

INTEGRATING HIGH-LEVEL SIMULATION INTO A MODEL-INTEGRATED

EMBEDDED SYSTEM DESIGN TOOLSET

By

Brandon Kerry Eames

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

May, 2001

Nashville, Tennessee

Approved: Date:

__ ____________________

__ ____________________

 ii

To Natalie and Karissa

 iii

ACKNOWLEDGEMENTS

 This research was sponsored by the Defense Advanced Research Projects

Agency, Information Technology Office, through the Adaptive Computing Systems

project, under contract number # DABT63-97-C-0020.

 I am grateful to those who have helped me along the way in this research. I

would like to thank my research advisor Dr. Ted Bapty for providing me with the vision

to understand not only the project, but also its relevance to system design. His patience

in allowing me to learn along the way is greatly appreciated. I thank Dr. Gabor Karsai

whose guidance through the writing of this thesis has been invaluable. Thanks to Dr.

Sandeep Neema, whose technical advice and good humor helped me to persevere through

the project.

 I am indebted to several people throughout my education. Thanks to Dr. Ben

Abbott for introducing me to in embedded systems while at Utah State University, and

for helping raise my post-graduation level of expectation. Thanks to Dr. Todd Moon for

forcing me to learn that hard work always pays off. Thanks to Dr. Gail Bingham for

trusting me to work on interesting projects during my undergraduate career.

 I thank my parents, Ollie and Janine, for their love and support. Their constant

praise and encouragement helped me to set high standards, and to not settle on anything

less than what I was capable.

 There are not words for the gratitude I feel towards my wife, Natalie Wankier

Eames. Without her support, I would not have made it to graduate school, let alone to the

completion of a Master’s thesis. Thanks to Karissa Rose for the sleepless nights, all the

diaper changing’s, but most of all, for the most adorable happy smiles.

 iv

TABLE OF CONTENTS

Page

DEDICATION…………………………………………………………………………….ii

ACKNOWLEDGEMENTS... iii

TABLE OF CONTENTS... iv

LIST OF FIGURES ... vi

LIST OF ABBREVIATIONS.. viii

Chapter

I. INTRODUCTION .. 1

Embedded Systems .. 1
Traditional System Design Approach.. 2

Simulation in System Design.. 5
A Model-Integrated System Design Approach.. 6
Model-Integrated Simulation Package... 8

II. BACKGROUND: MIC AND THE ACS TOOLSET... 9

Model-Integrated Approach to System Design ... 9
The ACS System Design Toolset .. 10

The ACS Modeling Language .. 12
Modeling System Resources .. 12
Modeling System Components .. 13
Component Composition Through Dataflow... 14
Modeling System Modes and Mode Transitions 18

ACS Runtime Environment .. 18
ACS Model Interpreter ... 19

ACS System Design Flow ... 20

III. HIGH-LEVEL FUNCTIONAL SIMULATION SYNTHESIS............................ 23

Matlab Representation of System Component Models 26
Primitive Component Models ... 26
Compound Component Models .. 29

Dataflow and Static Scheduling ... 30
Parameter Naming and Passing.. 34
Generating a Complete Function ... 36

A Complete Functional Simulation... 39
Scheduling Feedback ... 40

 v

Application: Bit-Width Simulation.. 46
A Comparison With Simulink ... 48
Functional Simulation Conclusions ... 49

IV. VIRTUAL PROTOTYPING .. 51

Extending the Modeling Environment and Synthesis Tools 53
Modeling Environment Extensions... 53
Extending Model Interpretation .. 55

Extending the ACS Runtime Environment.. 56
The ACS Runtime Middleware .. 57
Matlab Runtime Middleware .. 59
The Matlab Communication Protocol... 60

Virtual Prototyping .. 64

V. AN IMPROVED DESIGN FLOW... 67

Analysis of ACS Design Flow... 67
Analysis of the Extended ACS Design Flow... 69

VI. CONCLUSIONS AND FUTURE WORK ... 73

MatSim: A Functional Simulation Generator .. 73
A Virtual Prototype.. 74
Future Work... 76

 vi

LIST OF FIGURES

Figure Page

1. Design flow often used in embedded system development3

2. Model of system resources, showing a heterogeneous processing network13

3. Example of ProcessingPrimitive, ProcessingTemplate, and
ProcessingCompound models. ...18

4. Design flow applied when using the ACS system design tools to construct
embedded systems..21

5. A ProcessingPrimitive model with ports and a scriptname, to be translated into a
Matlab function ..28

6. User-provided function represented by the Primitive model in Figure 5.................28

7. ProcessingCompound model GenCorrection, with submodels AcquirePosition
and DoCorrection ...32

8. Graph representing the data dependencies of the GenCorrection model shown in
Figure 7 ..32

9. A more complex directed graph, with one possible topological enumeration33

10. Pseudocode description of the code generation algorithm used by MatSim............36

11. Function generated by MatSim representing the GenCorrection compound
shown in Figure 7 ...38

12. Compound SimpleControl, with a feedback connection from GenCorrection to
Comparison ..41

13. An unschedulable directed graph, caused by the feedback connection41

14. SimpleControl compound with Initializer atom and connection44

15. Code generated by MatSim representing the SimpleControl model displayed in
Figure 14 ..46

16. Code generated for GenCorrection model with fixed-point simulation code
included ..47

17. Architecture of the Virtual Prototyping Extensions to the ACS toolset...................52

18. Resource Model showing the Matlab environment interfaced to the host54

 vii

19. Port Attributes showing Matlab Protocol as the selected communication protocol 55

20. Layered architecture of the ACS runtime kernel ...59

21. Layered architecture of the Matlab middleware ..60

22. Architecture of a message ..62

23. ACS system design flow ..68

24. Improved design flow for extended ACS toolset ...72

 viii

LIST OF ABBREVIATIONS

ACS – Adaptive computing systems

API – Application Program Interface

COTS – Custom Off The Shelf

FPGA – Field Programmable Gate Array

HDL – Hardware Description Language

MIC – Model Integrated Computing

VHDL – Very high speed integrated circuit Hardware Description Language

 1

CHAPTER I

INTRODUCTION

 The design and implementation of complex embedded systems is difficult. New

and innovative applications push stringent requirements, necessitating improvements in

technologies and system design methodologies. Current design philosophy is highly

dependent on simulation. Simulation provides a means to develop, test, and evaluate

designs prior to committing to implementation, allowing design flaws to be detected and

corrected early in the design process. Model-based approaches to system design have

been introduced to facilitate the design of complex systems at a higher level of

abstraction. The integration of simulation capabilities into a model-integrated embedded

system design tool provides an improved framework for developing complex embedded

systems.

Embedded Systems

 Embedded systems form a broad class of computer-based systems. In general, an

embedded system is a computer system that interacts directly and dynamically with its

environment. These interactions are often facilitated through sensors to discern the state

of the environment, and actuators to change or update the state of the environment.

Embedded systems are used in a wide variety of applications, from military domains to

end-user products. Examples of such systems include digital cellular telephones, anti-

lock braking systems in automobiles, flight control systems in avionics, and missile

guidance systems. This thesis discusses the design of a specific class of embedded

 2

systems, that of digital signal- or image- processing systems. When embedded systems

are mentioned in this thesis, we refer to this particular class of embedded systems.

Traditional System Design Approach

 The first step in an embedded system design is to clearly define the system to be

designed. The system stakeholders hold discussions with the designers until arriving at a

high-level understanding of what the system will do, as well as a general idea of how it

will be constructed. System design requirements are formed from these discussions,

documenting what the system will do. The high-level concept of how the system will be

constructed is documented in the form of architecture diagrams and system-level block

diagrams. After iterating with the stakeholders through this process of developing and

analyzing requirements and high-level design architectures, the designers may proceed

with the more detailed system design work, driven by the requirements.

