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CHAPTER I 

INTRODUCTION 

 The design and implementation of complex embedded systems is difficult.  New 

and innovative applications push stringent requirements, necessitating improvements in 

technologies and system design methodologies.  Current design philosophy is highly 

dependent on simulation.  Simulation provides a means to develop, test, and evaluate 

designs prior to committing to implementation, allowing design flaws to be detected and 

corrected early in the design process.  Model-based approaches to system design have 

been introduced to facilitate the design of complex systems at a higher level of 

abstraction.  The integration of simulation capabilities into a model-integrated embedded 

system design tool provides an improved framework for developing complex embedded 

systems. 

Embedded Systems 

 Embedded systems form a broad class of computer-based systems.  In general, an 

embedded system is a computer system that interacts directly and dynamically with its 

environment.  These interactions are often facilitated through sensors to discern the state 

of the environment, and actuators to change or update the state of the environment.  

Embedded systems are used in a wide variety of applications, from military domains to 

end-user products.  Examples of such systems include digital cellular telephones, anti-

lock braking systems in automobiles, flight control systems in avionics, and missile 

guidance systems.  This thesis discusses the design of a specific class of embedded 
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systems, that of digital signal- or image- processing systems.  When embedded systems 

are mentioned in this thesis, we refer to this particular class of embedded systems.   

Traditional System Design Approach 

 The first step in an embedded system design is to clearly define the system to be 

designed.  The system stakeholders hold discussions with the designers until arriving at a 

high-level understanding of what the system will do, as well as a general idea of how it 

will be constructed.  System design requirements are formed from these discussions, 

documenting what the system will do.  The high-level concept of how the system will be 

constructed is documented in the form of architecture diagrams and system-level block 

diagrams.  After iterating with the stakeholders through this process of developing and 

analyzing requirements and high-level design architectures, the designers may proceed 

with the more detailed system design work, driven by the requirements. 

The steps involved in the detailed system design are depicted in Figure 1.  In the 

first step, a developer constructs a simulation of all or parts of the initial high-level 

system architecture, with the intent of not only visualizing the system, but of verifying 

the high-level design against the system requirements.  Issues discovered at this stage 

may require the refinement of the high-level design architecture or perhaps further 

refinement of the system requirements.  It is important to note that issues which go 

undiscovered at this stage will propagate into later design stages, and, when discovered 

can be difficult to correct.  For this purpose, simulation is utilized early in the design 

process, to ensure the initial design is correct at a high level.  Another purpose of 

simulation at this stage is to gather sufficient information about the system to allow rough 

analyses of design approaches and tradeoffs.  Simulations are designed to provide 
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sufficient accuracy and detail to allow the detection of design flaws.  However, because 

little is known at this stage about the lower level details of the design, it is not possible to 

obtain highly accurate simulations.  Therefore, as a general rule, at this stage accuracy 

and detail are traded in favor of rapid execution.  Designers often make use of a 

simulation language and/or package such as Matlab [13] to develop these high-level 

simulations.  Matlab facilitates the rapid development and evaluation of simulation 

prototypes through its powerful data visualization capabilities and extensive libraries.    

Simulate Initial
System Architecture

Design Components

Implement / Test
Components

Integrate / Test
Complete System

Develop Component
Interfacing

 

Figure 1.  Design flow often used in embedded system development 

 After simulating the initial design architecture, the designer proceeds to design the 

system components.  Components form the fundamental building blocks of the 

application.  Each component is designed individually.  Good design practice dictates that 
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components should conform to well-defined and documented interfaces, and should 

provide specific entry points.  A first step in the development of a component is to 

construct a simulation of the component’s behavior.  The purpose of the component 

simulation is the same as the simulation of the initial design architecture, to verify the 

design against the system requirements, or to verify that the component does what it is 

intended to do.  Only after this verification through simulation has been performed should 

the designer proceed to the more tedious and expensive step of component 

implementation.  Upon completion of the component implementation, the developer tests 

the component by simulating the inputs and execution environment of the component.  

The behavior of the component implementation can be compared against the component 

simulation to verify proper functionality.  The developer iterates over this process until 

all components have been implemented and verified. 

 The next step in the design process is system integration.  At a high level, 

integration involves properly connecting components together to form the final system.  

The code used to connect components is often referred to as “glue” or “glue code” for 

obvious reasons.  The developer must tailor glue code for the particular components in 

the system.  Another part of system integration is the configuration of runtime 

middleware to properly support the execution of the system components.   

At first, the concept of system integration may seem trivial.  However, issues can 

arise at this late design stage, which force costly redesign efforts.  For example, 

components could export incompatible or inconsistent interfaces.  In this case, it is 

possible that the individual components were designed and implemented properly, but the 

system cannot be fully integrated.  The result is that one or more of the affected 
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components will need to be refined and tested again.  Situations such as these stall the 

design process, forcing the designer to iterate to a previous stage in the design flow.  

These types of design iterations are costly, especially when discovered late in the design.  

When finally the designer succeeds in interfacing all the components together, the system 

as a whole is tested against the requirements.   

Simulation in System Design 

 As illustrated above, simulation plays an important role in system design.  

Simulation allows the incremental verification of a system during development, allowing 

flaws to be uncovered early in the design.  Further, simulation allows application 

development to proceed simultaneously with, or even prior to, the development of the 

system execution platform.   

There are two basic types of simulation: performance and functional.  A 

performance simulator abstracts the details of how a system performs its tasks in favor of 

simulating the temporal aspects of the system.  A functional simulation captures the 

behavior of a system, allowing the designer to verify whether a system meets functional 

requirements.  Simulators also vary in their level of detail and accuracy.  A high-level 

simulator offers a less detailed, less accurate view of a system in favor of a rapid 

execution time.  A high-level simulation is used when low-level system details are not 

needed or are not known.  A low-level simulator provides fine-grained, more accurate 

details at the cost of longer simulation times.   

Many different simulators are in use today.  For software, instruction set 

simulators allow software to be interpreted and “executed,” allowing a developer to trace 

through source code and view the internal state of a simulated processor.  For hardware 
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components, HDL simulators allow designs to be simulated and signals to be examined.  

There are many different levels of HDL simulation, each offering a different level of 

resolution, and each requiring a different execution time.  Some products claim “co-

simulation” capabilities [21], where a developer provides models of hardware and 

software, and the simulation records their interactions on execution.  There are a plethora 

of development tools currently on the market offering simulation capabilities.  It is 

beyond the scope of this thesis to provide an exhaustive review of these tools.  However, 

see [16] for an example of an instruction set simulator, and [17] for an overview of 

different HDL simulators and a sampling of HDL simulation vendors.  Another product 

of interest is Simulink by The MathWorks, Inc [18].  Simulink allows a user to 

graphically represent a system as a set of block diagrams.  Each block is driven by a 

Matlab function, and Simulink provides the glue to connect each block and facilitate data 

exchange.  Simulink interfaces with a product called xPC [19], allowing a target 

embedded processor to execute actual system components “in-the-loop” with system 

simulation code.  A developer may model a system using Simulink and then execute 

actual system components as if they were part of the simulation.  This approach is similar 

to the virtual prototyping discussed in this thesis. 

A Model-Integrated System Design Approach 

 Another approach to system design involves modeling.  A model is an abstraction 

or higher-level representation of a system and its components.  Through modeling a 

system, a designer can focus on those details which are most important and relevant at 

each stage in the design.  A model-integrated approach to system design involves the 

construction of system models using a graphical domain specific modeling language.  
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System components and interconnections can be represented graphically as signal flow 

diagrams.  The system execution platform can be captured as block diagrams 

representing processing elements, with interconnections representing communication 

links.  A translator program, called a model interpreter, is then executed, which 

synthesizes an executable system from the diagrams.  The translator automates system 

integration by generating the necessary component interfacing code, as well as the 

runtime middleware configurations.  The designer must still design and implement the 

system components, but the model interpreter handles the details of system integration.  

The power of the model-integrated approach lies in the abstraction of unnecessary or 

redundant details, allowing a designer to focus on what is most important in system 

design.  [15] discusses the general concepts behind Model-Integrated Computing (MIC). 

 A tool embodying the principles of model-integrated system design for embedded 

systems has been developed as part of the Adaptive Computing Systems project at the 

Institute for Software Integrated Systems [10].  This design tool allows a developer to 

model complex embedded signal and image processing systems, and provides system 

synthesis capabilities.  The toolset greatly simplifies many of the complexities associated 

with the design of complex signal processing systems.  The design tool, however, does 

not provide any integrated simulation capabilities, the benefits of which have been 

discussed.  While a designer can simply use other tools to perform system simulations 

and then use the ACS toolset to model and synthesize a system, a tool merging the 

modeling capabilities of the ACS toolset with the benefits of simulation will aid the 

developer in many ways.  The integrated toolset will allow the development of systems 

from a single design representation, instead of the separate representations required for 
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each of the various simulators used, as well as the system models captured in the toolset.  

Further, the integrated toolset will allow the developer to apply simulation techniques in 

the model-integrated design process, aiding the development of high-level simulations of 

the initial concept design architecture, as well as component design simulations.  

Integrating simulation into the ACS toolset not only integrates the benefits of system 

simulation in the model-integrated design approach, but also streamlines the design flow 

of system development.   

Model-Integrated Simulation Package 

 This thesis discusses the integration of high-level simulation capabilities into the 

ACS system design toolset.  Chapter II provides as background a detailed introduction to 

model integrated computing and the ACS system design toolset.  Chapter III describes an 

extension to the ACS toolset, which generates high-level functional simulations directly 

from the signal flow diagrams and component models, facilitating simulation during 

model construction.  Chapter IV discusses the integration of virtual prototyping into the 

ACS toolset, allowing pieces of the system to execute in simulation concurrently with 

actual component implementations at runtime.  Virtual prototyping provides a framework 

not only for visualizing the system, but also for simulating and testing components as 

they are developed.  Chapter V analyzes the effects of these toolset extensions on the 

ACS design flow, and Chapter VI discusses the thesis conclusions and future work. 
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CHAPTER II 

BACKGROUND: MIC AND THE ACS TOOLSET 

 The embedded system design community has exerted much effort in creating 

sophisticated high-level system design tools to simplify the complexities of embedded 

system design.  A design tool incorporating the concepts of Model-Integrated Computing 

has been produced as a product of the Adaptive Computing Systems (ACS) project at the 

Institute for Software Integrated Systems [10].  The ACS toolset facilitates the design and 

implementation of high-performance adaptive signal and image processing embedded 

systems. 

Model-Integrated Approach to System Design  

 Model-Integrated Computing is an approach to the analysis and development of 

information systems.  It involves the use of models to represent domain concepts at a 

high level of abstraction.  The model-integrated approach to system design [14] involves 

graphically representing a system at a high level of abstraction using a domain specific 

graphical modeling language, and then performing system synthesis from the models.  

The modeling language, also called a paradigm, embodies concepts from the domain of 

the system to be designed.  A generic modeling editor is configured to support the 

domain specific modeling language, allowing a user to capture system components and 

specifications abstractly in the form of models.  Insignificant or unnecessary details about 

the system are omitted from the models, allowing the user to focus on those aspects of the 

system that are most relevant to the system design.  After a system is modeled, a 
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translator program, called a model interpreter, is invoked to perform useful translations 

from the models.  Precisely what translations take place depends on the application 

domain.  For example, an interpreter could be constructed to translate information 

captured in the models into input for a domain-specific analysis tool.  For an embedded 

systems domain, an interpreter could be constructed which translates system models into 

code and runtime configurations for an embedded system.   

