-
ing the necessary mitigation action dictated by the regional
manager.

Regional managers supervise and communicate with a
number of subordinate managers that are in their area of
observation. They also store all the sensory information re-
ceived from their subordinates in a database to be used for
historical correlation in future. A regional manager has a
wider area of observation and can correlate diagnosis to as-
certain if a problem is common to a number of user appli-
cations and take coordinated mitigation action. Together,
the local and regional managers realize the fault-mitigation
engine block from Fig. 1.

The head node of the cluster is usually designated as a
single global manager and is used as a resource planner and
the gateway to submit new jobs or plan the resources as-
signed to an existing job.

3.1. Sensors

The primary fault-detection entities are sensor programs,
which periodically execute on the nodes in the cluster. Data
is channeled from the sensors to the local manager, which
sends it to the regional manager, where a built-in state
machine is used for fault detection. This flow of data is
achieved by using Syslog-ng - a next generation version
of the popular protocol Syslog used for the transmission of

event notification messages across networks [15]. The fault-
mitigation commands are sent by the regional manager to a
local manager by using UDP. In this case, UDP is preferred
over TCP as it is stateless and does not require dedicated
socket connections between the two managers, saving pre-
cious network bandwidth. Fig. 3 illustrates this dataflow.

Figure 3. Dataflow of messages exchanged
between managers

Table 2 contains the list of 14 sensors currently running
on all nodes in the Pion and Kaon cluster (refer to table 1).
One of the most critical sensors is the heartbeat sensor. It
indicates the health of a node. If more than one contigu-
ous heartbeat is missed then the regional manager checks
the health of the node by sending pings to the local man-
ager. If the ping is ignored, it marks the node in question
as dead and reallocates its part of the job to another node.
Readers are referred to [19] for the algorithm of workflow
re-planning in case of faults.

A special sensor (number 13 in table 2) is employed to
reload the executable code of other sensors if a configura-
tion change is detected in their respective source code, for
example, when the local manager changes the periodicity
of sensors running on that node. Function of other sensors
is obvious from their name. These sensors (except heart-
beat) only report the value if it is over or below a certain
threshold to reduce network traffic. This threshold is de-
cided based on the historical correlation between faults and
health parameter values at that time.

Since the sensors execute frequently, it is necessary that
they are least intrusive i.e. the average CPU utilization due
to sensor measurements should be minimal. In order to
achieve this, the scheduler to run these sensors is based on a
technique presented in [4] used for simulating discrete event
systems. This scheduler is implemented as a single process
with one thread to ensure the small CPU load, which exe-
cutes periodically.

3.2. Sensor Scheduler

Algorithm 1 describes a typical discrete-event based
scheduling algorithm as seen from the perspective of a sin-
gle node. All periodic sensor programs have two variables,

Table 2. Sensors in the framework
No. Sensor Period(sec)
1 CPU Fanspeed 10
2 Motherboard Fanspeed 10
3 CPU Temperature 10
4 Motherboard Temperature 10
5 Aggregate CPU Utilization 10
6 CPU Utilization per process 10
7 Hard Disk Utilization 10
8 RAM and Swap Utilization 10
9 Aggregate RAM Utilization 10
10 Aggregate Swap Utilization 10
11 CPU Voltage 10
12 Motherboard Voltage 10
13 Monitor configuration changes 60
14 Heartbeat 300

a time period (P) that is constant for a given sensor, and
a current clock value (C) that is initialized to the respec-
tive time period (P) of that sensor. The prominent feature
of this algorithm is the scheduling step in which the time
for the next scheduled iteration is set. This time is set by
making the sensor scheduler sleep for a time T , which is
decided by evaluating the current clock values (C) of all
sensors. Sleep can be realized in standard operating sys-
tems, such as Linux, either by a system call or by using an
alarm signal and an appropriate signal handler [24]. On any
given operating system, the resolution of sleep implementa-
tion used in the sensor scheduler determines the minimum
periodicity that can be set for a sensor program.