The steps involved in the detailed system design are depicted in Figure 1. In the

first step, a developer constructs a simulation of all or parts of the initial high-level

system architecture, with the intent of not only visualizing the system, but of verifying

the high-level design against the system requirements. Issues discovered at this stage

may require the refinement of the high-level design architecture or perhaps further

refinement of the system requirements. It is important to note that issues which go

undiscovered at this stage will propagate into later design stages, and, when discovered

can be difficult to correct. For this purpose, simulation is utilized early in the design

process, to ensure the initial design is correct at a high level. Another purpose of

simulation at this stage is to gather sufficient information about the system to allow rough

analyses of design approaches and tradeoffs. Simulations are designed to provide

 3

sufficient accuracy and detail to allow the detection of design flaws. However, because

little is known at this stage about the lower level details of the design, it is not possible to

obtain highly accurate simulations. Therefore, as a general rule, at this stage accuracy

and detail are traded in favor of rapid execution. Designers often make use of a

simulation language and/or package such as Matlab [13] to develop these high-level

simulations. Matlab facilitates the rapid development and evaluation of simulation

prototypes through its powerful data visualization capabilities and extensive libraries.

Simulate Initial
System Architecture

Design Components

Implement / Test
Components

Integrate / Test
Complete System

Develop Component
Interfacing

Figure 1. Design flow often used in embedded system development

 After simulating the initial design architecture, the designer proceeds to design the

system components. Components form the fundamental building blocks of the

application. Each component is designed individually. Good design practice dictates that

 4

components should conform to well-defined and documented interfaces, and should

provide specific entry points. A first step in the development of a component is to

construct a simulation of the component’s behavior. The purpose of the component

simulation is the same as the simulation of the initial design architecture, to verify the

design against the system requirements, or to verify that the component does what it is

intended to do. Only after this verification through simulation has been performed should

the designer proceed to the more tedious and expensive step of component

implementation. Upon completion of the component implementation, the developer tests

the component by simulating the inputs and execution environment of the component.

The behavior of the component implementation can be compared against the component

simulation to verify proper functionality. The developer iterates over this process until

all components have been implemented and verified.

 The next step in the design process is system integration. At a high level,

integration involves properly connecting components together to form the final system.

The code used to connect components is often referred to as “glue” or “glue code” for

obvious reasons. The developer must tailor glue code for the particular components in

the system. Another part of system integration is the configuration of runtime

middleware to properly support the execution of the system components.

At first, the concept of system integration may seem trivial. However, issues can

arise at this late design stage, which force costly redesign efforts. For example,

components could export incompatible or inconsistent interfaces. In this case, it is

possible that the individual components were designed and implemented properly, but the

system cannot be fully integrated. The result is that one or more of the affected

 5

components will need to be refined and tested again. Situations such as these stall the

design process, forcing the designer to iterate to a previous stage in the design flow.

These types of design iterations are costly, especially when discovered late in the design.

When finally the designer succeeds in interfacing all the components together, the system

as a whole is tested against the requirements.

Simulation in System Design

 As illustrated above, simulation plays an important role in system design.

Simulation allows the incremental verification of a system during development, allowing

flaws to be uncovered early in the design. Further, simulation allows application

development to proceed simultaneously with, or even prior to, the development of the

system execution platform.

There are two basic types of simulation: performance and functional. A

performance simulator abstracts the details of how a system performs its tasks in favor of

simulating the temporal aspects of the system. A functional simulation captures the

behavior of a system, allowing the designer to verify whether a system meets functional

requirements. Simulators also vary in their level of detail and accuracy. A high-level

simulator offers a less detailed, less accurate view of a system in favor of a rapid

execution time. A high-level simulation is used when low-level system details are not

needed or are not known. A low-level simulator provides fine-grained, more accurate

details at the cost of longer simulation times.

Many different simulators are in use today. For software, instruction set

simulators allow software to be interpreted and “executed,” allowing a developer to trace

through source code and view the internal state of a simulated processor. For hardware

 6

components, HDL simulators allow designs to be simulated and signals to be examined.

There are many different levels of HDL simulation, each offering a different level of

resolution, and each requiring a different execution time. Some products claim “co-

simulation” capabilities [21], where a developer provides models of hardware and

software, and the simulation records their interactions on execution. There are a plethora

of development tools currently on the market offering simulation capabilities. It is

beyond the scope of this thesis to provide an exhaustive review of these tools. However,

see [16] for an example of an instruction set simulator, and [17] for an overview of

different HDL simulators and a sampling of HDL simulation vendors. Another product

of interest is Simulink by The MathWorks, Inc [18]. Simulink allows a user to

graphically represent a system as a set of block diagrams. Each block is driven by a

Matlab function, and Simulink provides the glue to connect each block and facilitate data

exchange. Simulink interfaces with a product called xPC [19], allowing a target

embedded processor to execute actual system components “in-the-loop” with system

simulation code. A developer may model a system using Simulink and then execute

actual system components as if they were part of the simulation. This approach is similar

to the virtual prototyping discussed in this thesis.

A Model-Integrated System Design Approach

 Another approach to system design involves modeling. A model is an abstraction

or higher-level representation of a system and its components. Through modeling a

system, a designer can focus on those details which are most important and relevant at

each stage in the design. A model-integrated approach to system design involves the

construction of system models using a graphical domain specific modeling language.

 7

System components and interconnections can be represented graphically as signal flow

diagrams. The system execution platform can be captured as block diagrams

representing processing elements, with interconnections representing communication

links. A translator program, called a model interpreter, is then executed, which

synthesizes an executable system from the diagrams. The translator automates system

integration by generating the necessary component interfacing code, as well as the

runtime middleware configurations. The designer must still design and implement the

system components, but the model interpreter handles the details of system integration.

The power of the model-integrated approach lies in the abstraction of unnecessary or

redundant details, allowing a designer to focus on what is most important in system

design. [15] discusses the general concepts behind Model-Integrated Computing (MIC).

 A tool embodying the principles of model-integrated system design for embedded

systems has been developed as part of the Adaptive Computing Systems project at the

Institute for Software Integrated Systems [10]. This design tool allows a developer to

model complex embedded signal and image processing systems, and provides system

synthesis capabilities. The toolset greatly simplifies many of the complexities associated

with the design of complex signal processing systems. The design tool, however, does

not provide any integrated simulation capabilities, the benefits of which have been

discussed. While a designer can simply use other tools to perform system simulations

and then use the ACS toolset to model and synthesize a system, a tool merging the

modeling capabilities of the ACS toolset with the benefits of simulation will aid the

developer in many ways. The integrated toolset will allow the development of systems

from a single design representation, instead of the separate representations required for

 8

each of the various simulators used, as well as the system models captured in the toolset.

Further, the integrated toolset will allow the developer to apply simulation techniques in

the model-integrated design process, aiding the development of high-level simulations of

the initial concept design architecture, as well as component design simulations.

Integrating simulation into the ACS toolset not only integrates the benefits of system

simulation in the model-integrated design approach, but also streamlines the design flow

of system development.

Model-Integrated Simulation Package

 This thesis discusses the integration of high-level simulation capabilities into the

ACS system design toolset. Chapter II provides as background a detailed introduction to

model integrated computing and the ACS system design toolset. Chapter III describes an

extension to the ACS toolset, which generates high-level functional simulations directly

from the signal flow diagrams and component models, facilitating simulation during

model construction. Chapter IV discusses the integration of virtual prototyping into the

ACS toolset, allowing pieces of the system to execute in simulation concurrently with

actual component implementations at runtime. Virtual prototyping provides a framework

not only for visualizing the system, but also for simulating and testing components as

they are developed. Chapter V analyzes the effects of these toolset extensions on the

ACS design flow, and Chapter VI discusses the thesis conclusions and future work.

 9

CHAPTER II

BACKGROUND: MIC AND THE ACS TOOLSET

 The embedded system design community has exerted much effort in creating

sophisticated high-level system design tools to simplify the complexities of embedded

system design. A design tool incorporating the concepts of Model-Integrated Computing

has been produced as a product of the Adaptive Computing Systems (ACS) project at the

Institute for Software Integrated Systems [10]. The ACS toolset facilitates the design and

implementation of high-performance adaptive signal and image processing embedded

systems.