 There are several benefits of the model-integrated approach to system design.  By 

abstracting away unnecessary details through system modeling, the developer can focus 

on those aspects of the system which are most important during the design.  This 

abstraction facilitates the design of complex systems at a much higher level, mitigating 

much of the complexity, allowing complex systems to be constructed correctly and 

efficiently.  The concept of system synthesis through model interpretation is the vehicle 

for facilitating the abstraction.  The interpreter shields the developer from many of the 

low-level system details which are unimportant at the system level.  The model-

integrated approach is to an extent flexible to design iteration and requirements change, 

because systems are synthesized from models.  When a change in the design is required, 

a simple update to the models is made along with any needed updates to user-developed 

components, and the system is re-synthesized.  This approach to system design and 

development has been demonstrated in several different applications 

[1][3][4][5][6][7][8][9]. 

The ACS System Design Toolset 

 The ACS design toolset facilitates the development of adaptive signal- and image- 

processing embedded systems.  Signal- and image- processing systems can be 
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represented as signal flow diagrams, with blocks in the diagram representing system 

components, and connections as paths for data exchange between components.  An 

adaptive system is defined as a system which transitions between discrete modes of 

execution, where each mode consists of a distinct set of components and 

interconnections.  When an adaptive system transition from one mode to another, the set 

of components corresponding to the second mode is activated, replacing the set of 

components from the first mode.  A missile guidance system can be constructed as an 

adaptive image processing system.  In the first mode, the system seeks multiple targets at 

a long range, and lower frame rates and lower power consumption levels are acceptable.  

As the missile nears the general area of the possible targets, the system transitions to a 

new mode where the frame rate is increased while the system attempts to single out a 

small set of distinct targets, determining the best target to track.  At a close range to the 

determined target, the missile enters a third and final mode, where the frame rate is at a 

maximum, and the missile focuses on a single target, tracking all changes in its position 

until impact.  The three distinct processing modes of the system have different goals and 

requirements; yet together form a single system.  Obviously, the design of adaptive 

systems is difficult, involving many issues.  The ACS toolset was developed to mitigate 

many of the complexities behind the design of such systems.  

The ACS toolset embodies the principles of the model-integrated approach to 

system design.  It provides a rich graphical modeling language and graphical model 

editor to allow the capture of system characteristics and specifications as models.  A 

model interpreter is provided, which translates system models into a set of configurations 

for an embedded runtime environment, which has been designed to support component 
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execution on a heterogeneous network of processing elements.  The following sections 

describe the ACS graphical modeling language, the supported runtime environment, and 

the model interpreter.   

The ACS Modeling Language 

 The ACS modeling paradigm allows the capture of applications at a high level of 

abstraction.  When designing an adaptive system, the three principle areas of concern are 

the development of system components and their interactions, the establishment of the 

different modes of execution and the transition conditions governing mode transitions, 

and the development of the execution platform on which the application will run.  The 

modeling paradigm supports each of these three areas of design by allowing the user to 

independently model the hardware or processing resources of the system, the components 

and their interconnections, and the adaptive behavior governing the modes and 

transitions.   

Modeling System Resources 

 As adaptive systems typically execute on heterogeneous processing networks, the 

paradigm supports the modeling of several distinct processing elements.  FPGAs, ASICs, 

PCs, DSPs, general-purpose processors and Memory are represented as blocks in a block 

diagram.  Boards or cards are captured as collections of basic resources.  Point-to-point 

communication links between resources are captured as connections between the ports of 

different blocks.  Figure 2 shows an example of a resource model.  This figure represents 

a heterogeneous signal processing platform, with a host processor connected to a 

TMS320C40 DSP, which is connected to a TMS320C67 and an Altera FPGA.  The 

FPGA is connected to a local bank of SDRAM.  Each connection represents a physical 
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communication link or channel between resources.  As links in the network each realize a 

communication protocol, the modeler may select the appropriate protocol for a link by 

setting the Protocol attribute of the ports on either end of the link.  By modeling system 

resources separate from the application components, details of the application 

development have been abstracted away from the platform development.  However, 

sufficient information has been captured in the resource models to facilitate application 

development.   

 

Figure 2.  Model of system resources, showing a heterogeneous processing network 

Modeling System Components 

 As previously described, adaptive systems consist of concurrently executing and 

communicating components.  Components exchange data through message passing.  

Components and their interactions can be conveniently represented as a type of signal 

flow diagram, with the nodes of the diagram representing the components, and the 

connections representing streams through which messages are passed from one 

component to another.  The paradigm supports the capture of these signal flow diagrams 
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according to the dataflow formalism.  The paradigm also supports hierarchical 

composition of components, facilitating the capture of complex designs in a compact 

format.  Atomic components (those which do not contain other components) are referred 

to as primitives and are captured in the modeling paradigm as ProcessingPrimitive 

models, while hierarchical or composed components (constructed from the components 

contained in it) are referred to as compounds and are captured as ProcessingCompound 

models.  Primitives are realized by the developer as code or VHDL hardware. 

 The modeling paradigm also supports the capture of design alternatives.  A model 

called a ProcessingTemplate or template can be included to represent a collection of 

alternatives.  At model building time, the developer is allowed to specify several 

alternative implementations for a given component by including a model of each in a 

template.  In a later design stage, the model interpreter will allow the developer to select 

which of the alternatives is to be actually used in the final system.  The selected 

component contained in the template will effectively replace the template in the model 

hierarchy, and the remaining alternatives will be ignored.  By explicitly including design 

alternatives in the models, a developer is not forced into a single implementation early in 

the design phase.   

Component Composition Through Dataflow 

 Component interactions are captured following the semantics of the dataflow 

formalism.  A compound component is captured as a signal flow block diagram.  The 

blocks represent other components, and the directed connections between the blocks 

represent directed channels through which messages are passed.  Data is said to flow 

through the network during execution because when a component executes, it consumes 
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inputs and produces outputs. Inputs are removed from the message channels connected to 

the inputs of a component, while outputs are enqueued into the message channels 

connected to the outputs of the component.  Typically, a component can only execute 

when some or all of its input channels have messages available for consumption.  Thus 

the order of execution of the components is a function of the state of the message 

channels, or the data flowing through the network.   

 There are two general classes of dataflow models, asynchronous and synchronous.  

In synchronous dataflow [20], sufficient information is captured in the models to be able 

to schedule the order of component execution at model interpretation time.  The 

necessary information to determine schedulability is the number of messages or tokens a 

component will consume on each input channel on each invocation, as well as the 

number of tokens on each output the component will produce per invocation.  If this 

information is known at model-building time, a schedule of execution for the components 

can be constructed [20].  In many systems, however, it is not known at model building 

time how many tokens each component will consume and produce, and some 

components may require a variable number of tokens per invocation.  For systems 

containing such components, asynchronous dataflow can be used to represent the system.  

Component scheduling in an asynchronous dataflow system is performed strictly at 

runtime.  In the runtime environment provided with the ACS toolset, the components 

participate in determining their own schedulability.  The runtime environment maintains 

the channels connecting components, and allows components to access the channels 

through an API.  When a component is invoked by the runtime environment, it is 

responsible for determining whether there are sufficient input tokens awaiting 
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consumption to allow the component to execute.  Further, because all message channels 

have finite buffer space, the component must determine if there is sufficient space in the 

channels connected to its outputs to hold the tokens to be produced by its execution.  If 

both conditions are met, the component performs its computation.  If not, the component 

yields control to the runtime environment.  Scheduling proceeds in this cooperative 

manner, with the runtime environment simply executing all components in a round-robin 

fashion, and those that determine themselves “ready” to execute, perform their 

computation, while those that do not, wait for a future invocation.   

The modeling paradigm supports the semantics of asynchronous dataflow for 

representing components and component interactions.  Each component can contain input 

and output ports.  A port can be connected to a port of another component.  Such a 

connection models a channel through which the first component can send messages to the 

second.   

Hierarchy in composed models is merely a means of visually simplifying a signal 

flow diagram.  Because complex adaptive systems often contain several components, a 

diagram representing all the primitive components in one level would be very difficult to 

comprehend.  Compound components were introduced into the modeling language to 

facilitate the capture of systems with several components, through allowing complex 

components to be represented as compositions of simpler components.  However, at 

runtime, only the primitive components will actually form part of the system.  The model 

interpreter flattens the hierarchy by replacing each compound component with the 

components and interconnections of which it is composed.   
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 A simple control system application can be developed using the ACS toolset.   

For example, consider a system consisting of two sensors that detect information about 

the physical state of the system to be controlled, an actuator which adjusts the state of the 

system, and a software controller which reads the sensors, calculates any required 

adjustments to the state of the system, and sends control signals to the actuators.  A 

model of the system controller is represented in Figure 3.  The two leftmost components, 

ReadSensorA and ReadSensorB are ProcessingPrimitive models, and represent 

components responsible for reading the sensor information.  The comparison component 

is represented as a ProcessingTemplate model, containing models of alternative 

implementations of the comparison algorithm.  The GenerateCorrection block is a 

compound, representing group of components whose aggregate behavior implement the 

correction generation.  One of the components within the GenerateCorrection compound 

is responsible for interacting with the system actuators (not shown in the figure).  All 

solid connections in the figure represent dataflow connections.  The purpose of the 

InitialStatus icon will become clear in a later section. 
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Figure 3.  Example of ProcessingPrimitive, ProcessingTemplate, and ProcessingCompound models. 

Modeling System Modes and Mode Transitions 

 As stated previously, the paradigm allows the modeler to represent the adaptive 

behavior of the system.  System modes are captured as the states of a finite state machine.  

Transitions between modes are captured as the conditions governing the transition 

between the states.  Transitions are conditioned on global system events, which are also 

represented.  Each mode is associated with a top-level compound model, representing the 

computations the system is to perform while in that mode of execution.   

ACS Runtime Environment 

 The ACS toolset provides a runtime environment tailored for seamless integration 

into the model-integrated approach to system design [11].  At runtime, adaptive systems 

consist of multiple components executing concurrently on multiple processing resources.  

The runtime environment provides services and support for system components, 

abstracting from the components the details of inter-component and inter-node 
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communication.  The runtime environment consists of a standalone kernel for each 

processing node in the network.  For FPGA nodes, the kernel is a virtual hardware kernel, 

providing for bus arbitration and communication port sharing.  For processor nodes, the 

runtime environment consists of a thin real-time kernel which manages inter-process 

communication, as well as a deterministic dynamic memory management layer.  The 

real-time kernel for a given processor is responsible for scheduling all processes mapped 

to that processor.  It also facilitates the broadcasting and dispatching of kernel-level 

messages across the network as they are received from other nodes or from the host.  The 

runtime environment supports dynamic reconfiguration by allowing the host to broadcast 

code corresponding to a new mode through the network followed by a reconfiguration 

command.  The network will then reinitialize itself and begin executing the new mode.   

ACS Model Interpreter 

 The ACS model interpreter is responsible for mapping system modes to runtime 

system configurations.  The model interpreter automates the process of selecting between 

design alternatives, allowing the developer to select a single point design from the design 

space.  Next, the interpreter generates code to configure the runtime environment to 

support the execution of the components captured in the models.  The developer must 

select a mapping between components and processing resources, either by explicit 

referencing between models in the modeling environment or by selecting one of a set of 

mappings offered by the model interpretation process.  The interpreter generates 

configuration code for each of the resources in the network to allow each resource to 

support the components that are mapped to it.  For FPGA components, the interpreter 

generates VHDL code to connect the primitive components to the virtual hardware 
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kernel.  The output of the model interpreter may then be compiled by COTS tools, 

specific to the particular resources used in the network, and then loaded and run.   