Algorithm 1 Sensor scheduler
Input: S {Set of periodic sensors. Each sensor has two variables:

P(Time period), C (current clock Value)}
Pre Condition: (∀s ∈ S)(s.C = P)

1: loop
2: Set T = minimum((∀s ∈ S)(s.C)
3: Set Alarm for T {Alarm can be implemented by sleep or

using signals in both Linux and Windows}
4: (∀s ∈ S)(s.C ← s.C − T)
5: (∀s ∈ S)(s.C = 0 =⇒ Execute(s))
6: (∀s ∈ S)(s.C = 0 =⇒ (s.C ← s.P))
7: Run any aperiodic sensors if present.
8: end loop

At the start of an iteration, clock values of all sensor pro-
grams are decremented by the current value of sleep time,
T . Subsequently, the scheduler runs any sensor program
that has a zero clock value and updates its clock value to the
respective time period.

Here we wish to distinguish two distinct terms, iteration
of the sensor scheduler and the sensor runs. The iteration is
the periodic tick of the sensor scheduler, while a sensor run

happens when the sensor scheduler executes the program of
a sensor during iteration.

Note that the precision of the periodicity for sensors
completely depends upon the accuracy of the sleep func-
tion provided by the operating system. However, in many
cases the standard Linux kernel provides no upper bound on
the difference between the actual time of sleep compared
to the requested time. In the next section, we will discuss
the problems caused by this reality.

4. Problem due to Jitter and Synchronization

4.1. Jitter

One of the foremost problems faced in a monitoring
framework is the timeliness of sensor readings. Ideally, the
nodes in the framework should have a real-time operating
system (RTOS) to guarantee the performance and timeli-
ness of sensor readings. However, usually clusters are built
with standard version of Linux kernel as the chosen operat-
ing system, which is geared towards best average-case per-
formance than the worst-case performance. Consequently,
the standard Linux kernel does not guarantee deterministic
task scheduling.

Non-deterministic scheduling can lead to unbounded jit-
ter between the expected and actual time of the sensor read-
ing and make the task of analysis engines even more diffi-
cult. This problem has been studied earlier by P. Marti et.
al in [16]. They showed that the jitter can not only lead
to performance degradation but can also lead to instability.
For example, the regional managers cannot wait forever to
determine the absence of a heartbeat from worker nodes.
They have bounds on the maximum time that they can wait
for before a mitigation action is executed. Consequently,
false alarms might be issued if the heartbeat does not arrive
within the stipulated time.

Moreover, unbounded jitter in sensor readings will even-
tually lead to a large skew in timestamps of observation that
were taken at the same time. This can cause problems in
analysis, where a global snapshot of the state of cluster at
any particular time might be required.

In order to formalize the notion of jitter, consider a
generic periodic task τ with a time period T . The ideal re-
lease time of such a task would be a sequence < kT >k=∞k=1

relative to some time, tφ. Let s(kT) be the start time of
kth instance of this task such that the start is delayed by
tj(kT) with respect to the expected start time, tφ + kT .
Then total jitter, tj(kT) = s(kT) − kT − tφ. Now, con-
sider the k + 1th instance of the same task. If the schedule
is set by using sleep for T time, like in line 3 of algorithm
1, then it can be seen that the relative time difference be-
tween the two start times is greater than the time period,

s((k + 1)T) − s(kT) ≥ T . In such a case, the total jitter
will keep accumulating and increase with time.

At any point, tj(kT) will represent all the delays accu-
mulated over time till that point and will be equal to the ab-
solute relative jitter until that instance, which is defined as
the maximum deviation between start time and the expected
start time among all the instances of a periodic task. Figure
4 illustrates the effect of accumulating jitter. From the fig-
ure we can see that if nothing is done the sensor measure-
ments will always be off from the expected time by some
value. Two problems arise when this phenomenon of de-
layed sensor readings is seen from the perspective of the
cluster: (a) sensor measurements are not exactly periodic
any more. This affects analysis routines that rely on uni-
form sampling rate of sensor readings; (b) sensors are run
at different times on the nodes of the cluster. This affects
the performance of jobs that needs to synchronize across
the cluster. We explain this problem in detail in the next
subsection.

Figure 4. Periodic sensing will accumulate
delay when used in a standard OS.