Model-Integrated Approach to System Design

 Model-Integrated Computing is an approach to the analysis and development of

information systems. It involves the use of models to represent domain concepts at a

high level of abstraction. The model-integrated approach to system design [14] involves

graphically representing a system at a high level of abstraction using a domain specific

graphical modeling language, and then performing system synthesis from the models.

The modeling language, also called a paradigm, embodies concepts from the domain of

the system to be designed. A generic modeling editor is configured to support the

domain specific modeling language, allowing a user to capture system components and

specifications abstractly in the form of models. Insignificant or unnecessary details about

the system are omitted from the models, allowing the user to focus on those aspects of the

system that are most relevant to the system design. After a system is modeled, a

 10

translator program, called a model interpreter, is invoked to perform useful translations

from the models. Precisely what translations take place depends on the application

domain. For example, an interpreter could be constructed to translate information

captured in the models into input for a domain-specific analysis tool. For an embedded

systems domain, an interpreter could be constructed which translates system models into

code and runtime configurations for an embedded system.

 There are several benefits of the model-integrated approach to system design. By

abstracting away unnecessary details through system modeling, the developer can focus

on those aspects of the system which are most important during the design. This

abstraction facilitates the design of complex systems at a much higher level, mitigating

much of the complexity, allowing complex systems to be constructed correctly and

efficiently. The concept of system synthesis through model interpretation is the vehicle

for facilitating the abstraction. The interpreter shields the developer from many of the

low-level system details which are unimportant at the system level. The model-

integrated approach is to an extent flexible to design iteration and requirements change,

because systems are synthesized from models. When a change in the design is required,

a simple update to the models is made along with any needed updates to user-developed

components, and the system is re-synthesized. This approach to system design and

development has been demonstrated in several different applications

[1][3][4][5][6][7][8][9].

The ACS System Design Toolset

 The ACS design toolset facilitates the development of adaptive signal- and image-

processing embedded systems. Signal- and image- processing systems can be

 11

represented as signal flow diagrams, with blocks in the diagram representing system

components, and connections as paths for data exchange between components. An

adaptive system is defined as a system which transitions between discrete modes of

execution, where each mode consists of a distinct set of components and

interconnections. When an adaptive system transition from one mode to another, the set

of components corresponding to the second mode is activated, replacing the set of

components from the first mode. A missile guidance system can be constructed as an

adaptive image processing system. In the first mode, the system seeks multiple targets at

a long range, and lower frame rates and lower power consumption levels are acceptable.

As the missile nears the general area of the possible targets, the system transitions to a

new mode where the frame rate is increased while the system attempts to single out a

small set of distinct targets, determining the best target to track. At a close range to the

determined target, the missile enters a third and final mode, where the frame rate is at a

maximum, and the missile focuses on a single target, tracking all changes in its position

until impact. The three distinct processing modes of the system have different goals and

requirements; yet together form a single system. Obviously, the design of adaptive

systems is difficult, involving many issues. The ACS toolset was developed to mitigate

many of the complexities behind the design of such systems.

The ACS toolset embodies the principles of the model-integrated approach to

system design. It provides a rich graphical modeling language and graphical model

editor to allow the capture of system characteristics and specifications as models. A

model interpreter is provided, which translates system models into a set of configurations

for an embedded runtime environment, which has been designed to support component

 12

execution on a heterogeneous network of processing elements. The following sections

describe the ACS graphical modeling language, the supported runtime environment, and

the model interpreter.

The ACS Modeling Language

 The ACS modeling paradigm allows the capture of applications at a high level of

abstraction. When designing an adaptive system, the three principle areas of concern are

the development of system components and their interactions, the establishment of the

different modes of execution and the transition conditions governing mode transitions,

and the development of the execution platform on which the application will run. The

modeling paradigm supports each of these three areas of design by allowing the user to

independently model the hardware or processing resources of the system, the components

and their interconnections, and the adaptive behavior governing the modes and

transitions.

Modeling System Resources

 As adaptive systems typically execute on heterogeneous processing networks, the

paradigm supports the modeling of several distinct processing elements. FPGAs, ASICs,

PCs, DSPs, general-purpose processors and Memory are represented as blocks in a block

diagram. Boards or cards are captured as collections of basic resources. Point-to-point

communication links between resources are captured as connections between the ports of

different blocks. Figure 2 shows an example of a resource model. This figure represents

a heterogeneous signal processing platform, with a host processor connected to a

TMS320C40 DSP, which is connected to a TMS320C67 and an Altera FPGA. The

FPGA is connected to a local bank of SDRAM. Each connection represents a physical

 13

communication link or channel between resources. As links in the network each realize a

communication protocol, the modeler may select the appropriate protocol for a link by

setting the Protocol attribute of the ports on either end of the link. By modeling system

resources separate from the application components, details of the application

development have been abstracted away from the platform development. However,

sufficient information has been captured in the resource models to facilitate application

development.

Figure 2. Model of system resources, showing a heterogeneous processing network

Modeling System Components

 As previously described, adaptive systems consist of concurrently executing and

communicating components. Components exchange data through message passing.

Components and their interactions can be conveniently represented as a type of signal

flow diagram, with the nodes of the diagram representing the components, and the

connections representing streams through which messages are passed from one

component to another. The paradigm supports the capture of these signal flow diagrams

 14

according to the dataflow formalism. The paradigm also supports hierarchical

composition of components, facilitating the capture of complex designs in a compact

format. Atomic components (those which do not contain other components) are referred

to as primitives and are captured in the modeling paradigm as ProcessingPrimitive

models, while hierarchical or composed components (constructed from the components

contained in it) are referred to as compounds and are captured as ProcessingCompound

models. Primitives are realized by the developer as code or VHDL hardware.

 The modeling paradigm also supports the capture of design alternatives. A model

called a ProcessingTemplate or template can be included to represent a collection of

alternatives. At model building time, the developer is allowed to specify several

alternative implementations for a given component by including a model of each in a

template. In a later design stage, the model interpreter will allow the developer to select

which of the alternatives is to be actually used in the final system. The selected

component contained in the template will effectively replace the template in the model

hierarchy, and the remaining alternatives will be ignored. By explicitly including design

alternatives in the models, a developer is not forced into a single implementation early in

the design phase.

Component Composition Through Dataflow

 Component interactions are captured following the semantics of the dataflow

formalism. A compound component is captured as a signal flow block diagram. The

blocks represent other components, and the directed connections between the blocks

represent directed channels through which messages are passed. Data is said to flow

through the network during execution because when a component executes, it consumes

 15

inputs and produces outputs. Inputs are removed from the message channels connected to

the inputs of a component, while outputs are enqueued into the message channels

connected to the outputs of the component. Typically, a component can only execute

when some or all of its input channels have messages available for consumption. Thus

the order of execution of the components is a function of the state of the message

channels, or the data flowing through the network.

 There are two general classes of dataflow models, asynchronous and synchronous.

In synchronous dataflow [20], sufficient information is captured in the models to be able

to schedule the order of component execution at model interpretation time. The

necessary information to determine schedulability is the number of messages or tokens a

component will consume on each input channel on each invocation, as well as the

number of tokens on each output the component will produce per invocation. If this

information is known at model-building time, a schedule of execution for the components

can be constructed [20]. In many systems, however, it is not known at model building

time how many tokens each component will consume and produce, and some

components may require a variable number of tokens per invocation. For systems

containing such components, asynchronous dataflow can be used to represent the system.

