
Interfacing a Simulation Engine to an Embedded Runtime Environment

B. Eames, S. Neema, T. Bapty, and J. Scott
Vanderbilt University / Institute for Software Integrated Systems

Nashville, TN, 37203

Abstract

The design of modern high-performance embedded systems
is challenging. Power and size constraints limit hardware
size, while performance requirements demand algorithm-
specific architectures. A model-integrated approach can be
used in the design capture and synthesis of these systems.
A domain-specific graphical system design environment
allows the capture of system requirements, design
information and alternatives, and of available processing
resources in the form of models. A model interpretation
process generates architecture specifications and
compilable code.

A typical first step in designing complex systems is to
develop a simulation-based prototype. After functional
verification of the prototype, system components are
implemented, each tailored to a particular target platform.
Only after all components are implemented can system
integration be addressed, often uncovering inconsistencies
between components and forcing costly redesign.

This paper describes an extension of a model-integrated
design environment and runtime system. Simulation-based
components are included in system models. A simulation
engine is interfaced to a runtime environment, allowing
simulation components to run "in the loop" with non-
simulation based components. The extended environment
allows prototype synthesis from system models and
automates the integration of implemented components into
the system. Further, the extended environment provides the
designer with a powerful visualization and debugging tool.

1 Introduction

Ongoing research at Vanderbilt University has produced a
system design tool embodying the model-integrated
approach to designing complex embedded systems [1]. The
design tool consists of a domain-specific graphical model
editor, allowing the capture of system requirements,
processing resources, and design information and
alternatives. The environment also provides a model
interpreter, a program which verifies model consistency and
generates system specification and configuration
information from the models. Figure 1 depicts the design
flow, the steps a system designer would pass through when
building a system using the model-integrated approach.

Figure 1 Design Flow used in constructing a system with the
Model-Integrated Approach.

When designing systems using this approach, a first step is
to construct a system prototype, exploring and developing
the basic system algorithms and proving the fundamental
concepts behind the system. The platform for the prototype
is a simulation language and environment, such as Matlab.

After a system prototype has been constructed and tested,
the system is captured in models using the domain-specific
modeling environment. System algorithms are decomposed
into concurrently executing processes. Inter-process
communications are modeled as connections between
process models. Algorithms are modeled according to the
dataflow model of computation. Hardware resources and
physical interconnections are also modeled.

After completing the system models, the designer must
implement the processing components represented in the
models. Each process model represents an implementation
of a computation or algorithm tailored to a particular
platform. Component implementation involves designing,
implementing and testing each component individually,
and, most importantly, within the context of the system.

When the components have been implemented and verified,
the tools may be used to synthesize a system from the
models. The synthesis operation maps processes to
hardware resources, builds network initialization
specifications, and generates any "glue logic" needed to
facilitate inter-process and inter-processor communication.
With these specifications, the network may be loaded with
the synthesized system. The designer now tests the
generated system and handles system integration issues.

Construct/Evaluate
Prototype

Build / Refine
Models

Build / Test
Components

Synthesize / Test
Integrated System

The model-integrated approach has been shown effective in
a real-world application [2]. However, there are some
limitations that have become apparent through design
iteration. Figure 1 depicts the design flow, including the
paths of design iterations. When components are being
designed and implemented, it may become apparent that a
change to the system architecture is needed, requiring a
refinement of the models. Also, during system-wide
testing, integration may uncover inconsistencies between
component implementations, requiring further changes.
Each change in the models could require changes to
components. Major changes to the models could result in
the redesign and re-implementation of several components.
The designer runs the risk of redesigning components over
and over as design iterations proceed. If component
inconsistencies could be discovered earlier in the design
process, redesign could be avoided.

A few simple extensions of the current design tools have
been made which address these limitations. A simulation
engine, specifically Matlab, has been integrated into the
model-integrated approach to designing systems. The
modeling environment has been extended to allow the
capture of the Matlab environment as a processing resource,
and Matlab functions as process models. The underlying
runtime system has been extended to support the execution
of Matlab processes in the context of the network, and to
allow data to be exchanged between Matlab functions and
other processes running on the network.

2 Modeling Environment

The basis of the model-integrated approach is to model the
system to be built. These models can then be used to
synthesize the system.