4.2. Synchronization Issue

A programming model commonly followed in LQCD
computing cluster jobs is Multiple Instruction Stream and
Multiple Data Stream (MIMD). In this model, different
nodes execute in parallel on different data streams. How-
ever, the computation results from various nodes have to
synchronize together in order to solve for boundary condi-
tions. For example, in LQCD cluster an application called
MILC3(MIMD Lattice computation collaboration) has to do
a global synchronization at a rate of every 45 milliseconds.
The requirement is that all nodes in the job must be ready
at the time of synchronization i.e. the scheduler on each
of those nodes should not be running any other task at that
time, otherwise the job is delayed till all the nodes are ready.

3http://physics.indiana.edu/˜sg/milc.html

Figure 5. Loss in the performance of a MILC
job when run in the presence of unsynchro-
nized sensor schedulers across the cluster.

In the current setup, on an average a sensor takes 30 mil-
liseconds for measurement. Moreover, to ensure fairness
MILC jobs and the sensor scheduler runs with the same pri-
ority. Therefore, it is possible that a sensor run is sched-
uled such that it preempts the run of MILC task on the node
and delays the global synchronization. In the worst case,
it might be possible that at any time there is always at least
one sensor running on a node, which will preempt the global
synchronization of the MILC job across all nodes. In that
scenario, the MILC job will be stalled forever. However,
in average case we will see a performance drop because of
the extra time spent by the MILC job in waiting for the syn-
chronization. For example, Fig. 5 illustrates the drop in
MFLOPS achieved from an actual computing job executed
across 256 nodes when the unsynchronized sensor frame-
work was brought online on the cluster. In this figure, MILC
GFTIME is the name of the application executing on the
cluster. It can be seen that the performance of the job drops
from around 400 MFLOPS to 300 MFLOPS when the sen-
sor schedulers comes online across the whole cluster.

5. Solution Approach

Synchronization and jitter are two interdependent issues.
Even if the sensor schedulers across the cluster are started
at the same time, they will soon go out of sync because of
the inherent jitter. Therefore, the solution for the two prob-
lems required an integrated approach. For this, we divide
the time scale into hyperperiods and ticks between the hy-
perperiod as described in Fig. 6. The ticks are instances in
time when the sensor scheduler runs a sensor if its current
clock value is zero (refer to algorithm 1). If more than one
sensor is eligible for execution then the order of run must

Figure 6. Relationship between a hyperperiod
and ticks.

be deterministic. A lexical sort on their names is one way
of achieving this determinism.

The start of the hyperperiod is the time when all sen-
sor schedulers across the cluster reset their clocks and start
a new cycle of sensor runs. In effect, this forces them to
resynchronize at the start of each hyperperiod. The behav-
ior of all sensor schedulers is such that they must wait for
the hyperperiod signal when starting for the first time.

One of the existing facilities of Linux operating system
is the Network Time Protocol (NTP). By using the global
manager as the NTP server, we can ensure that wall clock
times of all nodes in the cluster are within a few millisec-
onds of each other. This provides for an opportunity to use
a set time of day as the hyperperiod signal across the clus-
ter. For experimental purposes, we chose every 300 second
of the day as the hyperperiod. It should be noted that this
decision requires a trade-off. If a very fine hyperperiod is
used, say 20 seconds, the performance of the cluster will be
reduced. However, if a very coarse hyperperiod is chosen,
say 20 minutes, then there will be a large accumulation of
jitter between hyperperiod synchronizations.

Between any two hyperperiods, the sensor scheduler
uses the sleep to space out the ticks for sensor runs. How-
ever, even with this hyperperiod synchronization it is pos-
sible to accumulate jitter between the expected and actual
time of the tick. In effect, this will lead to many unsyn-
chronized sensor runs between the hyperperiod synchro-
nizations. This is why we need a mechanism to control the
uniformity of ticks.