Component scheduling in an asynchronous dataflow system is performed strictly at

runtime. In the runtime environment provided with the ACS toolset, the components

participate in determining their own schedulability. The runtime environment maintains

the channels connecting components, and allows components to access the channels

through an API. When a component is invoked by the runtime environment, it is

responsible for determining whether there are sufficient input tokens awaiting

 16

consumption to allow the component to execute. Further, because all message channels

have finite buffer space, the component must determine if there is sufficient space in the

channels connected to its outputs to hold the tokens to be produced by its execution. If

both conditions are met, the component performs its computation. If not, the component

yields control to the runtime environment. Scheduling proceeds in this cooperative

manner, with the runtime environment simply executing all components in a round-robin

fashion, and those that determine themselves “ready” to execute, perform their

computation, while those that do not, wait for a future invocation.

The modeling paradigm supports the semantics of asynchronous dataflow for

representing components and component interactions. Each component can contain input

and output ports. A port can be connected to a port of another component. Such a

connection models a channel through which the first component can send messages to the

second.

Hierarchy in composed models is merely a means of visually simplifying a signal

flow diagram. Because complex adaptive systems often contain several components, a

diagram representing all the primitive components in one level would be very difficult to

comprehend. Compound components were introduced into the modeling language to

facilitate the capture of systems with several components, through allowing complex

components to be represented as compositions of simpler components. However, at

runtime, only the primitive components will actually form part of the system. The model

interpreter flattens the hierarchy by replacing each compound component with the

components and interconnections of which it is composed.

 17

 A simple control system application can be developed using the ACS toolset.

For example, consider a system consisting of two sensors that detect information about

the physical state of the system to be controlled, an actuator which adjusts the state of the

system, and a software controller which reads the sensors, calculates any required

adjustments to the state of the system, and sends control signals to the actuators. A

model of the system controller is represented in Figure 3. The two leftmost components,

ReadSensorA and ReadSensorB are ProcessingPrimitive models, and represent

components responsible for reading the sensor information. The comparison component

is represented as a ProcessingTemplate model, containing models of alternative

implementations of the comparison algorithm. The GenerateCorrection block is a

compound, representing group of components whose aggregate behavior implement the

correction generation. One of the components within the GenerateCorrection compound

is responsible for interacting with the system actuators (not shown in the figure). All

solid connections in the figure represent dataflow connections. The purpose of the

InitialStatus icon will become clear in a later section.

 18

Figure 3. Example of ProcessingPrimitive, ProcessingTemplate, and ProcessingCompound models.

Modeling System Modes and Mode Transitions

 As stated previously, the paradigm allows the modeler to represent the adaptive

behavior of the system. System modes are captured as the states of a finite state machine.

Transitions between modes are captured as the conditions governing the transition

between the states. Transitions are conditioned on global system events, which are also

represented. Each mode is associated with a top-level compound model, representing the

computations the system is to perform while in that mode of execution.

ACS Runtime Environment

 The ACS toolset provides a runtime environment tailored for seamless integration

into the model-integrated approach to system design [11]. At runtime, adaptive systems

consist of multiple components executing concurrently on multiple processing resources.

The runtime environment provides services and support for system components,

abstracting from the components the details of inter-component and inter-node

 19

communication. The runtime environment consists of a standalone kernel for each

processing node in the network. For FPGA nodes, the kernel is a virtual hardware kernel,

providing for bus arbitration and communication port sharing. For processor nodes, the

runtime environment consists of a thin real-time kernel which manages inter-process

communication, as well as a deterministic dynamic memory management layer. The

real-time kernel for a given processor is responsible for scheduling all processes mapped

to that processor. It also facilitates the broadcasting and dispatching of kernel-level

messages across the network as they are received from other nodes or from the host. The

runtime environment supports dynamic reconfiguration by allowing the host to broadcast

code corresponding to a new mode through the network followed by a reconfiguration

command. The network will then reinitialize itself and begin executing the new mode.

ACS Model Interpreter

 The ACS model interpreter is responsible for mapping system modes to runtime

system configurations. The model interpreter automates the process of selecting between

design alternatives, allowing the developer to select a single point design from the design

space. Next, the interpreter generates code to configure the runtime environment to

support the execution of the components captured in the models. The developer must

select a mapping between components and processing resources, either by explicit

referencing between models in the modeling environment or by selecting one of a set of

mappings offered by the model interpretation process. The interpreter generates

configuration code for each of the resources in the network to allow each resource to

support the components that are mapped to it. For FPGA components, the interpreter

generates VHDL code to connect the primitive components to the virtual hardware

 20

kernel. The output of the model interpreter may then be compiled by COTS tools,

specific to the particular resources used in the network, and then loaded and run.

 Because systems are synthesized in this fashion from the models, many issues in

the non-model-based approach to system design are avoided. For example, primitive

component implementations must conform to the interface supported by the runtime

environment. By specifying the interface in the models, the interpreter may then generate

a configuration of the runtime environment to support that particular interface. When

system integration is performed, the only possible interfacing inconsistency that can

occur is if the developer incorrectly specifies or implements a component. System

synthesis generates the integrated system, therefore a system will be correct by

construction, assuming the model interpreter properly performs its function and the

primitive components are correct.

ACS System Design Flow

 The ACS toolset provides a framework for developing adaptive embedded

systems. After the stakeholders and designers have established the system requirements

and have agreed on a high-level system architecture, the detailed design using the ACS

toolset may begin. The steps taken in system development when using this toolset are

depicted in Figure 4. The first step is to model the system using the graphical modeling

language. During this step, the developer begins with the high-level system architecture,

and recursively refines complex components into simpler components until arriving at the

primitive level. Paths of data exchanges between components are captured as well. The

different modes of operation are derived, along with the conditions for mode

transitioning. The resources of the system are captured in the resource models, as are the

 21

communication links between resources. After this step, the developer proceeds to

implement and test individual primitive system components. Primitives implement the

interface captured in the models, and after implementation, should be thoroughly tested to

ensure proper behavior. After implementing the components, the full system can be

synthesized through model interpretation and tested. It should be noted that even though

the system is synthesized from the models and the components, and each component has

been individually tested, the developer still needs to test the integrated system to ensure

complete consistency.

Construct System
Models

Implement / Test
Components

Synthesize / Test
Integrated System

Figure 4. Design flow applied when using the ACS system design tools to construct embedded systems.

 Iteration is an inevitable part of any system design. Iteration occurs when a

problem or issue is uncovered in a later design phase, causing the design process to start

again from a higher level and proceed again. Obviously, excessive iteration is wasteful.

However, iteration must be expected in system design, because early in the design

process developers are not always aware of all issues pertaining to the system under

construction, so many issues must be dealt with as they are discovered. Also, even the

best developers are not infallible, and mistakes, however minor, will be made. The ACS

 22

design flow provides flexible paths for design iteration to occur. Due to the intuitive

graphical nature of the modeling environment, constructing and updating models is not

difficult. When component implementation uncovers, for example, a problem with the

modeled interface to a component, it is not difficult to quickly change the modeled

interface and proceed with the implementation. When system integration uncovers a

problem with a component implementation, that component will simply be adjusted and

system testing may proceed. If system integration uncovers a problem requiring an

adjustment to the models, it is a simple issue to update the models, update the

corresponding component interfaces, and re-synthesize the system. The ACS toolset

offers a flexible and intuitive infrastructure for developing embedded systems.

 However, the ACS toolset supports no concept of simulation, the benefits of

which were discussed in Chapter I. Even though the developer may perform simulations

in separate tools, an integrated support for simulation will allow system development to

proceed from a single design representation. Further, as a consequence of integrating

simulation capabilities with the ACS runtime environment, an infrastructure for

component testing and debugging is developed.

 23

CHAPTER III

 HIGH-LEVEL FUNCTIONAL SIMULATION SYNTHESIS

 When modeling a system, a designer may want to simulate a design prior to

committing to implementation. A functional simulation is a representation of a system

which can be executed to verify intended system behavior. A high level functional

simulation allows a designer to check a coarse-grained design against general functional

system requirements. This type of simulation is often performed when laying out a

block-level representation of a system, and allows a developer to check for errors and

inconsistencies in the design before proceeding to a lower-level, more detailed stage of

development. The MatSim model interpreter has been developed to generate a functional

simulation from a set of application models. This simulation can then be used to compare

modeled behavior against high-level functional requirements.