 Because systems are synthesized in this fashion from the models, many issues in 

the non-model-based approach to system design are avoided.  For example, primitive 

component implementations must conform to the interface supported by the runtime 

environment.  By specifying the interface in the models, the interpreter may then generate 

a configuration of the runtime environment to support that particular interface.  When 

system integration is performed, the only possible interfacing inconsistency that can 

occur is if the developer incorrectly specifies or implements a component.  System 

synthesis generates the integrated system, therefore a system will be correct by 

construction, assuming the model interpreter properly performs its function and the 

primitive components are correct.   

ACS System Design Flow 

 The ACS toolset provides a framework for developing adaptive embedded 

systems.  After the stakeholders and designers have established the system requirements 

and have agreed on a high-level system architecture, the detailed design using the ACS 

toolset may begin.  The steps taken in system development when using this toolset are 

depicted in Figure 4.  The first step is to model the system using the graphical modeling 

language.  During this step, the developer begins with the high-level system architecture, 

and recursively refines complex components into simpler components until arriving at the 

primitive level.  Paths of data exchanges between components are captured as well.  The 

different modes of operation are derived, along with the conditions for mode 

transitioning.  The resources of the system are captured in the resource models, as are the 
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communication links between resources.  After this step, the developer proceeds to 

implement and test individual primitive system components.  Primitives implement the 

interface captured in the models, and after implementation, should be thoroughly tested to 

ensure proper behavior.  After implementing the components, the full system can be 

synthesized through model interpretation and tested.  It should be noted that even though 

the system is synthesized from the models and the components, and each component has 

been individually tested, the developer still needs to test the integrated system to ensure 

complete consistency.   

Construct System
Models

Implement / Test
Components

Synthesize / Test
Integrated System

 

Figure 4.  Design flow applied when using the ACS system design tools to construct embedded systems.   

 Iteration is an inevitable part of any system design.  Iteration occurs when a 

problem or issue is uncovered in a later design phase, causing the design process to start 

again from a higher level and proceed again.  Obviously, excessive iteration is wasteful.  

However, iteration must be expected in system design, because early in the design 

process developers are not always aware of all issues pertaining to the system under 

construction, so many issues must be dealt with as they are discovered.  Also, even the 

best developers are not infallible, and mistakes, however minor, will be made.  The ACS 
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design flow provides flexible paths for design iteration to occur.  Due to the intuitive 

graphical nature of the modeling environment, constructing and updating models is not 

difficult.  When component implementation uncovers, for example, a problem with the 

modeled interface to a component, it is not difficult to quickly change the modeled 

interface and proceed with the implementation.  When system integration uncovers a 

problem with a component implementation, that component will simply be adjusted and 

system testing may proceed.  If system integration uncovers a problem requiring an 

adjustment to the models, it is a simple issue to update the models, update the 

corresponding component interfaces, and re-synthesize the system.  The ACS toolset 

offers a flexible and intuitive infrastructure for developing embedded systems.   

 However, the ACS toolset supports no concept of simulation, the benefits of 

which were discussed in Chapter I.  Even though the developer may perform simulations 

in separate tools, an integrated support for simulation will allow system development to 

proceed from a single design representation.  Further, as a consequence of integrating 

simulation capabilities with the ACS runtime environment, an infrastructure for 

component testing and debugging is developed.   
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CHAPTER III 

 HIGH-LEVEL FUNCTIONAL SIMULATION SYNTHESIS 

 When modeling a system, a designer may want to simulate a design prior to 

committing to implementation.  A functional simulation is a representation of a system 

which can be executed to verify intended system behavior.  A high level functional 

simulation allows a designer to check a coarse-grained design against general functional 

system requirements.  This type of simulation is often performed when laying out a 

block-level representation of a system, and allows a developer to check for errors and 

inconsistencies in the design before proceeding to a lower-level, more detailed stage of 

development.  The MatSim model interpreter has been developed to generate a functional 

simulation from a set of application models.  This simulation can then be used to compare 

modeled behavior against high-level functional requirements.   

 As stated in Chapter I, a first step in the detailed design of a system is to simulate 

the initial design architecture derived from the requirements analysis design phase.  

Chapter I also discussed the popularity of the Matlab language and environment as a 

platform on which to develop these high-level simulations.  A developer can easily model 

the initial design architecture using the ACS modeling language and environment.  

MatSim provides the ability to translate these initial system models, subject to a certain 

set of constraints on modeling semantics, into a set of Matlab subroutines which can be 

executed together with user-provided primitive component simulation subroutines to 

simulate the system.   
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The goal of the MatSim tool is to allow the developer to simulate complex 

components.  As discussed in Chapter II, complex components are known as compound 

components, and are composed of primitive components and other compound 

components.  It is not the goal of MatSim to simulate the adaptivity of an adaptive 

system.  Generated simulations represent a single mode of operation.  However, the 

developer may use MatSim to generate simulations for each individual system mode.  

MatSim does not attempt to simulate component executions on the individual processing 

resources.  MatSim generates a high-level functional simulation for a modeled system.  

The details of executing a component on one resource versus another are abstracted away 

at this level.  Further, MatSim does not attempt to generate a simulation for a design 

space.  As such, it is assumed that all design alternatives have been resolved through the 

ACS model interpreter, and that the input to the MatSim tool is a single point design from 

the modeled design space. 

In keeping with the philosophy of the ACS toolset that the precise semantics of 

primitive components are not captured in the toolset, MatSim does not attempt to 

generate simulation code for the primitive components of a system.  Instead, MatSim 

assumed that the developer provides a Matlab function to simulate each primitive 

component in the system.  MatSim generates a Matlab code framework to invoke the 

primitive simulation functions provided by the developer.  A drawback to this approach, 

as shall be seen, is that in the development of MatSim, it was necessary to make a 

simplifying assumption about the component diagrams, affecting the semantics of the 

system models.  MatSim assumes that system models conform to a restricted set of 

dataflow semantics.  MatSim will not generate a correct simulation of components which 
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do not conform to the restricted semantics.  Details of the semantic restrictions will be 

enumerated in a later section.  

MatSim is meant to be a tool to be used during the model construction stage of 

system design.  During the system modeling stage, a developer recursively breaks 

complex components into simpler pieces until representing the simple atomic 

components as primitives.  When modeling the initial design architecture, the designer 

can represent complex components as primitives to achieve an initial design model.  A 

simulation for each of the complex primitives can then implemented in the Matlab 

language, and MatSim can be used to synthesize a simulation for the design.  The 

developer can then verify the initial design concept against high-level functional 

requirements.  The designer next proceeds to break complex components into simpler 

pieces by replacing primitive models representing complex components by compound 

models containing simpler components.  This design can be simulated by breaking the 

code representing complex primitives into code representing simpler primitives.  The 

developer can invoke MatSim again to generate the simulation framework around the 

new set of component simulations.  At each step of the design, the developer may 

generate a simulation of the modeled system (assuming the restricted modeling semantics 

required by MatSim have been applied) by creating simulations for each primitive 

component in the system and then invoking MatSim to create the framework.  The 

system modeling design stage is completed when all components have been resolved into 

their level of granularity as appropriate for the design.  Following the process of breaking 

complex component simulations into several simpler component simulations according to 

the recursive decomposition represented in the models provides the developer at the end 



 26

of system modeling with a high-level Matlab simulation of each component in the 

system.  Assuming the behavior resulting from the MatSim-generated simulations has 

been verified by the developer, at the end of the modeling design stage, the final Matlab 

component simulations can be used as functional specifications for component 

development in the next design stage.   

The MatSim tool allows the developer to generate Matlab simulations directly 

from component models.  The following sections describe the semantics of this 

translation, along with its corresponding modeling implications.   

Matlab Representation of System Component Models 

 As discussed in Chapter II, components are modeled in the form of hierarchical 

signal flow diagrams.  Primitive system components are represented in the ACS 

modeling language as ProcessingPrimitive models, while collections of components are 

represented as ProcessingCompound models.  The next sections discuss how MatSim 

generates a functional simulation from these types of models.   

Primitive Component Models 

 Primitive components form the basic building blocks of the system.  In Matlab, 

the basic block of code is a function or subroutine, and as such, primitive components are 

represented as Matlab functions.  As stated previously, the behavior of primitive 

components is not captured in the ACS modeling tool, so the developer is required to 

supply the Matlab functions simulating the intended behavior of each system primitive.  

MatSim generates a framework around these user-provided primitive functions.  The 

generated framework is responsible, among other things, for ensuring the proper 
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invocation of each component.  Thus, MatSim must have the ability to discern how to 

invoke the function based on the model of the function.  In order for the framework 

generated by MatSim to properly invoke a user-provided primitive function, the function 

signature or prototype must match the port signature of the primitive model it represents.  

MatSim assumes that the ports of a primitive model represent parameters or arguments of 

the model’s corresponding function.  Each input port represents an input parameter, and 

each output port an output parameter.  The name MatSim uses to generate the function 

invocation is derived from the “Script/Component name” attribute of the 

ProcessingPrimitive model.  Figure 5 depicts a ProcessingPrimitive model named 

DoCorrection.  The model has two input ports, Correction and Position, and output port 

Out.  The “Script/Component name” attribute has been set to “doCorrection.”  MatSim 

assumes a correspondence between the name of the function realizing the primitive and 

the scriptname attribute.  MatSim requires the primitive simulation function to have the 

letter “M” concatenated with the name provided in the scriptname attribute as its name.  

The addition of the “M” to the beginning of the name avoids certain name mangling 

issues which arise due to system modifications discussed in Chapter IV.  The function 

that simulates the DoCorrection component should therefore be named “MdoCorrection”.  

The function MdoCorrection, shown in Figure 6, correctly represents the DoCorrection 

model of Figure 5.   
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Figure 5.  A ProcessingPrimitive model with ports and a scriptname, to be translated into a Matlab function 

 

Figure 6.  User-provided function represented by the Primitive model in Figure 5. 

 If the framework generated by MatSim is to properly invoke the user-provided 

primitive functions, parameter passing is significant.  Not only must the correct number 

of parameters be passed, but those parameters must be passed in the proper order.  The 

proper ordering of parameters is determined by the numbering assigned to the ports in the 

models.  When building models, the designer assigns a number to each input port and 

each output port by setting the corresponding port number attribute field.  Ports of a given 

model should be numbered sequentially, starting with zero, and input ports are numbered 

independent of output ports.  In the case of the DoCorrection model of Figure 5, the 
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Correction port’s port number attribute has been set to 0, while that of the Position port 

has been set to 1.  The output port Out’s port number has been set to 1.  The code in 

Figure 6 correctly corresponds to the DoCorrection primitive model, having the 

Correction parameter first in the input parameter list, followed by Position, and Out as the 

only output parameter.  When the developer follows the conventions stated here about 

parameter ordering, as well as function naming, the framework generated by MatSim will 

properly invoke the user-supplied simulation components.   

Compound Component Models 

 A ProcessingCompound model represents a collection of components.  As each 

primitive component is represented in Matlab as a Matlab function, a collection of 

components can itself be represented as a Matlab function.  This convention leads to a 

simple representation of a system in Matlab.  A compound simply represents a function, 

whose contents are calls to other functions.  Those functions represent the components 

contained in the compound.  The ports of a compound represent the parameters of the 

corresponding function.  The code representing each compound in a set of models can be 

generated by the MatSim model interpreter, and the user simply needs to execute the 

function representing the top level model in the hierarchy to execute the simulation.  