5.1. Plant and Controller Model

Let T be the minimum time period in algorithm 1. Also,
let tj(kT) be the total jitter accumulated at the kth sensor
run. Assume a disturbance d(kT) that has been accrued
till this run due to scheduling activity and finite time taken

by sensors for completing their execution. In a standard
operating system, there will be no guaranteed bound on this
disturbance. Based on the discussion in this paragraph we
can write the difference equation for the plant as :

tj((k + 1)T) = tj(kT) + d(kT) (1)

This is the discrete-time state space equation that we will
use as our plant model. The state variable in this equation
is the total jitter at any time sample, tj(kT). Now onwards,
we will drop the term kT and just use k as the index term.

5.2. Feedback Controller

One of the basic feedback configurations is the propor-
tional, integral and derivative (PID) scheme. Basic principle
of the PID control scheme is to act on the control variable
through a combination of proportional action, integral ac-
tion and the derivative action. The proportional action is
proportional to the error signal, which is the difference be-
tween reference input and the feedback signal. Integral ac-
tion is proportional to integral of error signal and the deriva-
tive action is proportional to the derivative of the error sig-
nal.

In our case, the plant is a discrete-time system with a
sample time, T . The principle of PID control scheme ap-
plies to such systems as well. The difference is that the inte-
gral and derivative components are approximated by trape-
zoidal summation and difference equation respectively. In
[21], the discrete-time PID controller equation is given as:

c(k) =K[e(k) +
T

Ti

j=k∑
j=1

e(j − 1) + e(j)
2

+

Td
T

[e(k)− e(k − 1)]] (2)

Figure 7. The feedback control loop for the
sensor scheduler

Here, T is the sampling time period, e is the error signal,
c is the controller output, K is the proportional gain, Td is
the derivative time constant and Ti is the integral reset time
constant. Fig. 7 shows this control loop.

For this design, we chose a PI controller. The derivative
term was dropped because the sudden and frequent changes
in the disturbance value would have made the feedback loop
unstable. Given that the state space variable is total jitter,
tj(k) and the reference value is zero, we can write the error
signal as e(k) = −tj(k). The plant and controller equations
are:

tj(k + 1) = tj(k) + d(k) + c(k), where (3)

c(k) = −K[tj(k) +
T

Ti

j=k∑
j=1

tj(j − 1) + tj(j)
2

] (4)

Figure 8. An equivalent block diagram of the
control loop shown in Fig. 7. Dashed box
indicates the control loop

Now, we apply the Z-transformation [21] to both sides
of equation 4. Note that we follow the notation of rep-
resenting discrete-time domain variables with small alpha-
bets, and use the capital alphabets for the corresponding Z-
domain value. For example, X(z) = Z[x(k)].

C(z) = −[Kp +
Ki

(1− z−1)
]TJ(z), where (5)

Kp = K − Ki

2
is the effective proportional gain (6)

Ki =
KT

Ti
is the integral gain (7)

Redrawing the block diagram presented in Fig. 7 as Fig.
8, we can show that the transfer function of this feedback
controller is:

TF (z) =
1

1 + [Kp + Ki

(1−z−1)]
(8)

For stability, poles of TF must lie within the unit circle
in z-domain or |z| < 1 [21]. From equation 8, the character-
istic equation for finding the poles is 1+[Kp+ Ki

(1−z−1)] = 0.

Therefore, the pole is at z = 1+Kp

1+Kp+Ki
. Since Kp and Ki

are real, the stability criterion implies −(1 + Kp + Ki) <
(1+Kp) < (1+Kp+Ki). This equation upon simplifica-
tion yields the conditionKi > 0, orK > 0 (ref equation 7).

Alternatively, in other words the sufficient stability criterion
is that the chosen proportional gain is positive.

5.3. Modified Sensor Scheduler with Syn-
chronization and Feedback Controller

Algorithm 2 shows the algorithm with the modification
made for synchronization and feedback controller to sen-
sor scheduler presented earlier in section 3.2. Note that
the feedback controller is executed between two hyperpe-
riods. In each hyperperiod, synchronization is achieved by
sleeping till the next hyperperiod. The number of ticks be-
tween two hyperperiods is computed by dividing hyperpe-
riod width by the length of a tick and taking its greatest
lower bound. The variable tj stores the current value of the
total jitter . Iterm is used to calculate the integral com-
ponent of the feedback compensation in accordance with
equation 4. The maximum compensation that can be pro-
vided is limited by the value of timeperiod (T) (see line 13
of the algorithm). This is done because sensor scheduler
cannot sleep for negative times.