 As stated in Chapter I, a first step in the detailed design of a system is to simulate

the initial design architecture derived from the requirements analysis design phase.

Chapter I also discussed the popularity of the Matlab language and environment as a

platform on which to develop these high-level simulations. A developer can easily model

the initial design architecture using the ACS modeling language and environment.

MatSim provides the ability to translate these initial system models, subject to a certain

set of constraints on modeling semantics, into a set of Matlab subroutines which can be

executed together with user-provided primitive component simulation subroutines to

simulate the system.

 24

The goal of the MatSim tool is to allow the developer to simulate complex

components. As discussed in Chapter II, complex components are known as compound

components, and are composed of primitive components and other compound

components. It is not the goal of MatSim to simulate the adaptivity of an adaptive

system. Generated simulations represent a single mode of operation. However, the

developer may use MatSim to generate simulations for each individual system mode.

MatSim does not attempt to simulate component executions on the individual processing

resources. MatSim generates a high-level functional simulation for a modeled system.

The details of executing a component on one resource versus another are abstracted away

at this level. Further, MatSim does not attempt to generate a simulation for a design

space. As such, it is assumed that all design alternatives have been resolved through the

ACS model interpreter, and that the input to the MatSim tool is a single point design from

the modeled design space.

In keeping with the philosophy of the ACS toolset that the precise semantics of

primitive components are not captured in the toolset, MatSim does not attempt to

generate simulation code for the primitive components of a system. Instead, MatSim

assumed that the developer provides a Matlab function to simulate each primitive

component in the system. MatSim generates a Matlab code framework to invoke the

primitive simulation functions provided by the developer. A drawback to this approach,

as shall be seen, is that in the development of MatSim, it was necessary to make a

simplifying assumption about the component diagrams, affecting the semantics of the

system models. MatSim assumes that system models conform to a restricted set of

dataflow semantics. MatSim will not generate a correct simulation of components which

 25

do not conform to the restricted semantics. Details of the semantic restrictions will be

enumerated in a later section.

MatSim is meant to be a tool to be used during the model construction stage of

system design. During the system modeling stage, a developer recursively breaks

complex components into simpler pieces until representing the simple atomic

components as primitives. When modeling the initial design architecture, the designer

can represent complex components as primitives to achieve an initial design model. A

simulation for each of the complex primitives can then implemented in the Matlab

language, and MatSim can be used to synthesize a simulation for the design. The

developer can then verify the initial design concept against high-level functional

requirements. The designer next proceeds to break complex components into simpler

pieces by replacing primitive models representing complex components by compound

models containing simpler components. This design can be simulated by breaking the

code representing complex primitives into code representing simpler primitives. The

developer can invoke MatSim again to generate the simulation framework around the

new set of component simulations. At each step of the design, the developer may

generate a simulation of the modeled system (assuming the restricted modeling semantics

required by MatSim have been applied) by creating simulations for each primitive

component in the system and then invoking MatSim to create the framework. The

system modeling design stage is completed when all components have been resolved into

their level of granularity as appropriate for the design. Following the process of breaking

complex component simulations into several simpler component simulations according to

the recursive decomposition represented in the models provides the developer at the end

 26

of system modeling with a high-level Matlab simulation of each component in the

system. Assuming the behavior resulting from the MatSim-generated simulations has

been verified by the developer, at the end of the modeling design stage, the final Matlab

component simulations can be used as functional specifications for component

development in the next design stage.

The MatSim tool allows the developer to generate Matlab simulations directly

from component models. The following sections describe the semantics of this

translation, along with its corresponding modeling implications.

Matlab Representation of System Component Models

 As discussed in Chapter II, components are modeled in the form of hierarchical

signal flow diagrams. Primitive system components are represented in the ACS

modeling language as ProcessingPrimitive models, while collections of components are

represented as ProcessingCompound models. The next sections discuss how MatSim

generates a functional simulation from these types of models.

Primitive Component Models

 Primitive components form the basic building blocks of the system. In Matlab,

the basic block of code is a function or subroutine, and as such, primitive components are

represented as Matlab functions. As stated previously, the behavior of primitive

components is not captured in the ACS modeling tool, so the developer is required to

supply the Matlab functions simulating the intended behavior of each system primitive.

MatSim generates a framework around these user-provided primitive functions. The

generated framework is responsible, among other things, for ensuring the proper

 27

invocation of each component. Thus, MatSim must have the ability to discern how to

invoke the function based on the model of the function. In order for the framework

generated by MatSim to properly invoke a user-provided primitive function, the function

signature or prototype must match the port signature of the primitive model it represents.

MatSim assumes that the ports of a primitive model represent parameters or arguments of

the model’s corresponding function. Each input port represents an input parameter, and

each output port an output parameter. The name MatSim uses to generate the function

invocation is derived from the “Script/Component name” attribute of the

ProcessingPrimitive model. Figure 5 depicts a ProcessingPrimitive model named

DoCorrection. The model has two input ports, Correction and Position, and output port

Out. The “Script/Component name” attribute has been set to “doCorrection.” MatSim

assumes a correspondence between the name of the function realizing the primitive and

the scriptname attribute. MatSim requires the primitive simulation function to have the

letter “M” concatenated with the name provided in the scriptname attribute as its name.

The addition of the “M” to the beginning of the name avoids certain name mangling

issues which arise due to system modifications discussed in Chapter IV. The function

that simulates the DoCorrection component should therefore be named “MdoCorrection”.

The function MdoCorrection, shown in Figure 6, correctly represents the DoCorrection

model of Figure 5.

 28

Figure 5. A ProcessingPrimitive model with ports and a scriptname, to be translated into a Matlab function

Figure 6. User-provided function represented by the Primitive model in Figure 5.

 If the framework generated by MatSim is to properly invoke the user-provided

primitive functions, parameter passing is significant. Not only must the correct number

of parameters be passed, but those parameters must be passed in the proper order. The

proper ordering of parameters is determined by the numbering assigned to the ports in the

models. When building models, the designer assigns a number to each input port and

each output port by setting the corresponding port number attribute field. Ports of a given

model should be numbered sequentially, starting with zero, and input ports are numbered

independent of output ports. In the case of the DoCorrection model of Figure 5, the

 29

Correction port’s port number attribute has been set to 0, while that of the Position port

has been set to 1. The output port Out’s port number has been set to 1. The code in

Figure 6 correctly corresponds to the DoCorrection primitive model, having the

Correction parameter first in the input parameter list, followed by Position, and Out as the

only output parameter. When the developer follows the conventions stated here about

parameter ordering, as well as function naming, the framework generated by MatSim will

properly invoke the user-supplied simulation components.

Compound Component Models

 A ProcessingCompound model represents a collection of components. As each

primitive component is represented in Matlab as a Matlab function, a collection of

components can itself be represented as a Matlab function. This convention leads to a

simple representation of a system in Matlab. A compound simply represents a function,

whose contents are calls to other functions. Those functions represent the components

contained in the compound. The ports of a compound represent the parameters of the

corresponding function. The code representing each compound in a set of models can be

generated by the MatSim model interpreter, and the user simply needs to execute the

function representing the top level model in the hierarchy to execute the simulation.

There are, however, several issues which arise with this representation, not the least of

which is the semantics of the dataflow representation of the components. Another issue

is the fact that Matlab is a sequential programming language, only allowing one function

call to be active at a time. The systems modeled in the ACS toolset consist of

concurrently executing processes. In order for the generated Matlab simulation to truly

represent the semantics of the modeled system, the functions representing the system

 30

components would be required to execute and exchange data concurrently. These

deficiencies in the MatSim simulation semantics are addressed in the following sections.