2.1 Modeling a System

The modeling environment allows the user to capture
design information about a system. The computations and
algorithms used in the system are captured, as are the
resources. The design tools automate the mapping of
algorithms onto resources.

Resources represent any processing element used in the
final platform of the system. The possible processing
elements include PCs, DSPs, FPGAs and ASICs. Physical
communication paths between processing elements are
captured as connections between the ports of each element.
Each communication path has associated with it a protocol
for communication. Protocols are implemented to manage
the passing of messages from one type of element to
another. The use of protocols abstracts the differences
between how nodes in the network send and receive data.

Algorithms used in the system are modeled as well.
Algorithms consist of concurrently executing processes.
Each process represents a basic block of code or logic.
Inter-process communications are modeled as connections
between process models. A connection represents a stream
or queue of messages sent from one process to another.
Each process model is assigned resource category,
corresponding to the type of resource on which it may
execute. Alternative implementations of a particular
algorithm or process may be explicitly included in the
models as well. An alternative model includes several other
models, one of which will be used to implement the
process. By explicitly modeling design alternatives, the
modeler defines a design space, or a representation of many
possible system implementations.

The design tools automate many aspects of building the
actual system. A design space exploration tool aids the
modeler in selecting a particular design from the design
space. A code synthesis tool generates a network
configuration from the models, allowing a system design to
be loaded onto the network. Further, it maps a set of
algorithm models onto the processing network models,
associating inter-process communication streams with inter-
processor communication channels. It generates
initialization information for each node in the network and
creates all "glue logic" needed to connect hardware-
processes together. Outputs of the synthesis tool can be
passed through COTS VHDL and C compilers to generate
executable code, which can then be loaded onto the
network.

2.2 Modeling Environment Extensions

The modeling environment described has been extended to
support Matlab processes within a generated system. A
new type of resource model was created to represent the
Matlab processing environment. The Matlab resource
model is treated much the same way as a PC or DSP
processor: a processing element capable of executing
processes. Process models are allowed to have a resource
category of Matlab, meaning that the target implementation
platform of a process is the Matlab execution environment.
These extensions allow the designer to model processes
implemented in the Matlab language as part of the system.

3 Runtime System Architecture

The design tools synthesize systems tailored for a particular
runtime system architecture. The architecture has been
designed to be easily configured through model-based
system generation.

3.1 Basic Runtime Framework

The architecture consists of pieces of runtime support
executing on each node of the network. For a general-
purpose processor, this runtime support is provided in the
form of a simple kernel. For a programmable logic device,
the runtime support is provided through a virtual hardware
kernel [3], containing communication support and bus
arbitration. Figure 2 depicts the layers of support provided
by the kernel on a processor in the system. There may be
several processes allocated to a particular node. Processes
can exchange data through streams. A stream represents a
queue of messages, managed by the kernel, connecting a
source process to a destination process. A process may
send and receive messages through streams via an API
provided by the kernel. The kernel is responsible for
ensuring that messages enqueued into a stream reach the
appropriate destination process. Many times, the
destination process will reside on a different node than the
source process. In such a case, the kernel will send the data
to the appropriate node via one of its communication
channels. Each node may have several communication
channels connecting it to other nodes in the network. The
kernel drives the transfer of data across a channel through
software which implements a particular communication
protocol.

Figure 2 The kernel layers used to support inter-processor
communication.

The communication protocol which drives the hardware
consists of two functions, a send and a receive. The send
function is responsible for retrieving a message from a
kernel stream and invoking the communication hardware to
send it to the connected node. The receive function queries
the communication hardware to determine whether there is
a message which has been sent from the connected node,
and if so, transfers it to the appropriate kernel stream.

3.2 Extended Runtime Framework

The runtime framework has been extended to support the
addition of a Matlab resource. Matlab provides an API
through which a stand-alone program can access its
processing capabilities [4]. This API is referred to as the
Matlab Engine, and the runtime system is interfaced to the
Matlab environment through the engine. The API allows

the execution of Matlab commands, as well as the transfer
of data to and from the Matlab workspace.

Figure 3 depicts the interfacing of the runtime system to the
Matlab Engine.

Figure 3 Interface between the host kernel and the Matlab
environment.