There are, however, several issues which arise with this representation, not the least of 

which is the semantics of the dataflow representation of the components.  Another issue 

is the fact that Matlab is a sequential programming language, only allowing one function 

call to be active at a time.  The systems modeled in the ACS toolset consist of 

concurrently executing processes.  In order for the generated Matlab simulation to truly 

represent the semantics of the modeled system, the functions representing the system 
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components would be required to execute and exchange data concurrently.   These 

deficiencies in the MatSim simulation semantics are addressed in the following sections.    

Dataflow and Static Scheduling 

 As discussed in Chapter II, regarding the ACS toolset, the scheduling of primitive 

components follows the execution semantics of asynchronous dataflow.  This means that 

the schedule of component execution is not known until runtime.  In the context of the 

ACS toolset, a component participates in its own scheduling by determining whether the 

proper conditions have been met to allow the component to execute.  However, the basic 

concept behind a component is still present, in that, when it executes, it consumes input 

and produces output, and the schedule of invocation is a function of the state of the input 

and output buffers attached to the component.  Exactly how many tokens a component 

consumes on each input and produces for each output is not captured in a diagram 

following asynchronous dataflow semantics.   

 The Matlab language does not support asynchronous dataflow execution 

semantics.  The language provides an explicit control flow structure.  Assuming a Matlab 

function consists of a series of function calls, as a consequence of the explicit structure 

imposed by the Matlab language, the order in which the function calls should be made 

must be known when the containing function is written.  This ordering cannot vary when 

the function executes.  A convention could be implemented which mimics the dynamic 

scheduling of the ACS runtime environment, allowing the components themselves to 

participate in their scheduling.  However, a goal of the MatSim tool is to allow the 

developer the freedom to generate simple Matlab functions representing the primitive 

components of the system, without being burdened with the necessity of interacting with 
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a simulation runtime environment or API, as required by the ACS runtime environment.  

To avoid the need for dynamic scheduling, the MatSim tool is required to generate a 

schedule for properly invoking the functions called by a compound function.  There is 

insufficient information available in an asynchronous dataflow graph to determine a 

correct static schedule, so MatSim was designed to make an assumption about the 

semantics of the dataflow graph represented in the models.   

The synchronous dataflow formalism was discussed in Chapter II.  MatSim 

schedules function invocations assuming the component models were created following 

the synchronous dataflow formalism, with each input port requiring a single token, and 

each output port producing a single token on each invocation.  Only systems that 

implement these semantics can be properly simulated using a simulation generated by the 

MatSim interpreter.  However, systems that do not exhibit these semantics can emulate 

this behavior through modifications to the simulation code, by allowing components to 

maintain state, effectively buffering inputs and outputs as required.   

 In order to produce the correct static schedule for a compound model, MatSim 

must resolve the data dependencies between the components contained in the compound.  

These data dependencies can be conveniently represented as a directed graph.  Nodes of 

the graph represent the components contained in the compound.  Edges in the graph 

represent a dataflow path connecting models.  If two models have multiple paths 

connecting them (in the same direction), a single directed edge is sufficient to model the 

dependency.  It is assumed that data is always present at the input ports and data can 

always be written to the output ports of the parent compound.  Connections between a 

port of a contained model and a port of the container are not represented in the digraph, 
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because no dependency exists.  (This assumption is valid because the ports of a model 

represent parameters of a function, and the parameters of a function persist across all 

function calls made within that function, and can be read from and written to at any time.)  

The resulting directed graph represents the data dependencies between the components 

contained in a compound.  For example, Figure 7 depicts a compound model, 

GenCorrection, containing two components, AcquirePosition, and DoCorrection.  The 

graph representing the data dependencies is depicted in Figure 8.   

 

 

Figure 7.  ProcessingCompound model GenCorrection, with submodels AcquirePosition and DoCorrection 

N1

AcquirePosition DoCorrection

N2
 

Figure 8.  Graph representing the data dependencies of the GenCorrection model shown in Figure 7 

 Once the graph representing the data dependencies between the components has 

been formed, the static schedule may be derived through a topological enumeration 



 33

algorithm.  A topological enumeration attempts to find an ordering of the nodes of a 

directed graph such that the next node selected in the ordering would have no input 

connections if all other previously selected nodes were removed from the graph, along 

with their incident edges.  In the case of the graph in Figure 8, node N1, representing the 

AcquirePosition component, would be selected first, followed by node N2, representing 

the DoCorrrrection node.  Node N2 could not be selected first, because it is the 

destination of a connection.  In contrast, after node N1 is included in the enumeration, 

removing it from the graph along with the edge it sources leaves node N2 with no 

associated connection.  Node N2 can then be selected.  Figure 9 shows an example of a 

more complicated graph and one possible topological enumeration. 

A Possible Enumeration

V3
V1
V2
V4
V5

V1

V3
V5

V2

V4
 

Figure 9.  A more complex directed graph, with one possible topological enumeration 

 Because the topological enumeration enumerates the nodes of the graph in the 

data-dependent order, it represents a static schedule for the functions corresponding to the 

nodes of the graph.  In the case of Figure 8, the node representing the AcquirePosition 

component was selected first, so the function representing the AcquirePosition 

component will be scheduled first, followed by the function representing DoCorrection.  
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MatSim writes calls to these two functions to a file in that order.  This file becomes the 

function representing the GenCorrection compound.   

Parameter Naming and Passing 

 As mentioned previously, the ports of a model represent the parameters of the 

model.  The names of the input parameters of a function representing a compound 

correspond to the names of their assigned ports, likewise for the output parameters.  The 

input and output parameters of a function are known as formal parameters.  The actual 

parameters of a function are the parameters which are passed to a function when it is 

actually invoked.  A connection leading from an input port of a compound represents a 

use of the formal parameter representing that port.  If the destination of such a connection 

is an input port of a component contained in the compound, the formal parameter of the 

compound’s function is used as the actual parameter in the call to the component’s 

function.   

Connections between models represent data exchanged between components. 

Because data is held in variables in Matlab, MatSim must generate temporary variables to 

hold this data.  MatSim generates a temporary variable for every connection in a 

compound, except for those connections which begin at an input port, in which case the 

input parameter is used directly.  Temporary variables are named according to the name 

of the port which sources the connection.  This is only a naming convention; any 

temporary name could have been used.  A globally unique integer is generated for each 

parameter and is appended to the end of the parameter name to guarantee uniqueness of 

the name.  When a function generates an output which is to be used as an input to another 

function, the temporary variable is used as an actual output parameter for the function 
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call representing the source of the connection, and as an actual input parameter for the 

function call representing the destination of the connection.  For example, in the case of 

Figure 7, there is a single connection connecting the AcquirePosition model to the 

DoCorrection model.  This connection will cause the generation of a temporary variable, 

named after the output port, Pos, of the AcquirePosition model.  The temporary 

parameter could therefore be named “Pos_1”, assuming the global unique integer 

contained the value 1.  Pos_1 will be used as an output parameter in the call to the 

function represented by the AcquirePosition component, and as an input parameter to the 

function represented by the DoCorrection component. 

 After all function calls have been generated for a file representing a particular 

compound, the formal output parameters of that compound must be updated properly.  

After the last function in the schedule of a compound has executed, the temporary 

variables, which represent the connections to the output ports of the parent compound, 

are assigned to the formal output parameters.  For example, the code generator will insert 

a call to the function representing the DoCorrection model in Figure 7.  This call requires 

one output parameter, so the code generator uses a temporary variable, named after the 

output port of the DoCorrection model.  When the code generator discerns that no more 

functions remain to be called, it will update the output parameters of the function being 

generated by assigning the temporary variable generated in the call to the DoCorrection 

function to the formal output parameter Out. 
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Generating a Complete Function 

function ResolveComponent( comp )

    If comp.ComponentType == ProcessingCompound
        Create file named after comp.name
        Write function prototype generated from the port interface of comp
        Write function instance counter
        For c:= next in the topological enumeration of the models contained in comp

Find names of actual input parameters for input ports of c
Generate temporaryies as actual output parameteres for output ports of c
Write a call to the function corresponding to c
ResolveComponent( c )

        Write updates of formal output parameters of comp
    end If
end function

 

Figure 10.  Pseudocode description of the code generation algorithm used by MatSim 

 Figure 10 depicts a pseudocode description of the algorithm used in MatSim to 

generate a complete Matlab function from a compound model.  For a model comp, 

MatSim first determines that the model is actually a compound model, because code is 

not generated for primitive components.  It creates a file corresponding to the name of the 

compound model, appending the letter “M” to the front of the name, just as with 

primitive components.  The name of the function generated for comp is the same as the 

name of the file, as required by the Matlab language.  MatSim next discerns the proper 

function prototype for comp from the port interface of comp, being sure to account for 

the order of the formal parameters, as dictated by the port numberings.  Next, a global 

variable which tracks the number of invocations of the function is written.  The need for 

this variable will become clear in a later section.  Following the instance counter, 

topological enumeration of the models contained in comp is performed, with the purpose 



 37

of discerning the order in which to invoke the functions corresponding to the contained 

models.  As a component c contained in comp is encountered in the enumeration, it is 

taken as the next function to invoke in the schedule.  To generate a function invocation, 

MatSim must determine the formal input parameter names to use in the function call.  

This is done by traversing each connection connecting to an input port of c to the source 

of the connection.  Assuming the topological enumeration is performed correctly, the 

source of the connection will either correspond to an input port of comp, in which case a 

reference to the formal input parameter associated with the input port is used as the actual 

input parameter, or the connection source will be an output parameter of another model 

contained in comp which will have already been scheduled.  The actual output parameters 

are generated as temporary variables, as described above.  These temporary variables will 

be used either as actual input parameters in calls to yet-to-be-scheduled components 

contained in comp, or to update the formal output parameters of comp at the end of the 

function.  After the actual input and output parameters have been gathered, a call to the 

function corresponding to c is generated and written to the file, and care is taken to 

ensure actual parameters appear in the proper order, according to the numbering of the 

ports of c.  The ResolveComponent function is then invoked on c, so in the case where c 

is a compound, the function corresponding to it will be generated.  After the loop through 

the topological enumeration completes, the formal output parameters of the function 

corresponding to comp are updated by writing an assignment involving the temporary 

variables corresponding to the connections to the output ports of comp.  An assignment 

statement is written to copy the contents of the temporary variables to the formal output 

parameters. 
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Figure 11.  Function generated by MatSim representing the GenCorrection compound shown in Figure 7 

 Figure 11 shows a function generated by MatSim representing the GenCorrection 

model shown in Figure 7.  The function name and file name correspond to the name of 

the model, with the “M” added to the front: MGenCorrection.  There is a single output 

parameter, Status, corresponding to the single output port of the GenCorrection model, 

and a single input parameter, Correction, corresponding to the input port of the model.  

The next line corresponds to the declaration of the global instance count variable.  This is 

followed by the calls to the two functions representing the models contained in 

GenCorrection.  The AcquirePosition model is selected first in the topological 

enumeration, so a call to the function realizing the AcquirePosition component is 

generated.  The scriptname attribute of the AcquirePosition primitive model has been set 

to acqPos, so MatSim generates a call to a function named MacqPos.  MatSim passes no 

input parameters to the MacqPos function because the AcquirePosition model contains no 

input ports.  The data generated from the invocation of MacqPos is stored in a temporary 

variable named Pos_4, named after the output port of the AcquirePosition model.  