Dataflow and Static Scheduling

 As discussed in Chapter II, regarding the ACS toolset, the scheduling of primitive

components follows the execution semantics of asynchronous dataflow. This means that

the schedule of component execution is not known until runtime. In the context of the

ACS toolset, a component participates in its own scheduling by determining whether the

proper conditions have been met to allow the component to execute. However, the basic

concept behind a component is still present, in that, when it executes, it consumes input

and produces output, and the schedule of invocation is a function of the state of the input

and output buffers attached to the component. Exactly how many tokens a component

consumes on each input and produces for each output is not captured in a diagram

following asynchronous dataflow semantics.

 The Matlab language does not support asynchronous dataflow execution

semantics. The language provides an explicit control flow structure. Assuming a Matlab

function consists of a series of function calls, as a consequence of the explicit structure

imposed by the Matlab language, the order in which the function calls should be made

must be known when the containing function is written. This ordering cannot vary when

the function executes. A convention could be implemented which mimics the dynamic

scheduling of the ACS runtime environment, allowing the components themselves to

participate in their scheduling. However, a goal of the MatSim tool is to allow the

developer the freedom to generate simple Matlab functions representing the primitive

components of the system, without being burdened with the necessity of interacting with

 31

a simulation runtime environment or API, as required by the ACS runtime environment.

To avoid the need for dynamic scheduling, the MatSim tool is required to generate a

schedule for properly invoking the functions called by a compound function. There is

insufficient information available in an asynchronous dataflow graph to determine a

correct static schedule, so MatSim was designed to make an assumption about the

semantics of the dataflow graph represented in the models.

The synchronous dataflow formalism was discussed in Chapter II. MatSim

schedules function invocations assuming the component models were created following

the synchronous dataflow formalism, with each input port requiring a single token, and

each output port producing a single token on each invocation. Only systems that

implement these semantics can be properly simulated using a simulation generated by the

MatSim interpreter. However, systems that do not exhibit these semantics can emulate

this behavior through modifications to the simulation code, by allowing components to

maintain state, effectively buffering inputs and outputs as required.

 In order to produce the correct static schedule for a compound model, MatSim

must resolve the data dependencies between the components contained in the compound.

These data dependencies can be conveniently represented as a directed graph. Nodes of

the graph represent the components contained in the compound. Edges in the graph

represent a dataflow path connecting models. If two models have multiple paths

connecting them (in the same direction), a single directed edge is sufficient to model the

dependency. It is assumed that data is always present at the input ports and data can

always be written to the output ports of the parent compound. Connections between a

port of a contained model and a port of the container are not represented in the digraph,

 32

because no dependency exists. (This assumption is valid because the ports of a model

represent parameters of a function, and the parameters of a function persist across all

function calls made within that function, and can be read from and written to at any time.)

The resulting directed graph represents the data dependencies between the components

contained in a compound. For example, Figure 7 depicts a compound model,

GenCorrection, containing two components, AcquirePosition, and DoCorrection. The

graph representing the data dependencies is depicted in Figure 8.

Figure 7. ProcessingCompound model GenCorrection, with submodels AcquirePosition and DoCorrection

N1

AcquirePosition DoCorrection

N2

Figure 8. Graph representing the data dependencies of the GenCorrection model shown in Figure 7

 Once the graph representing the data dependencies between the components has

been formed, the static schedule may be derived through a topological enumeration

 33

algorithm. A topological enumeration attempts to find an ordering of the nodes of a

directed graph such that the next node selected in the ordering would have no input

connections if all other previously selected nodes were removed from the graph, along

with their incident edges. In the case of the graph in Figure 8, node N1, representing the

AcquirePosition component, would be selected first, followed by node N2, representing

the DoCorrrrection node. Node N2 could not be selected first, because it is the

destination of a connection. In contrast, after node N1 is included in the enumeration,

removing it from the graph along with the edge it sources leaves node N2 with no

associated connection. Node N2 can then be selected. Figure 9 shows an example of a

more complicated graph and one possible topological enumeration.

A Possible Enumeration

V3
V1
V2
V4
V5

V1

V3
V5

V2

V4

Figure 9. A more complex directed graph, with one possible topological enumeration

 Because the topological enumeration enumerates the nodes of the graph in the

data-dependent order, it represents a static schedule for the functions corresponding to the

nodes of the graph. In the case of Figure 8, the node representing the AcquirePosition

component was selected first, so the function representing the AcquirePosition

component will be scheduled first, followed by the function representing DoCorrection.

 34

MatSim writes calls to these two functions to a file in that order. This file becomes the

function representing the GenCorrection compound.

Parameter Naming and Passing

 As mentioned previously, the ports of a model represent the parameters of the

model. The names of the input parameters of a function representing a compound

correspond to the names of their assigned ports, likewise for the output parameters. The

input and output parameters of a function are known as formal parameters. The actual

parameters of a function are the parameters which are passed to a function when it is

actually invoked. A connection leading from an input port of a compound represents a

use of the formal parameter representing that port. If the destination of such a connection

is an input port of a component contained in the compound, the formal parameter of the

compound’s function is used as the actual parameter in the call to the component’s

function.

Connections between models represent data exchanged between components.

Because data is held in variables in Matlab, MatSim must generate temporary variables to

hold this data. MatSim generates a temporary variable for every connection in a

compound, except for those connections which begin at an input port, in which case the

input parameter is used directly. Temporary variables are named according to the name

of the port which sources the connection. This is only a naming convention; any

temporary name could have been used. A globally unique integer is generated for each

parameter and is appended to the end of the parameter name to guarantee uniqueness of

the name. When a function generates an output which is to be used as an input to another

function, the temporary variable is used as an actual output parameter for the function

 35

call representing the source of the connection, and as an actual input parameter for the

function call representing the destination of the connection. For example, in the case of

Figure 7, there is a single connection connecting the AcquirePosition model to the

DoCorrection model. This connection will cause the generation of a temporary variable,

named after the output port, Pos, of the AcquirePosition model. The temporary

parameter could therefore be named “Pos_1”, assuming the global unique integer

contained the value 1. Pos_1 will be used as an output parameter in the call to the

function represented by the AcquirePosition component, and as an input parameter to the

function represented by the DoCorrection component.

 After all function calls have been generated for a file representing a particular

compound, the formal output parameters of that compound must be updated properly.

After the last function in the schedule of a compound has executed, the temporary

variables, which represent the connections to the output ports of the parent compound,

are assigned to the formal output parameters. For example, the code generator will insert

a call to the function representing the DoCorrection model in Figure 7. This call requires

one output parameter, so the code generator uses a temporary variable, named after the

output port of the DoCorrection model. When the code generator discerns that no more

functions remain to be called, it will update the output parameters of the function being

generated by assigning the temporary variable generated in the call to the DoCorrection

function to the formal output parameter Out.

 36

Generating a Complete Function

function ResolveComponent(comp)

 If comp.ComponentType == ProcessingCompound
 Create file named after comp.name
 Write function prototype generated from the port interface of comp
 Write function instance counter
 For c:= next in the topological enumeration of the models contained in comp

Find names of actual input parameters for input ports of c
Generate temporaryies as actual output parameteres for output ports of c
Write a call to the function corresponding to c
ResolveComponent(c)

 Write updates of formal output parameters of comp
 end If
end function

Figure 10. Pseudocode description of the code generation algorithm used by MatSim

 Figure 10 depicts a pseudocode description of the algorithm used in MatSim to

generate a complete Matlab function from a compound model. For a model comp,

MatSim first determines that the model is actually a compound model, because code is

not generated for primitive components. It creates a file corresponding to the name of the

compound model, appending the letter “M” to the front of the name, just as with

primitive components. The name of the function generated for comp is the same as the

name of the file, as required by the Matlab language. MatSim next discerns the proper

function prototype for comp from the port interface of comp, being sure to account for

the order of the formal parameters, as dictated by the port numberings. Next, a global

variable which tracks the number of invocations of the function is written. The need for

this variable will become clear in a later section. Following the instance counter,

topological enumeration of the models contained in comp is performed, with the purpose

 37

of discerning the order in which to invoke the functions corresponding to the contained

models. As a component c contained in comp is encountered in the enumeration, it is

taken as the next function to invoke in the schedule. To generate a function invocation,

MatSim must determine the formal input parameter names to use in the function call.