Algorithm 2 Modified sensor scheduler with synchroniza-
tion and feedback controller to compensate for jitter
Input: S {Set of periodic sensors by name. Each sensor has two

variables: P(Time period), C (current clock Value). T is the
greatest common factor of sensor time periods.}

Input: HY PER {the Hyperperiod value}
1: S ← Sort(S)
2: loop
3: Use nanosleep() to sleep till the next Hyperperiod signal

Pre Condition: (∀s ∈ S)(s.C = P)
4: Initialize T imeStamp1 ← CurrentT ime() { Current-

Time() returns the current time in the system}
5: Initialize Iterm← 0 {Integral Term}
6: Count ← Floor(HY PER/T) {Floor provides the

greatest lower bound integer.}
7: for I = 0 to Count do
8: T imeStamp2← CurrentT ime()
9: d(k−1)← T imeStamp2−T imeStamp1−T{k−1

because the disturbance is from the last step.}
10: tj(k)← tj(k − 1) + d(k − 1)
11: Iterm← Iterm + (tj(k − 1) + tj(k))/2
12: Set T = minimum((∀s ∈ S)(s.C)
13: c(k)← −(min(T, Ki ∗ Iterm + K ∗ tj(k)))
14: nanosleep(T + c(k)) {nanosleep is a higher resolution

sleep function available in Linux}
15: (∀s ∈ S)(s.C ← s.C − T)
16: (∀s ∈ S)(s.C = 0 =⇒ Execute(s))
17: (∀s ∈ S)(s.C = 0 =⇒ (s.C ← s.P))
18: Run any aperiodic sensors if present.
19: end for
20: end loop

The controller and plant model developed here is not spe-
cific to this sensor scheduler framework. On the contrary, it

can be applied to other periodic applications that control
their own release time by maintaining their own clock. For
periodic applications that do not control their own release,
or are directly invoked by the kernel, we can incorporate
a dummy scheduler with feedback controller between the
kernel scheduler and the application.

6. Results

In this section, we will present results obtained by im-
plementing the sensor scheduler with feedback loop i.e. al-
gorithm 2. All these experiments use a value of K = 1.0
and Ki = 1.2.

6.1. Experiment1: Performance of feedback
controller in controlling jitter.

Figure 9. Total jitter accumulated in last 9
hours.

Fig. 9 shows the total jitter accumulated by the sensor
scheduler’s main feedback loop running over a period of 9
hours. For this test, the sample time period was set as 5
seconds to make it more susceptible to disturbances. It was
found that the root mean square (RMS) value of the jitter
was 0.2243 after 9 hours, only 4.4% of the sampling time
period, 5 seconds. This demonstrates the effectiveness of
the feedback loop in controlling periodic jitter.

6.2. Experiment2: Jitter with and without
controller with changing CPU Load

In order to emulate the step response of this controller,
we decided to create a step disturbance by loading the CPU
in steps to the 100% capacity manually. For this purpose,
we used a number of prime number generators freely avail-
able over the internet to load the CPU. Furthermore, to
emulate the step response, we initially started the frame-
work without the controller, and then started the controller

(a) Performance with synchronized sensor scheduler (b) Performance without synchronization. This is a restatement of Fig. 5,
reproduced here for ease in comparison.

Figure 10. Improved performance of a MILC job with synchronized sensor scheduler.

at a predefined time, in this case the 21st run of the sensor
scheduler.

Fig. 11 shows the result of this experiment. Notice that
the total jitter rises initially when the controller is off. It
settles down with a few oscillations when the controller is
switched on. This figure also illustrates the contrast in jitter
with and without the controller. The RMS value of total
jitter in steady state was 0.209 seconds. This shows that the
total jitter was bounded even when the system was heavily
loaded.

Figure 11. Plot of total Jitter with varying
CPU Load. The controller was switched on
at 155th second (dotted line).