MatSim next selects the DoCorrection in the topological enumeration, and generates a 

call to the function represented by that model.  The scriptname attribute of DoCorrection 

is set to doCorrection, as was shown in Figure 5, so MatSim generates a call to the 

function MdoCorrection.  The actual parameters of MdoCorrection are passed according 
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to the port interface of the DoCorrection model.  The first port of the DoCorrection model 

is connected to the Correction port of the GenCorrection model.  This connection is 

represented as the use of the formal input parameter Correction as an actual parameter in 

the call to MdoCorrection.  The second input port of DoCorrection is connected to the 

single output port of the AcquirePosition model, resulting in the use of the temporary 

variable Pos_4 generated in the call to MacqPos as the second actual input parameter in 

the call to MdoCorrection.  The single output of the MdoCorrection function is stored in a 

temporary variable called Out_7.  Because there are no more models to be processed, 

MatSim now generates code to update the formal output parameters of the function 

before terminating.  The penultimate statement represents the connection from the output 

port of the DoCorrection model to the Status output port of GenCorrection.  The final line 

of the function updates the instance counter, flagging that the function has been invoked 

at least once. 

A Complete Functional Simulation 

 MatSim iterates over the hierarchy of models and generates a function for each 

compound in the hierarchy.  When MatSim generates the code for the top level 

component, it not only generates the function calls as described, but it wraps the function 

in a loop which executes based on the condition of a global variable called 

TERMINATE_SIMULATION.  A user may terminate the execution of a functional 

simulation by setting this variable to some non-empty value in a one of the primitives 

executing in the simulation.  This allows the developer to control when the simulation 

terminates.  After all functions have been generated, the user may execute the functional 

simulation in the Matlab environment simply by calling the function representing the top 
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level model in the application model set to be simulated.  Executing this function will 

repeatedly invoke each of the other generated functions by tracing through the hierarchy.  

Each primitive function will eventually be invoked by the function generated from the 

compound containing the corresponding primitive model.  By providing a function to 

represent the behavior of each primitive, the designer can invoke MatSim to generate a 

complete functional simulation of a modeled system. 

Scheduling Feedback 

 The generation of a static schedule depends on the ability to represent the data 

dependencies between models as a directed graph, and the correct execution of the 

topological enumeration algorithm.  When a model contains a feedback connection, the 

corresponding dependency graph will contain a directed cycle, causing the topological 

enumeration algorithm to fail.  Figure 12 shows a top-level compound model named 

SimpleControl, similar to the model shown in Figure 3.  The connection from the output 

of GenCorrection to the input of Comparison represents a feedback connection.  While 

attempting to perform a topological enumeration on the graph representing the data 

dependencies between the models contained in SimpleControl, MatSim encounters the 

graph represented in Figure 13.  MatSim can successfully determine that ReadSensorA 

and ReadSensorB can be properly scheduled.  However, Figure 13 shows that the 

Comparison node is data-dependent on the GenCorrection node, and GenCorrection node 

is data-dependent on the Comparison node.  MatSim cannot schedule one function before 

the other because it will violate the presumed data dependencies.   
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Figure 12.  Compound SimpleControl, with a feedback connection from GenCorrection to Comparison 
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Figure 13.  An unschedulable directed graph, caused by the feedback connection 

 However, this directed graph does not accurately represent the actual data 

dependency which feedback represents.  In most applications, the component that 

receives data from the feedback connection does not receive data from the connection in 

the initial invocation of the function.  That component simply generates an initial output 

and feeds the result forward in the network.  Not until the component which generates the 

data to be fed back has had a chance to execute will the initial feedback data be 

generated.  The dimension which is not shown in the directed graph is time.  On the ith 

invocation of the Comparison component, Comparison depends on the data which was 



 42

generated in the i-1st invocation of the GenCorrection component.  The GenCorrection 

component cannot be expected to produce an output prior to its execution, so the 

Comparison component must be constructed “knowing” an initial state for the feedback 

input. 

 In order to resolve the feedback connection in such a way that the proper results 

are computed in the functional simulation, the user must implement the Comparison 

component to “know” the initial state of the feedback connection.  Further, the modeler 

must denote in the model which function “knows” to execute without receiving the initial 

data.  This information is critical, because MatSim has no means of knowing if the 

Comparison component is the component which should ignore the cyclic input, or the 

GenCorrection component.  The modeling language has been augmented with an atom to 

allow the modeler to make such a distinction.  Figure 14 shows an updated 

SimpleControl model, with an initializer atom and connection in place.  The initializer 

atom is simply a means for the modeler to specify to the MatSim interpreter where a 

directed cycle should be broken.  By connecting an initializer atom to an input port of a 

model, the modeler is stating that that particular model has been designed to not depend 

on the input from the connected port on the first invocation.  In other words, the 

component has been designed to provide its own initial data for the port connected to the 

initializer atom.  On subsequent invocations, the function will be provided with data 

generated by the invocation of the function corresponding to the source of the feedback 

connection.  With this updated information, MatSim can now determine that Comparison 

has been designed to ignore the initial input from the feedback connection, and can 

therefore be scheduled before the function representing GenCorrection. 
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 Alternative, possibly superior, semantics that could have been applied to the 

initializer atom and the breaking of feedback loops is to allow the initializer atom to 

somehow provide an initial value for the port it is connected to.  By allowing the 

initializer atom to actually initialize a port, a component does not need to be constructed 

with knowledge of how it is used in the topology of the interconnection.  As described 

above, a component must be constructed to provide an initial value on the initial 

invocation, which is cumbersome from the perspective of a component library.  It would 

be necessary to have a “feedback” and a “non-feedback” version of a component, even 

though both versions implement essentially the same function.  However, the semantics 

in use were chosen because of the asynchronous dataflow semantics used in the ACS 

runtime environment.  Because by nature components involved in asynchronous dataflow 

must be constructed to some degree to be aware of their own state, it is a small step to 

have them manage a small part of their own state.  Assigning this second semantics to the 

initializer atom would require an update to the ACS runtime environment to properly 

implement the capability of initialization, while the assigned semantics are consistent 

with the runtime environment as it is currently implemented. 



 44

 

Figure 14.  SimpleControl compound with Initializer atom and connection 

 MatSim must make a provision for passing a parameter which is involved in a 

feedback connection.  When MatSim generates the call to the function representing 

Comparison, the input parameter representing the first input will not exist.  The variable 

will be generated as an output parameter in the call to the function representing 

GenCorrection.  This is not a problem, because Comparison has been written to ignore 

the input parameter on the first invocation.  However, Matlab syntax dictates that some 

variable be passed as the actual parameter to the function on every invocation.  MatSim 

therefore creates a variable to pass to the function.  The variable must be initialized 

before Matlab will allow it to be used as an input parameter, so on the initial invocation 

of the function, the variable is set to the empty matrix.  After the call to the Comparison 

function returns, the call to the GenCorrection function is executed, generating the 

feedback parameter which is to be passed to the Comparison function on the next 
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invocation.  All temporary variables are created as local variables and are destroyed when 

a function returns to its caller.  However, all feedback parameters must persist across 

invocations to properly implement the memory required by the feedback connection.  

MatSim therefore declares the temporary variable representing the feedback connection 

as global.  Figure 15 shows the code MatSim generated from the SimpleControl model.  

The function is named the same as the model, and the function instance counter is 

declared.  Because SimpleControl is a top-level model, the generated function calls are 

wrapped in a loop conditioned on the global variable TERMINATE_SIMULATION.  

The functions representing the ReadSensor components are called, followed by the 

statement declaring a variable called Status_3 as global.  This variable is the parameter to 

be used to store the feedback connection results.  The next statements will initialize the 

Status_3 variable to the empty matrix when the instance counter indicates that the 

function has not been executed previously.  Next, the function representing the 

Comparison model is called, using Status_3 as an input parameter.  This function will 

ignore the value of the Status_3 parameter during its first invocation.  The next function 

call generates a value for the Status_3 variable to be used as input to the Mcomp function 

on the next iteration.  Because this function represents a top-level model and is wrapped 

in a loop, technically it is not necessary to declare Status_3 as a global variable, because 

the variable will not leave scope before it is needed again.  However, functions generated 

from models which are not at the top level will not be wrapped in a loop, thus requiring 

the feedback variable to be declared global.   
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Figure 15.  Code generated by MatSim representing the SimpleControl model displayed in Figure 14 

Application: Bit-Width Simulation 

 When a designer explores different algorithms, it is often desired to perform an 

analysis of the effects of performing calculations with fixed-point arithmetic at various 

bit-widths.  This type of trade-off analysis is most appropriate in a simulation setting, 

allowing a designer to determine the optimal bit-width required for a particular 

application, without needing to implement and test each solution. 

 MatSim provides a limited support to the designer to perform bit-width tradeoff 

analysis.  The attributes of each port in the application models of a system contain 

information about the width of the data path to be used for that particular path.  MatSim 

ensures that the widths specified in the source and destination ports of each connection 

are consistent.  Matlab performs all calculations in double-precision floating-point 

format.  However, between computations, MatSim can round parameters to the 

equivalent widths specified by the port attributes.  The developer can choose to include 

rounding in a generated simulation by selecting the appropriate option in the user 
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interface of the MatSim interpreter.  The rounding is performed by a function called 

roundfix, which takes a vector and a bit-width as inputs, and outputs the vector with each 

element rounded to the precision specified.  Figure 16 shows the function generated by 

MatSim representing the GenCorrection model from Figure 7 with bit-width arithmetic 

simulation code included.  The first statement after the function declaration is now a call 

to roundfix to round the formal input parameter Correction.  After the call to MacqPos, 

the output Pos_4 is rounded as well.  Each call to roundfix contains the parameter 16, 

representing the bit-widths specified in the model on each port.  In this case, each port 

happened to be set to 16 bits. 

 

Figure 16.  Code generated for GenCorrection model with fixed-point simulation code included 

 By including the fixed-point simulation in the functional simulation, the designer 

is allowed a somewhat more accurate view of what to expect during component 

execution on a fixed-point architecture.  If the user provides components which 

accurately represent fixed-point arithmetic during functional simulation, a better fixed-

point simulation will result. 
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A Comparison With Simulink 

 Simulink is a graphical system modeling package that allows a system to be 

represented as a set of block diagrams.  In many respects, Simulink and the ACS 

modeling environment are very similar.  As discussed in Chapter I, Simulink allows 

blocks to be hierarchically composed of simple primitive blocks, which are driven with 

Matlab functions.  Simulink allows a designer to develop a simulation of a system 

quickly and efficiently.  Simulink offers an extensive component library, covering many 

areas of engineering, including digital signal processing and control applications.   

 In a few respects, the ACS toolset extended with the MatSim model interpreter is 

superior to simply using Simulink to simulate the system, and then using the synthesis 

portions of the ACS toolset to generate the functional system.  By integrating Matlab 

simulation capabilities into the ACS toolset, the developer may proceed with system 

design from a single system representation.  Without MatSim, a designer is forced to 

recreate a design representation to support the simulation package of choice.  While 

Simulink is a powerful simulation package, MatSim offers sufficient simulation 

capabilities to allow the designer to verify system models and perform high-level 

functional simulations.  Further, Simulink does not support the Model-Integrated 

approach to system design discussed in this document, and therefore does not provide a 

designer with all the benefits of the ACS toolset.  The merged capabilities of the ACS 

toolset and the MatSim interpreter allow a developer to apply simulation capabilities at 

design time, from a single design representation. 