This is done by traversing each connection connecting to an input port of c to the source

of the connection. Assuming the topological enumeration is performed correctly, the

source of the connection will either correspond to an input port of comp, in which case a

reference to the formal input parameter associated with the input port is used as the actual

input parameter, or the connection source will be an output parameter of another model

contained in comp which will have already been scheduled. The actual output parameters

are generated as temporary variables, as described above. These temporary variables will

be used either as actual input parameters in calls to yet-to-be-scheduled components

contained in comp, or to update the formal output parameters of comp at the end of the

function. After the actual input and output parameters have been gathered, a call to the

function corresponding to c is generated and written to the file, and care is taken to

ensure actual parameters appear in the proper order, according to the numbering of the

ports of c. The ResolveComponent function is then invoked on c, so in the case where c

is a compound, the function corresponding to it will be generated. After the loop through

the topological enumeration completes, the formal output parameters of the function

corresponding to comp are updated by writing an assignment involving the temporary

variables corresponding to the connections to the output ports of comp. An assignment

statement is written to copy the contents of the temporary variables to the formal output

parameters.

 38

Figure 11. Function generated by MatSim representing the GenCorrection compound shown in Figure 7

 Figure 11 shows a function generated by MatSim representing the GenCorrection

model shown in Figure 7. The function name and file name correspond to the name of

the model, with the “M” added to the front: MGenCorrection. There is a single output

parameter, Status, corresponding to the single output port of the GenCorrection model,

and a single input parameter, Correction, corresponding to the input port of the model.

The next line corresponds to the declaration of the global instance count variable. This is

followed by the calls to the two functions representing the models contained in

GenCorrection. The AcquirePosition model is selected first in the topological

enumeration, so a call to the function realizing the AcquirePosition component is

generated. The scriptname attribute of the AcquirePosition primitive model has been set

to acqPos, so MatSim generates a call to a function named MacqPos. MatSim passes no

input parameters to the MacqPos function because the AcquirePosition model contains no

input ports. The data generated from the invocation of MacqPos is stored in a temporary

variable named Pos_4, named after the output port of the AcquirePosition model.

MatSim next selects the DoCorrection in the topological enumeration, and generates a

call to the function represented by that model. The scriptname attribute of DoCorrection

is set to doCorrection, as was shown in Figure 5, so MatSim generates a call to the

function MdoCorrection. The actual parameters of MdoCorrection are passed according

 39

to the port interface of the DoCorrection model. The first port of the DoCorrection model

is connected to the Correction port of the GenCorrection model. This connection is

represented as the use of the formal input parameter Correction as an actual parameter in

the call to MdoCorrection. The second input port of DoCorrection is connected to the

single output port of the AcquirePosition model, resulting in the use of the temporary

variable Pos_4 generated in the call to MacqPos as the second actual input parameter in

the call to MdoCorrection. The single output of the MdoCorrection function is stored in a

temporary variable called Out_7. Because there are no more models to be processed,

MatSim now generates code to update the formal output parameters of the function

before terminating. The penultimate statement represents the connection from the output

port of the DoCorrection model to the Status output port of GenCorrection. The final line

of the function updates the instance counter, flagging that the function has been invoked

at least once.

A Complete Functional Simulation

 MatSim iterates over the hierarchy of models and generates a function for each

compound in the hierarchy. When MatSim generates the code for the top level

component, it not only generates the function calls as described, but it wraps the function

in a loop which executes based on the condition of a global variable called

TERMINATE_SIMULATION. A user may terminate the execution of a functional

simulation by setting this variable to some non-empty value in a one of the primitives

executing in the simulation. This allows the developer to control when the simulation

terminates. After all functions have been generated, the user may execute the functional

simulation in the Matlab environment simply by calling the function representing the top

 40

level model in the application model set to be simulated. Executing this function will

repeatedly invoke each of the other generated functions by tracing through the hierarchy.

Each primitive function will eventually be invoked by the function generated from the

compound containing the corresponding primitive model. By providing a function to

represent the behavior of each primitive, the designer can invoke MatSim to generate a

complete functional simulation of a modeled system.

Scheduling Feedback

 The generation of a static schedule depends on the ability to represent the data

dependencies between models as a directed graph, and the correct execution of the

topological enumeration algorithm. When a model contains a feedback connection, the

corresponding dependency graph will contain a directed cycle, causing the topological

enumeration algorithm to fail. Figure 12 shows a top-level compound model named

SimpleControl, similar to the model shown in Figure 3. The connection from the output

of GenCorrection to the input of Comparison represents a feedback connection. While

attempting to perform a topological enumeration on the graph representing the data

dependencies between the models contained in SimpleControl, MatSim encounters the

graph represented in Figure 13. MatSim can successfully determine that ReadSensorA

and ReadSensorB can be properly scheduled. However, Figure 13 shows that the

Comparison node is data-dependent on the GenCorrection node, and GenCorrection node

is data-dependent on the Comparison node. MatSim cannot schedule one function before

the other because it will violate the presumed data dependencies.

 41

Figure 12. Compound SimpleControl, with a feedback connection from GenCorrection to Comparison

N3

Comparison GenCorrection

N4

Figure 13. An unschedulable directed graph, caused by the feedback connection

 However, this directed graph does not accurately represent the actual data

dependency which feedback represents. In most applications, the component that

receives data from the feedback connection does not receive data from the connection in

the initial invocation of the function. That component simply generates an initial output

and feeds the result forward in the network. Not until the component which generates the

data to be fed back has had a chance to execute will the initial feedback data be

generated. The dimension which is not shown in the directed graph is time. On the ith

invocation of the Comparison component, Comparison depends on the data which was

 42

generated in the i-1st invocation of the GenCorrection component. The GenCorrection

component cannot be expected to produce an output prior to its execution, so the

Comparison component must be constructed “knowing” an initial state for the feedback

input.

 In order to resolve the feedback connection in such a way that the proper results

are computed in the functional simulation, the user must implement the Comparison

component to “know” the initial state of the feedback connection. Further, the modeler

must denote in the model which function “knows” to execute without receiving the initial

data. This information is critical, because MatSim has no means of knowing if the

Comparison component is the component which should ignore the cyclic input, or the

GenCorrection component. The modeling language has been augmented with an atom to

allow the modeler to make such a distinction. Figure 14 shows an updated

SimpleControl model, with an initializer atom and connection in place. The initializer

atom is simply a means for the modeler to specify to the MatSim interpreter where a

directed cycle should be broken. By connecting an initializer atom to an input port of a

model, the modeler is stating that that particular model has been designed to not depend

on the input from the connected port on the first invocation. In other words, the

component has been designed to provide its own initial data for the port connected to the

initializer atom. On subsequent invocations, the function will be provided with data

generated by the invocation of the function corresponding to the source of the feedback

connection. With this updated information, MatSim can now determine that Comparison

has been designed to ignore the initial input from the feedback connection, and can

therefore be scheduled before the function representing GenCorrection.

 43

 Alternative, possibly superior, semantics that could have been applied to the

initializer atom and the breaking of feedback loops is to allow the initializer atom to

somehow provide an initial value for the port it is connected to. By allowing the

initializer atom to actually initialize a port, a component does not need to be constructed

with knowledge of how it is used in the topology of the interconnection. As described

above, a component must be constructed to provide an initial value on the initial

invocation, which is cumbersome from the perspective of a component library. It would

be necessary to have a “feedback” and a “non-feedback” version of a component, even

though both versions implement essentially the same function. However, the semantics

in use were chosen because of the asynchronous dataflow semantics used in the ACS

runtime environment. Because by nature components involved in asynchronous dataflow

must be constructed to some degree to be aware of their own state, it is a small step to

have them manage a small part of their own state. Assigning this second semantics to the

initializer atom would require an update to the ACS runtime environment to properly

implement the capability of initialization, while the assigned semantics are consistent

with the runtime environment as it is currently implemented.