To implement the interface between the host kernel and the
Matlab environment, a new communication protocol was
implemented, using the Matlab Engine software instead of
physical communication hardware to perform data
transfers. In order to support the execution of processes in
the Matlab environment as configured and specified in the
models, a software kernel layer was implemented using the
Matlab language. The Matlab kernel layer is responsible
for managing system message broadcast from the host and
streams for inter-process communication, just as a kernel on
a typical processor in the network. However, a principal
difference between a typical network processor and the
Matlab resource is that the Matlab environment will not
execute concurrently with the host kernel. The host kernel
will invoke the Matlab kernel layer through the
communication protocol layer. This implementation does
not physically implement the modeled semantics of the
Matlab resource being a separate processing element,
however, from the modeling perspective, the same behavior
is achieved when execution speed is not considered (a valid
assumption, considering process execution time on Matlab
vs. execution time on an embedded processor).

The kernel layer in Matlab maintains system state through a
set of persistent data structures, as shown in Figure 3. The
communication protocol layer on the host interacts with the
communication protocol layer in the Matlab environment
through the engine API. Messages sent from the host are
copied into arrays, which are placed into the Matlab
workspace. The host layer then invokes the Matlab layer
receive function, which decodes the message and places it
in the appropriate Matlab stream data structure. In a similar
fashion, the host receives messages from the Matlab
environment by invoking the Matlab layer send function,
which determines if there is a message waiting to be sent

Kernel Streams

Kernel Process API

P1 P2 P3

Inter-node Communication Protocols

Communication Hardware

Kernel Layer
Data Structures

P3P2P1

Matlab Kernel Layer

Matlab Kernel Layer Send/Receive

MATLAB ENGINE

Host Kernel Send/Receive

from a Matlab process. If a valid message is ready to be
sent, the message is copied into the host layer. The host
layer dispatches received messages to their appropriate
stream structures in the host kernel.

Whenever the host protocol layer functions are invoked,
regardless of whether messages were actually transferred,
the Matlab kernel layer is invoked through its entry point.
The Matlab kernel layer has a single entry point, through
which it invokes the system message management facilities
and then the process management facilities. Process
management attempts to schedule a process for execution.
When a process is scheduled, it accesses streams through
the kernel layer API, just as processes on a typical
processor do through their kernel API. The kernel layer
API functions access the data structures containing stream
messages.

Through this interface to the host kernel, the Matlab
execution environment can be used to perform
computations and exchange data with the processing
network. The communication protocol layers implemented
on the host and in Matlab abstract the details of how
messages can be exchanged between processes executing
on the Matlab resource and the network. The Matlab kernel
layer provides the execution semantics for a Matlab process
which is identical to the semantics of a process running
elsewhere in the network. The interface allows the Matlab
environment to be seen, from the perspectives of the
modeler and component builder, as just another processing
element in a heterogeneous processing network.

4 A Revised Design Flow

With the extensions to the design environment and runtime
system described, an improved design flow can be
achieved. Figure 4 depicts the emergent design flow using
the extended tools.

Figure 4 Design Flow used in constructing a system with the
extended Model-Integrated Approach.

System construction begins with modeling the system. As a
first step, a designer need not be concerned with the
implementation details of the target platform on which the
final system will run. Resource models may consist at this
point solely of the PC host and the Matlab resource, and
will be refined later in the design process. A process model
representing a Matlab realization is included as an
alternative implementation for each component. As each
Matlab process model is created, a simulation component
for the process is implemented in the Matlab language.
Matlab components make use of the kernel layer API to
exchange data with other processes through streams. A
Matlab component can typically be implemented much
quicker than a VHDL hardware component due to the
versatility and power of the Matlab language and built-in
functionality.

When the system algorithms have been modeled and the
Matlab components have been implemented, the synthesis
tools provided with the design environment can be used to
generate a functional system. This system will have all of
its components implemented in Matlab, and represents the
system prototype. This system prototype may be loaded
onto the host PC and tested. Instead of requiring the system
prototype to be hand-coded, the system can be generated
from a model. The benefits of modeling and system
synthesis can be applied at a much earlier stage in the
design process. In addition, the architecture of the
prototype reflects the implementation of the final system.