 49

Functional Simulation Conclusions 

 MatSim provides the designer with the capability to generate a Matlab 

representation of system component models.  This representation can then be executed, 

along with user-provided simulation components representing system primitives, to 

verify the models and experiment with algorithms.   

There are a few drawbacks to this tool that have been discussed in the chapter.  

The simulations generated by MatSim do not precisely represent the semantics of process 

execution exhibited in the ACS runtime environment.  MatSim assumes that the 

processes it translates follow the semantics of synchronous dataflow with all ports 

producing/consuming a single token on each invocation.  Components that do not exhibit 

this behavior must be modified to maintain state to enable them to emulate this behavior 

or the simulation will not exhibit the correct overall behavior.  If a graph exhibits a 

feedback loop, one of the components in the loop must be modified such that it provides 

an initial value for the feedback connection on the its initial invocation.  The developer 

can specify which port of which component is to be initialized by the component by 

connecting an initializer atom to it.   

While there are a few drawbacks, there are significant benefits brought to the 

ACS toolset by the MatSim interpreter.  MatSim allows simulations to be generated 

directly from the system models, providing a single, integrated system representation 

from which the designer can start and complete the system design.  Simulation 

components can be constructed as “standard” Matlab functions.   A developer is not 

required to interact with a simulated runtime environment or an API when constructing 

component simulations.  Potentially, any Matlab function can interface to a simulation 
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generated by MatSim.  While the semantics of asynchronous dataflow are not exactly 

replicated in the simulations generated by MatSim, the claim has been made in this 

chapter that any differences between the semantics used by MatSim and those in the 

actual runtime environment are negligible at the level of simulation detail targeted by the 

MatSim tool.  The strongest result is that MatSim allows a developer to apply model-

integrated design techniques at the very earliest stages of a system design, during 

algorithm development and concept design, allowing the verification against design 

requirements early in the design.     
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CHAPTER IV 

VIRTUAL PROTOTYPING 

 Chapter III discussed a tool to allow simulation to be utilized during model 

construction as a means of high-level design verification.  In the model-integrated 

approach, after the system has been modeled, the next step in the system design is to 

design and implement the primitive components.  This chapter discusses an extension to 

the ACS toolset integrating simulation into the design and testing of components.  This 

extension is referred to as the support of virtual prototyping.  By integrating simulation 

into the design flow at this stage, the developer is provided with a means to detect and 

correct faults in component designs earlier in the process, thereby saving time and effort 

later in design stages.  In the context of the ACS toolset, a virtual prototype is a system 

prototype which integrates simulation components at runtime.  With the virtual 

prototyping extensions, a developer may generate a completely simulation-based 

prototype, in which all components are simulation components.  A developer can also 

generate a system where some of the components execute on their native implementation 

platforms, while others execute in simulation.  As a consequence of the virtual 

prototyping extensions, components can be simulated in the context of an actual system 

implementation, and component implementations can be easily tested as part of a 

simulation.   

 Figure 17 shows the extended runtime architecture of the ACS toolset.  The 

runtime system is configured and managed through software executing on a host PC.  

The virtual prototyping extensions to the toolset include the Matlab environment 
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executing on the Host PC, which can communicate with the management software via an 

interface called the Matlab Engine [12].  Matlab exports the Engine interface to allow 

standalone software packages access to the computational power of the Matlab 

environment.  All operations which can be performed in the Matlab environment through 

its command line interface can be invoked by an external program via the Engine 

interface.  Further, data may be exchanged between the external program and the Matlab 

environment.  A program can invoke Matlab functions through the Engine interface as 

easily as it invokes native subroutines.  By utilizing the Matlab Engine interface, the ACS 

runtime environment has been extended to allow simulation components to execute in the 

Matlab Environment and to exchange data with components executing in the 

heterogeneous processing network.   

Host SW

Matlab Environment

Matlab
Engine

Heterogeneous Processing
Network

Host PC

 

Figure 17.  Architecture of the Virtual Prototyping Extensions to the ACS toolset.  
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 The ACS toolset has been extended to support this runtime architecture.  These 

extensions involved updates to the modeling environment and model interpreter, as well 

as extending the runtime environment to support the execution of simulation components 

at runtime.  The following sections discuss the extensions which were made. 

Extending the Modeling Environment and Synthesis Tools 

Modeling Environment Extensions 

 The goal of the virtual prototyping extensions is to allow simulation components 

to execute as part of a system at runtime.  To represent this concept graphically in the 

modeling tools, some minor modifications to the ACS modeling language were made.  

By allowing simulation components to be integrated into a system, a simulation 

component is, in a sense, equivalent to a system primitive component whose target 

implementation is targeted to a processing element in the heterogeneous network.  In the 

same sense, the platform on which simulation components execute, namely the Matlab 

execution environment, is equivalent to a network processing element.  Accordingly, the 

Matlab environment is modeled as a processing resource in the heterogeneous network.  

As depicted in Figure 17, the Matlab environment actually executes on the host PC of the 

system, and communicates with the host management software via the Engine interface.  

This architecture is modeled by allowing a model of a host PC to connect to a Matlab 

resource model.  The modeling tools allow a PC resource to connect to a Matlab resource 

model, representing the fact that the only means to communicate with the Matlab 

resource is via the host management software and the Matlab Engine.  The modeling 

tools do not allow any other types of resources to connect directly to the Matlab resource 
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model.   Figure 18 depicts a set of resource models, showing a model of the Matlab 

environment as a processing resource model, connected to the model of the host PC.  The 

host PC is in turn connected to the remaining resources in the network, in this case a 

model of a TMS320C40 DSP, a TMS320C67 DSP, an Altera FPGA, and an SDRAM 

module.   

 

Figure 18.  Resource Model showing the Matlab environment interfaced to the host 

 The modeling environment represents the communication protocol established 

between the Matlab environment and the Host management software via the Engine 

interface as a protocol named Matlab Protocol, as depicted in Figure 19.  The Protocol 

attribute of the port of the Matlab resource model, along with the port of the Host 

resource model connected to the Matlab resource model, must be set to “Matlab 

Protocol” to correctly represent, and therefore synthesize, a virtual prototype system. 
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Figure 19.  Port Attributes showing Matlab Protocol as the selected communication protocol 

Simulation components are explicitly modeled as part of the component dataflow 

network.  In contrast to the component simulations described in Chapter III, where all 

system components were assumed to be simulation components regardless of their 

associated resource mapping, an extension to the modeling paradigm allows a modeler to 

categorize a primitive component model as a Matlab Simulation component.  Models of 

primitive simulation components can be mapped to the Matlab environment resource 

model, just as models of primitive DSP components can be mapped to a model of a 

TMS320C40 DSP.  Because functions implemented cannot execute natively on any 

resource except the Matlab environment, the only resource model to which models of 

simulation components can be mapped is the Matlab resource model.  By constructing 

models of simulation components, a developer may represent a virtual prototype system 

containing both simulation components and other executable components. 

Extending Model Interpretation  

 In keeping with the model-integrated approach to system design, a goal of the 

virtual prototyping extensions of the toolset is to support the synthesis of a functional 
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virtual prototype system directly from the models.  The ACS model interpreter has been 

modified to meet this goal.  Because the Matlab environment is modeled as a kind of 

processing resource, the interpreter can simply treat it as a node in the heterogeneous 

network when generating middleware initializations and configurations.  Some minor 

additions were required to generate initializations for the middleware layer implementing 

the runtime environment for the Matlab environment, however most of the configuration 

code was simply inherited from the existing interpreter code base.   

Extending the ACS Runtime Environment  

 Chapter III described the synthesis of high-level simulations from dataflow 

models of components.  One drawback to that simulation was the fact that the MatSim 

interpreter imposed a limitation on the types of system models it can simulate, due to 

dataflow scheduling issues.  The reasoning behind this tradeoff was that it was not 

desired to require a developer to interact with a middleware layer which would perform 

dynamic scheduling and buffer management.  The rationale behind this choice was that 

during the modeling phase of the design, a modeler is most concerned with representing 

and properly composing a system.  Components are seen as black boxes that perform 

computations.  At model building time, a developer is not concerned with how a 

component performs those computations, or with any implementation details of the 

component.  The goal of the virtual prototyping extensions to the toolset is to support the 

integration of simulation into component design and implementation.  Obviously, when 

components are designed and implemented, they are no longer treated as simple black 

boxes that perform computations.  In this phase, it is much more important to understand 

the behavior of the component, in the context of the full system.  As such, the virtual 
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prototyping extensions include a middleware layer to implement the runtime environment 

in the Matlab environment.  As discussed in Chapter II, the runtime environment 

facilitates component scheduling.  It abstracts the details of inter-component and inter-

node communication from the components by servicing the communication needs of the 

component through an API.  The middleware layer implemented for Matlab facilitates the 

communication between components executing in the Matlab environment and those 

executing in the processing network.  The implementation of the Matlab middleware 

layer closely follows that of the runtime kernel for a stored-memory processor in the 

processing network.  The following sections review relevant details of the ACS runtime 

kernel, followed by a description of how the runtime kernel features were implemented in 

the Matlab middleware layer. 

The ACS Runtime Middleware  

 As discussed in Chapter II, each processor in the network runs a small dataflow 

kernel [11], which supports deterministic dynamic memory management, stream-based 

inter-process and inter-node communication, and process scheduling and management.   

Figure 20 depicts the layered architecture of the runtime kernel.  The API layer allows 

components to access the services provided by the kernel, such as memory and stream 

management.  Through the API layer, a component may determine the state of its input 

and output streams, thereby determining its schedulability.  The API layer interacts with 

the stream, memory, and process management facilities of the kernel.  As previously 

discussed, process management consists of a simple round-robin non-preemptive 

scheduler, successively invoking each component mapped to the node.  The kernel 

memory management layer provides a memory pool from which processes may 



 58

dynamically allocate buffers.  The stream management layer implements the concepts of 

dataflow streams connecting components, facilitating inter-component communication.  

Inter-node communication is facilitated through a set of functions called interface 

functions, which drive the communication hardware.  As all communication links in the 

heterogeneous network are point-to-point links between communication ports, each 

communication port of a processor is assigned its own set of interface functions.  The 

interface functions implement a communication protocol, which determines the format 

and organization of the data during transmission.  Obviously, the two communication 

ports connected by a link must support compatible communication protocols, or data will 

not be transferred coherently.  Interface functions are designed as a pair of functions, one 

responsible for the transmission of data, while the other for receipt.  The transmission 

interface function for a port is invoked when a stream queue corresponding to that port 

contains a message to transmit.  The receive interface function for each port is always 

active, awaiting the arrival of data.  When a buffer is received, the receive interface 

function notifies the stream management layer, which dispatches the received buffer to 

the proper stream queue, determined by the message routing information passed with the 

buffer.  When the transmission of a buffer is completed, the stream management layer is 

notified, whereon the buffer is removed from its stream’s queue.   
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Figure 20.  Layered architecture of the ACS runtime kernel 

Matlab Runtime Middleware  

 A goal of the virtual prototyping extensions is to accurately represent the 

execution semantics of components at runtime.  To facilitate the accurate representation 

of dynamic scheduling and message passing, a runtime middleware layer was 

implemented for the Matlab environment.  The middleware implements a layered 

architecture, shown in Figure 21, similar to that of a processor runtime environment.  

However, there are some minor differences.  There is no communication hardware 

between the host management software and the Matlab environment.  It has been 

replaced by a Host Interface layer, which interacts with the interface functions in the host 

management software via the Matlab Engine to facilitate data exchange.  Dynamic 

memory management is not required in the Matlab environment, because in the Matlab 

environment, all memory allocation is dynamic and is handled by the environment.  No 

gains can be made by imposing another management layer on top of the environment.  