6.3. Experiment3: Performance of MILC
Job- synchronization problem

This test was conducted on 128 nodes in the pion clus-
ter. All instances of sensor schedulers were started from

Figure 12. Time take during each iteration.

the head node in parallel . After the launch, sensor sched-
ulers synchronized to the next plus one 5th minute of the
hour. In this case, that time was ’Fri Oct 19 09:45:10 2007
(call it base time). Then onwards the sensor scheduler used
the feedback controller for iterating every 10 seconds till
the next hyperperiod. Sensors were run during an iteration
based on their clock value. Lexical order was used to en-
sure that a deterministic order of sensor runs. Overall, 14
sensors ran on the nodes (see table 2). The test was stopped
after 584 iterations with a sampling time of 10 seconds. On
an average 12 sensors ran during all iterations. 13th sen-
sor (monitoring changes in sensor codes) was executed in
every 6th iteration, while 14th sensor (heartbeat) ran every
30th iteration.

Fig. 12 shows the time taken during all sensors. Notice
that 95.3% of the sensor runs took less than 500 millisec-

onds for the measurement. Recall that the sensor run is the
execution of a sensor program during an iteration of the sen-
sor scheduler. The excess time taken during some sensor
runs can be attributed to the non-deterministic scheduling
provided by the operating system.

Fig. 10 shows the performance drop in the MILC job
when synchronized sensor schedulers were switched on in
the cluster. Compare figure 10(a) to the earlier result with-
out synchronized sensor scheduler in Fig. 5,restated for
comparison as figure 10(b). We can see that, on an average,
there is a 50 MFLOPS gain in the performance compared
to before. We can attribute the still existing performance
drop of 50 MFLOPS to the 500 milliseconds taken on an
average in a sensor run, which can still block the synchro-
nization task. However, since the sensor schedulers are syn-
chronized we do not see an accumulated delay in the MILC
job as before. During this experiment, the average CPU uti-
lization over a period of 24 hours on one of the nodes due
to Sensor Scheduler was found to be 0.024 percent. The
corresponding RAM utilization value was 0.318 percent.

7. Conclusion and Future works

In this paper, we presented a reliability framework for
clusters called SCARF that implements this feedback con-
troller based synchronization technique. Experiments pre-
sented in the previous sections show that the reduction of
total jitter is possible with the use of the feedback controller
presented in this paper. Moreover, the use of feedback con-
troller only imposed a trivial amount of extra CPU load.
This along with the hyperperiod synchronization allows all
sensor runs across the cluster to execute simultaneously.
Consequently, the performance drop in parallel jobs with
the sensor framework present was reduced.

Future investigations will include the semantics of the
modeling language to help deploy the analysis routines
along with the required monitoring framework. We will
also investigate the automatic synthesis of workflows to be
deployed on the cluster from a given analysis specification.
Our goal is to achieve a holistic framework that enables de-
ployment of workflows along the cluster and manages the
health of the cluster to maximize its efficiency.

8. Acknowledgments

This work is supported by the National Science Founda-
tion under the ITR grant ACI-0121658. The authors will
also like to acknowledge their colleagues at Fermi National
Accelerator Laboratory.

References

[1] J. Brandt, A. Gentile, D. Hale, and P. Pebay. Ovis: a tool
for intelligent, real-time monitoring of computational clus-

ters. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, page 8pp., 25-29
April 2006.

[2] M. Brim, A. Geist, B. Luethke, J. Schwidder, and S. Scott.
M3c: managing and monitoring multiple clusters. In
Cluster Computing and the Grid, 2001. Proceedings. First
IEEE/ACM International Symposium on, pages 386–393,
15-18 May 2001.

[3] R. Buyya. High Performance Cluster Computing: Architec-
tures and Systems. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1999.

[4] C. G. Cassandras and S. Lafortune. Introduction to Discrete
Event Systems. Kluwer Academic Publishers, Norwell, MA,
USA, 1999.

[5] A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, and
T. Bapty. Verifying autonomic fault mitigation strategies in
large scale real-time systems. In EASE ’06: Proceedings of
the Third IEEE International Workshop on Engineering of
Autonomic & Autonomous Systems (EASE’06), pages 129–
140, Washington, DC, USA, 2006. IEEE Computer Society.