After synthesizing the system prototype, the designer can
test the generated system and refine the design, trying
different algorithms, bit-widths, etc. When a refinement to
a component interface is required, the component model
and corresponding Matlab implementation are updated, and
the system is quickly re-generated, and testing commences
again. In this fashion, the designer may iterate, adjusting
the system as needed, regenerating a prototype which is
consistent with the system models. This rapid, automated
prototype generation was not possible before the extensions
to the tools.

When the designer is satisfied with the prototype system,
component implementation can now proceed. Previously,
as components were built and tested individually, each was
tested with simulated inputs and a simulated processing
framework. The framework simulation had to be tailored
specifically for each component, and testing of a
component became tedious. With the updated tools, a
component can be integrated into the prototype, and the
prototype system can serve as the testing and simulation
framework. When implementing a component, a designer
would include in the alternative model for that particular
component another process model, which represents the
target implementation of the component. The resource
models may need to be updated to reflect the target
platform of the newly included component. After

Build / Refine
Models

Synthesize / Test
Prototype

Build/Test/Integrate
Components

Test Final
System

implementing the particular component, the designer then
synthesizes a system with the newly implemented
component replacing the Matlab version. Because the tools
automate this swapping of components, the synthesis of the
new system is rapid. Testing of the generated system will
now focus on the newly implemented component, because
all other components of the system have been verified
previously. The visualization power of Matlab is very
useful in this situation, allowing the designer to view,
manipulate, store or inject data entering or leaving the
component under test through the remaining simulation-
based components in the system.

System components can be implemented in this manner,
one by one, testing each in the context of the final
application, using the system prototype as the testing
framework. This approach saves the time of having to
build a testing framework for each component, and is
arguably a better means of testing components, because it
tests each component in a context which is much closer to
the actual execution environment. It is also possible that
component implementation may uncover design
inconsistencies, requiring an adjustment to the models.
When this occurs, the models can be updated, along with
the Matlab versions of the affected components and a
prototype can be re-synthesized and tested in a controlled,
step-by-step manner.

Another benefit provided by the extended tools is a better
system integration. Previously, system integration could
not be addressed until the components were implemented.
Using the extended tools, components can be integrated
into the prototype system one at a time. As each
component is implemented and verified, a system using any
combination of previously implemented and verified
components can be synthesized and tested. This allows
system integration issues to be viewed during the
component-implementation phase. Prior to the tool, system
integration could be a costly and time-consuming process
due to design iteration caused by the need to redesign
components. With the extended tools, system integration
issues can be examined much earlier in the design process,
at component implementation time. When system
integration issues are identified and addressed at this early
stage, costly design iterations, which would occur later in
the design phase, are avoided. With the extended tools,
design iteration is no longer penalized, but rather supported.

After all the components of the system have been
implemented and verified, a final system can be synthesized
from the models. This final model is then tested to be sure
no system integration issues remain.

5 Conclusions

The design of high-performance, complex embedded
systems is difficult. A system design tool has been shown
to automate the design and implementation of such systems.
Through some simple extensions, this design tool has been
greatly improved. By interfacing the Matlab simulation
engine to the runtime system, a better model-integrated
approach to building systems has been derived. System
prototypes may be synthesized from the system models.
Components can now be built and tested from within the
framework and context of the final system. System
integration issues can now be examined as components are
integrated one-by-one into the system. A new model-
integrated design approach to generating complex
embedded systems results, providing a solid design process
and framework in which to construct systems.

Acknowledgements

This project is a DARPA Adaptive Computing Systems
funded effort, involving close cooperation with US
ARMY/AMICOM.

References

[1] T. Bapty, S. Neema, J. Scott, J Sztipanovits, S. Asaad,
“Model-Integrated Tools for the Design of
Dynamically Reconfigurable Systems,” VLSI Design,
Vol. 10, pp. 281-306, 2000.

[2] J. Nichols and S. Neema, "Dynamically
Reconfigurable Embedded Image Processing System,"
Proceedings of the International Conference on Signal
Processing Applications and Technology, Orlando,
FL, November, 1999.

[3] J. Scott, S. Neema, T. Bapty. "Runtime Environment
for Dynamically Reconfigurable Embedded Systems,"
Proceedings of the International Conference on Signal
Processing Applications and Technology, CD-ROM
Reference, Orlando, FL, November, 1999.

[4] Matlab Application Program Interface Guide. The
MathWorks, Inc, 1998.