Process management is handled in much the same way as the processor runtime 

environment, as is stream management.  The API layer allows simulation components to 

access the stream management facilities of the middleware.  The layered architecture for 

the Matlab middleware is depicted in Figure 21.    The middleware implementation 
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allows components to be dynamically scheduled in the same manner as components 

executing on a network processor are.  Just as with a network processor, the details of 

inter-component and inter-node communication are abstracted away from the component.  

All the component sees is the API layer provided by the middleware. 

Application Program Interface

Stream Management Process Management

Host Interface Communication Protocol

Matlab Engine Interface
 

Figure 21.  Layered architecture of the Matlab middleware 

 The Matlab Communication Protocol 

  The architecture described facilitates the execution of simulation components at 

runtime.  Since the goal of the virtual prototyping extensions is to facilitate the exchange 

of data between simulation components and network components at runtime, a 

communication protocol has been implemented to take advantage of the Matlab Engine 

interface to facilitate data exchange.  Before describing the details of the host and Matlab 

interface functions, a few points should be noted.  The Matlab Engine interface provides 

a unidirectional access path, meaning that the host management software can invoke 

methods of the Matlab middleware, but the reverse is not possible through the Engine.  

While the Engine provides access to the Matlab environment for a standalone program, 

the Engine does not support multithreading, in that, when the host invokes a method in 

the Matlab environment, the host is blocked until that method returns.  The semantics is 
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the same as when the host invokes a native function.  Due to these limitations, the Matlab 

middleware has been designed to operate as a slave to the host management software.  

When the host transmit function is invoked to send the Matlab environment a buffer, the 

transmit function must not only place that buffer in the Matlab workspace, but must 

invoke the Matlab middleware receive interface function to allow the middleware to 

properly store the received buffer.  Likewise, the host receive function must invoke the 

Matlab send interface function to allow the middleware to transmit data to the host.  

Further, in order to allow simulation components to execute, the host has been designed 

to periodically invoke the Matlab middleware process scheduling facility.  This triggering 

of the process management occurs at the end of every invocation of a host interface 

function, thereby avoiding the starvation of the Matlab components.   

 The interface functions are responsible for exchanging data with the Matlab 

environment.  Data is exchanged between processes in the form of messages.  A message 

consists of a header and a body, as depicted in Figure 22.  The header contains the 

routing information for the message, containing the handles of the node and stream where 

the message initiated, as well as the handles of the intended destination node and stream.  

A message in the Matlab execution environment is represented as two vectors.  Each field 

of a message header has a corresponding index into a header vector.  A message body in 

the host kernel is represented as an array of numbers.  This is consistent with the Matlab 

representation: a vector of numbers.  When the host transmit interface function prepares 

to send a message to the Matlab kernel layer, it allocates two vectors in the Matlab 

workspace via the Engine, one vector for the header and another for the body.  The data 

from the host header is then copied, field-by-field, into the header vector.  Similarly, the 
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message body is then copied into the body vector.  However, an issue arises when 

copying data from a kernel message into a Matlab vector.  The basic data type in the 

Matlab computational environment is double precision floating-point, requiring all fields 

to be cast to doubles as they are copied into a Matlab vector.  When a message body is 

copied to a body vector, the interface function must make an assumption about the 

current data format of the host message body.  Regardless of the explicit type declared in 

the message body data structure, a component can store in a message data in an arbitrary 

format, so long as the source component is consistent with the destination component.  

However, the interface functions between the host and Matlab must make an assumption 

about the format of the data contained in a message body, because it must convert the 

data into double precision format.  By convention, the interface functions assume that all 

message bodies are currently stored in single-precision floating-point format, and the 

responsibility for ensuring that this is the case is placed on the system developer.  

Because there is no characterization of the type of information being passed in a buffer, 

the interface functions are left with no other choice but to assume a format and perform 

the conversion. 

Header Body
 

Figure 22.  Architecture of a message 

Once the host transmission interface function copies the message header and body 

into Matlab vector variables, the Matlab kernel layer receive function is invoked, passing 

the header and body vectors as parameters.  The Matlab receive interface function simply 
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transfers the received message into the stream management layer, which dispatches the 

message into the proper stream queue.  The Matlab receive function then returns control 

to the host.  The host then frees the vectors which were allocated in the Matlab 

workspace, and invokes the Matlab middleware process management routine.  On return 

from the process management, the host transmit interface function returns control to the 

host kernel.   

The host receive function is very similar to the send function, only it performs its 

actions in the reverse order.  The host receive function first invokes the Matlab kernel 

send interface function.  If there is a message awaiting transmission in the Matlab 

middleware, the send function retrieves it from the stream management layer and returns 

it to the host.  The host receive function then verifies that an actual message has been 

sent, then allocates a buffer from the host memory management system and copies, field-

by-field, the header vector and body vector into the allocated buffer.  Just as before with 

the host transmit function, the host must assume the format the message body is supposed 

to be in is single precision floating point.  When the message is successfully copied, it is 

passed to the stream management layer of the host kernel.  After storing the copied 

message, the receive function invokes the process management function of the kernel 

layer, and then returns. 

These interface functions allow the Matlab execution environment to exchange 

data at runtime with processes running on the network.  The model interpreter facilitates 

data forwarding across the nodes in the network to handle the situation where a process 

executing on a DSP in the network generates a message for a process executing in the 

Matlab environment.  The generated message is forwarded to the host management 
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software on the Host PC, where it is subsequently transmitted to the Matlab environment.  

A similar process is performed for the reverse direction of communication.  This 

communication framework allows data to be exchanged between components executing 

in the Matlab environment and any other component in the network. 

Virtual Prototyping 

 With the extensions to the runtime environment and modeling tools, a developer 

can now construct a virtual prototype of a system.  A system can be modeled as a set of 

simulation components, which can be implemented using the Matlab language and kernel 

layer API.  A functional system can be synthesized from the models with the model 

interpreter, and can be loaded onto the resource network.  During initial design stages, 

this resource network could consist of a host PC with the Matlab environment.  After 

compiling and loading the code, the developer may test the system to verify its behavior.  

After the behavior has been verified, the resulting system represents a virtual system 

prototype, exhibiting the functionality of the target system, but implemented using a 

simulation language. The virtual prototype will obviously not meet the performance 

requirements of the target system, but will demonstrate the core behaviors of the target. 

 After the virtual prototype has been constructed, it can be used during the 

component implementation design phase.  The modeling tools automate the selection of 

implementation alternatives from the models.  When a system is modeled, alternative 

implementations for each component can be explicitly included in the models.  As one 

alternative implementation for a component, the user provides a Matlab-based simulation 

implementation.  A second alternative implementation is the actual target 

implementation.  When constructing the virtual prototype, the target implementations for 
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system components need not be constructed, nor even modeled.  However, the user 

should make use of template models to allow alternative implementations to be modeled 

later.  With a system modeled in this fashion, a designer can select a full simulation-

based implementation for the system and generate a virtual prototype with the synthesis 

tools.  The virtual prototype can then be executed and verified against the functional 

requirements of the system.  After verifying the correctness of the virtual prototype, the 

developer can use the prototype as a framework for testing component implementations.  

When a component is implemented, the tools can be used to select the simulation 

implementations of all system components except for that particular component, whose 

target implementation is included in the final design.  After this design is synthesized and 

loaded, the user can verify that the component’s target implementation exhibits the same 

behavior as the simulation implementation.  The virtual prototype provides an ideal 

testing framework because each simulation component has, at this point, already been 

verified and the simulation components can be used to manipulate the inputs and display 

the outputs of the component under test.  Each component is tested in the context of the 

system, and the designer is saved the effort of building a testbench framework for each 

component.   

 The virtual prototype also provides an excellent framework to perform system 

integration.  As components are implemented and tested, they may be integrated into the 

prototype system one at a time, replacing their simulation-based counterparts.  As more 

components are included in this system, integration issues may be uncovered.  

Previously, integration issues could not be thoroughly examined until most or all of the 

components had been implemented and could be included in a synthesized system.  
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Because the virtual prototype system allows components to be integrated seamlessly, 

integration issues can be examined much earlier in the design phase.  Systems can be 

synthesized where some of the components are simulation-based, while others are 

implemented as their target implementations.  Through testing these systems, the 

designer can examine how components interact in a more controlled environment.  

 Matlab components can be used as a debugging tool.  Because network 

components can exchange data with Matlab components at runtime, the designer can 

insert a Matlab component in the data path between two components to visualize the 

contents of the messages being exchanged.  Matlab components can also be used to 

modify the inputs to a network component, allowing a greater versatility in testing.   

 The user is provided with a powerful tool to perform verification, debugging, 

component testing, and system integration through virtual prototyping.  By providing an 

interface between the Matlab computational environment and the processing network, a 

developer is allowed to utilize the power of Matlab at runtime, intermixed with 

implemented components. 
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CHAPTER V 

AN IMPROVED DESIGN FLOW 

 The extended ACS toolset provides an improved platform for designing 

embedded systems.  The addition of simulation capabilities to the toolset leads to an 

improved design flow, which leads to better, more efficient system development.   

Analysis of ACS Design Flow 

 The ACS design flow allows a developer to build models and synthesize systems 

from those models, as was discussed in Chapter II.  Figure 23 is similar to the design 

flow presented in Chapter II, depicting the different phases of design when using the 

ACS toolset to develop a system.  First, algorithms and ideas are developed and explored, 

possibly constructing a simulation prototype, using other tools.  This development builds 

a high-level representation of the system under development and allows the developer to 

explore different concepts to be included in the design.  After completing this exploration 

step, a developer then uses the modeling environment provided in the ACS toolset to 

build and refine system models, breaking complex systems into simple, modular 

components.  These models form a second representation of the system, graphically 

capturing system requirements and specifications.  After the models are developed, the 

components are individually implemented and tested.  When all components have been 

implemented, the developer may synthesize a complete system from the models using the 

model interpreters.  This synthesized system provides all “glue code” to connect system 
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components and handle inter-component communication.  This system can be loaded 

onto the resource network and tested for integration issues.   

Develop / Simulate
Initial Design
Architecture

Construct / Refine
System Models

Implement / Test
Components

Synthesize / Test
Integrated System

 

Figure 23.  ACS system design flow 

 While a developer can use the ACS toolset to design complex systems, some 

issues with the design flow arise through design iteration.  First, the construction of a 

high-level functional simulation is not supported directly by the tools.  The modeler has 

no direct means for checking system models against functional requirements prior to 

system implementation.  If a design flaw is introduced when modeling the system and is 

not caught until system integration, the effect of the flaw could possibly propagate across 

several component implementations.  As a consequence, the correction of the flaw 

requires significant time and effort, which could be completely avoided by catching such 

flaws at model building time.   



 69

 A second issue with the ACS design flow can be seen during system integration.  

Full integration cannot proceed until all components have been implemented and 

individually tested.  Often, integration can uncover inconsistencies between components, 

requiring component adjustment or redesign.  Iteration during this phase in the design is 

costly, but can be minimized by enforcing consistent component interfacing and synthesis 

of glue code for integration.  However, design errors will inevitably occur, so a better 

approach is needed to catch such errors as individual components are implemented.   

 A final issue with the ACS toolset is that no support is provided for high-level 

design verification.  The modeling language and environment enforces a designer to be 

consistent in design entry, and to have syntactically correct models.  However, the 

language cannot enforce correct semantics.  Simulation at model building time can add 

aid the developer to verify design semantics before proceeding to implementation.  