[6] A. Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty,
and G. Karsai. Towards a verifiable real-time, autonomic,
fault mitigation framework for large scale real-time systems.
Innovations in Systems and Software Engineering, 3:33–52,
March 2007.

[7] T. Ferreto, C. de Rose, and L. de Rose. Rvision: An open
and high configurable tool for cluster monitoring. In Clus-
ter Computing and the Grid, 2002. 2nd IEEE/ACM Interna-
tional Symposium on, pages 75–75, 21-24 May 2002.

[8] Z. Fodor, S. D. Katz, and G. Papp. Better than $1/mflops
sustained: a scalable pc-based parallel computer for lattice
qcd. Computer Physics Communications, 152:121, 2003.

[9] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee.
Netlogger: a toolkit for distributed system performance
analysis. In Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, 2000. Proceedings. 8th In-
ternational Symposium on, pages 267–273, 29 Aug.-1 Sept.
2000.

[10] R. C. Harlan. Network management with nagios. Linux
Journal, 2003(111):3, 2003.

[11] D. J. Holmgren. PC clusters for lattice qcd, 2004.
[12] G. Karsai, J. Sztipanovits, Á. Lédeczi, and T. Bapty. Model-

integrated development of embedded software. Proceedings
of the IEEE, 91(1):145–164, 2003.

[13] Z. Liang, Y. Sun, and C.-L. Wang. Clusterprobe: an open,
flexible and scalable cluster monitoring tool. In Cluster
Computing, 1999. Proceedings. 1st IEEE Computer Society
International Workshop on, pages 261–268, 2-3 Dec. 1999.

[14] J. Liu, A. Vishnu, and D. Panda. Building multirail infini-
band clusters: Mpi-level design and performance evaluation.
In Supercomputing, 2004. Proceedings of the ACM/IEEE
SC2004 Conference, pages 33–33, 2004.

[15] C. Lonvick. The BSD syslog protocol, 2001.
[16] P. Martı́, J. M. Fuertes, K. Ramamritham, and G. Fohler.

Jitter compensation for real-time control systems. In RTSS
’01: Proceedings of the 22nd IEEE Real-Time Systems Sym-
posium (RTSS’01), page 39, Washington, DC, USA, 2001.
IEEE Computer Society.

[17] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia
distributed monitoring system: design, implementation, and
experience. Parallel Computing, 30(5-6):817–840, 2004.

[18] S. Nordstrom, T. Bapty, S. Neema, A. Dubey, and T. Keskin-
pala. A guided explorative approach for autonomic heal-
ing of model based systems. In Second IEEE conference
on Space Mission Challenges for Information Technology
(SMC-IT), July 2006.

[19] S. Nordstrom, A. Dubey, T. Keskinpala, R. Datta, S. Neema,
and T. Bapty. Model predictive analysis for autonomicwork-
flow management in large-scale scientific computing envi-
ronments. In EASE ’07: Proceedings of the Fourth IEEE
International Workshop on Engineering of Autonomic and
Autonomous Systems, pages 37–42, Washington, DC, USA,
2007. IEEE Computer Society.

[20] S. Nordstrom, S. Shetty, S. K. Neema, and T. A. Bapty.
Modeling reflex-healing autonomy for large scale embed-
ded systems. Systems, Man and Cybernetics, Part C, IEEE
Transactions on, 36(3):292–303, 2006.

[21] K. Ogata. Discrete-time control systems (2nd ed.). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1995.

[22] Y. Qian, A. Afsahi, and R. Zamani. Myrinet networks: a per-
formance study. In Network Computing and Applications,
2004. (NCA 2004). Proceedings. Third IEEE International
Symposium on, pages 323–328, 2004.

[23] S. Shetty, S. Nordstrom, S. Ahuja, D. Yao, T. Bapty, and
S. Neema. Systems integration of large scale autonomic sys-
tems using multiple domain specific modeling languages. In
ECBS, pages 481–489, 2005.

[24] A. Silberschatz and P. B. Galvin. Operating System Con-
cepts. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[25] B. Tierney, B. Crowley, D. Gunter, J. Lee, and M. Thomp-
son. A monitoring sensor management system for grid en-
vironments. Cluster Computing, 4(1):19–28, 2001.