Simulation at runtime can facilitate system debugging.   

Analysis of the Extended ACS Design Flow 

 By adding the simulation capabilities to the ACS toolset described in this thesis, 

an improved design flow has emerged.  Figure 24 depicts this improved design flow.  The 

first step is to construct and verify system models.  This step proceeds from a high level 

of abstraction, beginning with a model of the initial design architecture.  Simulation of 

this initial system architecture model is facilitated through the MatSim interpreter.  The 

designer verifies the high-level architecture against system requirements.  The designer 

proceeds to recursively decompose the high-level architecture into simpler pieces.  At 

each step in the decomposition, the modeler may generate a functional simulation to 

verify the modeled system against the requirements.  By verifying the system models as 
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they are constructed, the modeler can catch design flaws early in the process, prior to 

proceeding to the component design and implementation phases.   

 The next step in the design process is the design and simulation of system 

components.  The virtual prototyping extensions to the ACS toolset are utilized at this 

stage to create a simulation of the system which accurately represents the execution 

semantics of the actual runtime environment.  To construct a virtual prototype, system 

components are modeled as implementation alternatives, with a simulation 

implementation as an available alternative.  The developer constructs a simulation-based 

component for each system component, and the tools are used to synthesize a simulation-

based system by selecting the simulation implementation of each system component.  

This simulation-based system can be executed and tested, allowing the developer to 

verify the behavior of each system component.  The developer spends time at this stage to 

ensure the virtual prototype correctly exhibits the specified behavior (except for 

performance) of the target application.  If any inconsistencies are uncovered through the 

development of the prototype, the models are adjusted and prototype development 

continues.  After the virtual prototype has been verified, the developer is left with an 

accurate simulation of each component in the system.  These simulation components act 

as a design specification for the later state of component implementation.   The next 

design step is to implement, test, and integrate system components.  At this stage, the 

developer has a correct virtual prototype of the full system.  As described in Chapter IV, 

a consequence of the automated selection between design alternatives is the ability to 

synthesize a system consisting of a single component implemented for its target platform 

in the processing network, with the remaining components implemented in simulation.  
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This system can be executed and verified.  The advantage of such a system is that the 

virtual prototype acts as a testbench for the single component implementation.  The 

implemented component is effectively integrated into the pre-verified simulation, 

allowing the component to be tested in the context of the full system using application 

data.  This process is repeated for each component, allowing the testing of components to 

proceed in a semi-automated fashion.  Further, as components are implemented, partial 

system integration can be performed, swapping simulation components for implemented 

components.  In this fashion, as components are designed and implemented, system 

integration issues may be examined at a much earlier stage than previously possible.  The 

virtual prototype provides not only a framework for verifying design semantics, but a 

framework for testing component correctness, and a framework for partial system 

integration.  It also provides a unique environment for debugging a system.  Simulation 

components can be used to quickly visualize data between components, as well as to 

inject data into components at run time, thus allowing a developer the ability to “zoom 

in” on problems in a system.   

 The last step in the design is to test a final system.  This is performed after all 

components have been implemented and integrated.  At this stage, a design must be 

tested to verify that it meets performance requirements, and any other issues which could 

not be addressed through the testing with the simulation components “in the loop.”   
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Figure 24.  Improved design flow for extended ACS toolset 

 The improved design flow allows a designer to more effectively design systems.  

By integrating the complete design flow into one tool, the designer can develop systems 

from a single design representation.  The simulation capabilities streamline the design 

process at each stage of development, allowing design flaws to be caught early, removing 

the tendency towards design iteration discussed in Chapter II.  Iteration in system design 

is in general inevitable, because mistakes will be made.  However, in this improved 

design flow, catching flaws and errors earlier in the design process minimizes iterations. 



 73

CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 A model-based approach to embedded system development aids the design of 

complex embedded systems.  The work presented here enables the use of simulation 

techniques in conjunction with model-based design methodologies when constructing 

complex embedded systems. 

MatSim: A Functional Simulation Generator 

 A functional simulation of a system is an executable system representation, which 

exhibits, to one degree or another, the behavior of the final product.  A design engineer 

can construct a functional simulation as part of an initial exploration of a design concept.  

When thinking on this level, a designer is not concerned with, and therefore should not be 

burdened with concern for, hardware architectures or platforms.  The designer can use the 

functional simulation capabilities discussed here to verify a set of system models.  

MatSim allows a designer to write Matlab code representing the functionality of a 

component using the Matlab language.  The designer does not need to be aware of any 

API or kernel, and can do quick computation and analysis using the computation and 

visualization capabilities which the Matlab environment provides.  All the glue code 

connecting components is synthesized by the tool, and all components are scheduled 

properly by the tool, so the designer need only be concerned with expressing the behavior 

of the system components.   
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 By allowing the designer to generate an executable functional simulation from the 

system models, the tools not only provide a solid basis for experimentation, but models 

used in constructing the functional simulation can be reused in successive design phases.  

When system models are updated, a new functional simulation can be regenerated by 

adjusting the simulation components and executing the code generator on the updated 

models.  High-level functional simulation can be used to verify a high-level design prior 

to implementation. 

 The MatSim interpreter was utilized in the design of two real-world applications, 

an automatic target recognition system for missile guidance, and a probabilistic neural 

network system used for image classification.  The tool was found to be very helpful in 

quickly producing Matlab simulations of the systems, allowing the visualization of high-

level behavior and functionality.  The plotting and data visualization routines provided by 

Matlab proved highly valuable at this stage.  However, the restriction placed on the 

modeling semantics by the MatSim tool was found to be cumbersome when constructing 

component simulations.  The tool proved highly useful in simulating the effects of fixed-

point arithmetic on algorithm correctness.  The target platform for the image 

classification application is a set of FPGA nodes, with all operations performed in fixed-

point arithmetic.  By simulating the effects of datapath width variations, a reduction in 

the number of gates required to implement the system was achieved.  Overall, MatSim 

proved to be a useful tool for generating simulations during system modeling. 

A Virtual Prototype 

 The functional simulation generated by the MatSim model interpreter provides a 

complete, executable virtual system prototype.  However, this prototype is essentially 
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used for high-level simulation at model-building time.  A stronger virtual prototyping 

mechanism is provided by allowing Matlab-based components to be run “in the loop” at 

runtime with components executing on their native platforms.   

 This virtual prototyping mechanism provides the designer with a powerful system 

integration and debugging tool.  When the models have been constructed and the designer 

begins implementing the system components, the virtual prototype using Matlab-based 

components and a middleware layer to facilitate communications with the network 

runtime environment provides a framework for system integration, as well as a testbench 

for each component.  When a component implementation is introduced into the system, it 

can be tested in the context of the final system framework by replacing the Matlab 

version of the component with the final implementation version.  This new system can 

then be tested, just as the prototype itself was tested.  Inputs to the component can be 

easily generated, and outputs are readily visualized through the remaining Matlab 

components.  By having the virtual prototype act as the testbench for each component in 

the system, not only does the designer alleviate the task of reproducing testbenches for 

each component, but the components are arguably tested in a better context, the final 

application.   

After individual components have been verified, they can be used in the prototype 

along with other implemented components, interfacing to the virtual prototype.  In these 

stages, combinations of components can be tested together, to check for system 

integration issues.  Using the new virtual prototype as an integration framework, system 

integration issues can be examined as components are implemented, rather than waiting 
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until all components have been implemented to test the integrated system.  This allows 

errors to be caught and addressed earlier in the design process. 

Virtual prototyping was applied to in the development of the neural network 

image classification system, as well as the automatic target recognition system.  The 

ability to execute simulation components concurrently with a system implementation 

proved highly useful in design implementation.  It was seen, as expected, that operations 

performed by the simulation components were much slower than those performed on the 

embedded processors.  However, virtual prototyping enabled the use of data visualization 

routines at runtime.  Further, the ability to integrate system components into the 

simulation proved useful, providing flexibility in component implementation.  The data 

conversion restriction imposed by the virtual prototyping interface proved cumbersome, 

as it was always necessary to perform conversions, whenever data was to be sent to the 

Matlab environment.  The ability to visualize the state of a system at runtime proved very 

useful as well.  Overall, the virtual prototyping mechanisms allowed component 

development to proceed more smoothly, and provided a useful framework for system 

debugging. 

Future Work 

 While the extensions to the design tool allow certain simulation techniques to be 

applied to the design process of embedded systems, there are some areas where more 

work could be done.   

 Currently, when a virtual prototype component is interfaced to a network 

component and an exchange of data takes place, the interface assumes that all data to be 

sent to the Matlab component is in single precision floating point format, and that the 
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data being sent to the network component should be converted to single precision floating 

point format.  This assumption was made because Matlab performs all calculations in 

double precision floating-point format.  There is not currently a convenient way to 

discern what format a buffer of data should be in.  The current assumption is that it is the 

designer’s responsibility to handle any data formatting issues, but a better solution to this 

problem could be explored, involving a finer-grained modeling of the type of data being 

exchanged between components. 

MatSim provides limited support for exploring precision effects on algorithm 

mathematics.  However, this support is provided as a call to a vectorized truncation 

function, which rounds results to the bit-widths specified by the port attributes in the 

models.  This solution is not adequate for two reasons.  The first is related to the problem 

with implicit conversions mentioned above: if the user chooses to pass data between 

components in the form of a data structure, the vectorized truncation function will not 

work.  The toolset needs a better idea of the type of data to be used in parameter passing.  

The second reason is it is very difficult to perform a tradeoff analysis, because when 

attempting to adjust the widths used in an algorithm, it is necessary to adjust the attributes 

on each port of each component involved in the change.  A better, more modular 

approach to specifying bit-widths in the models is needed. 

In a more general sense, further simulation techniques could be applied during 

system design.  Currently, all simulations execute through the Matlab environment.  A 

new type of simulation could be introduced into the system which integrates a VHDL 

simulation with a Matlab simulation.  This would allow a designer to execute simulations 

of hardware components based on their native language, along with the simulations of 
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other components.  This would require the interfacing of a VHDL simulator to either the 

MatSim interpreter or to the runtime environment.  In a similar context, it could be 

possible to interface an instruction set simulator for a processor to the tools as well, 

allowing a designer to simulate most aspects of a system based on the same set of 

models. 
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The design of modern complex embedded systems is difficult.  Resource, 

performance, and cost constraints require application-specific implementations.  Design 

engineers often apply simulation techniques early in the design process to uncover 

problem areas prior to implementation, before they result in costly errors and design 

flaws.  However, even with advances in simulation techniques, the design of complex 

systems remains a challenge.   

Through the Adaptive Computing Systems (ACS) project at the Institute for 

Software Integrated Systems, a high-level system design tool has been developed to aid 

the design of adaptive embedded computer systems.  The tool applies the principles of 

Model-Integrated Computing, allowing a designer to create high-level models of a 

system, and then directly generate system specifications and architectures from the 

models.  The use of this tool greatly simplifies many of the complexities involved in 

embedded system design. 

While the ACS design tool incorporates principles of model-integrated computing 

in the design of an actual system, it does not provide any support for simulation.  This 
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thesis describes an extension of the ACS toolset to allow simulation techniques to be 

integrated into a Model-Integrated embedded system design process.  Specifically, the 

Matlab language and computation environment are integrated into the design flow, 

allowing models to be functionally verified prior to implementation, and components to 

be implemented in the Matlab language and executed as part of a heterogeneous 

embedded system.   
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