 44

Figure 14. SimpleControl compound with Initializer atom and connection

 MatSim must make a provision for passing a parameter which is involved in a

feedback connection. When MatSim generates the call to the function representing

Comparison, the input parameter representing the first input will not exist. The variable

will be generated as an output parameter in the call to the function representing

GenCorrection. This is not a problem, because Comparison has been written to ignore

the input parameter on the first invocation. However, Matlab syntax dictates that some

variable be passed as the actual parameter to the function on every invocation. MatSim

therefore creates a variable to pass to the function. The variable must be initialized

before Matlab will allow it to be used as an input parameter, so on the initial invocation

of the function, the variable is set to the empty matrix. After the call to the Comparison

function returns, the call to the GenCorrection function is executed, generating the

feedback parameter which is to be passed to the Comparison function on the next

 45

invocation. All temporary variables are created as local variables and are destroyed when

a function returns to its caller. However, all feedback parameters must persist across

invocations to properly implement the memory required by the feedback connection.

MatSim therefore declares the temporary variable representing the feedback connection

as global. Figure 15 shows the code MatSim generated from the SimpleControl model.

The function is named the same as the model, and the function instance counter is

declared. Because SimpleControl is a top-level model, the generated function calls are

wrapped in a loop conditioned on the global variable TERMINATE_SIMULATION.

The functions representing the ReadSensor components are called, followed by the

statement declaring a variable called Status_3 as global. This variable is the parameter to

be used to store the feedback connection results. The next statements will initialize the

Status_3 variable to the empty matrix when the instance counter indicates that the

function has not been executed previously. Next, the function representing the

Comparison model is called, using Status_3 as an input parameter. This function will

ignore the value of the Status_3 parameter during its first invocation. The next function

call generates a value for the Status_3 variable to be used as input to the Mcomp function

on the next iteration. Because this function represents a top-level model and is wrapped

in a loop, technically it is not necessary to declare Status_3 as a global variable, because

the variable will not leave scope before it is needed again. However, functions generated

from models which are not at the top level will not be wrapped in a loop, thus requiring

the feedback variable to be declared global.

 46

Figure 15. Code generated by MatSim representing the SimpleControl model displayed in Figure 14

Application: Bit-Width Simulation

 When a designer explores different algorithms, it is often desired to perform an

analysis of the effects of performing calculations with fixed-point arithmetic at various

bit-widths. This type of trade-off analysis is most appropriate in a simulation setting,

allowing a designer to determine the optimal bit-width required for a particular

application, without needing to implement and test each solution.

 MatSim provides a limited support to the designer to perform bit-width tradeoff

analysis. The attributes of each port in the application models of a system contain

information about the width of the data path to be used for that particular path. MatSim

ensures that the widths specified in the source and destination ports of each connection

are consistent. Matlab performs all calculations in double-precision floating-point

format. However, between computations, MatSim can round parameters to the

equivalent widths specified by the port attributes. The developer can choose to include

rounding in a generated simulation by selecting the appropriate option in the user

 47

interface of the MatSim interpreter. The rounding is performed by a function called

roundfix, which takes a vector and a bit-width as inputs, and outputs the vector with each

element rounded to the precision specified. Figure 16 shows the function generated by

MatSim representing the GenCorrection model from Figure 7 with bit-width arithmetic

simulation code included. The first statement after the function declaration is now a call

to roundfix to round the formal input parameter Correction. After the call to MacqPos,

the output Pos_4 is rounded as well. Each call to roundfix contains the parameter 16,

representing the bit-widths specified in the model on each port. In this case, each port

happened to be set to 16 bits.

Figure 16. Code generated for GenCorrection model with fixed-point simulation code included

 By including the fixed-point simulation in the functional simulation, the designer

is allowed a somewhat more accurate view of what to expect during component

execution on a fixed-point architecture. If the user provides components which

accurately represent fixed-point arithmetic during functional simulation, a better fixed-

point simulation will result.

 48

A Comparison With Simulink

 Simulink is a graphical system modeling package that allows a system to be

represented as a set of block diagrams. In many respects, Simulink and the ACS

modeling environment are very similar. As discussed in Chapter I, Simulink allows

blocks to be hierarchically composed of simple primitive blocks, which are driven with

Matlab functions. Simulink allows a designer to develop a simulation of a system

quickly and efficiently. Simulink offers an extensive component library, covering many

areas of engineering, including digital signal processing and control applications.

 In a few respects, the ACS toolset extended with the MatSim model interpreter is

superior to simply using Simulink to simulate the system, and then using the synthesis

portions of the ACS toolset to generate the functional system. By integrating Matlab

simulation capabilities into the ACS toolset, the developer may proceed with system

design from a single system representation. Without MatSim, a designer is forced to

recreate a design representation to support the simulation package of choice. While

Simulink is a powerful simulation package, MatSim offers sufficient simulation

capabilities to allow the designer to verify system models and perform high-level

functional simulations. Further, Simulink does not support the Model-Integrated

approach to system design discussed in this document, and therefore does not provide a

designer with all the benefits of the ACS toolset. The merged capabilities of the ACS

toolset and the MatSim interpreter allow a developer to apply simulation capabilities at

design time, from a single design representation.

 49

Functional Simulation Conclusions

 MatSim provides the designer with the capability to generate a Matlab

representation of system component models. This representation can then be executed,

along with user-provided simulation components representing system primitives, to

verify the models and experiment with algorithms.

There are a few drawbacks to this tool that have been discussed in the chapter.

The simulations generated by MatSim do not precisely represent the semantics of process

execution exhibited in the ACS runtime environment. MatSim assumes that the

processes it translates follow the semantics of synchronous dataflow with all ports

producing/consuming a single token on each invocation. Components that do not exhibit

this behavior must be modified to maintain state to enable them to emulate this behavior

or the simulation will not exhibit the correct overall behavior. If a graph exhibits a

feedback loop, one of the components in the loop must be modified such that it provides

an initial value for the feedback connection on the its initial invocation. The developer

can specify which port of which component is to be initialized by the component by

connecting an initializer atom to it.

While there are a few drawbacks, there are significant benefits brought to the

ACS toolset by the MatSim interpreter. MatSim allows simulations to be generated

directly from the system models, providing a single, integrated system representation

from which the designer can start and complete the system design. Simulation

components can be constructed as “standard” Matlab functions. A developer is not

required to interact with a simulated runtime environment or an API when constructing

component simulations. Potentially, any Matlab function can interface to a simulation

 50

generated by MatSim. While the semantics of asynchronous dataflow are not exactly

replicated in the simulations generated by MatSim, the claim has been made in this

chapter that any differences between the semantics used by MatSim and those in the

actual runtime environment are negligible at the level of simulation detail targeted by the

MatSim tool. The strongest result is that MatSim allows a developer to apply model-

integrated design techniques at the very earliest stages of a system design, during

algorithm development and concept design, allowing the verification against design

requirements early in the design.

 51

CHAPTER IV

VIRTUAL PROTOTYPING

 Chapter III discussed a tool to allow simulation to be utilized during model

construction as a means of high-level design verification. In the model-integrated

approach, after the system has been modeled, the next step in the system design is to

design and implement the primitive components. This chapter discusses an extension to

the ACS toolset integrating simulation into the design and testing of components. This

extension is referred to as the support of virtual prototyping. By integrating simulation

into the design flow at this stage, the developer is provided with a means to detect and

correct faults in component designs earlier in the process, thereby saving time and effort

later in design stages. In the context of the ACS toolset, a virtual prototype is a system

prototype which integrates simulation components at runtime. With the virtual

prototyping extensions, a developer may generate a completely simulation-based

prototype, in which all components are simulation components. A developer can also

generate a system where some of the components execute on their native implementation

platforms, while others execute in simulation. As a consequence of the virtual

prototyping extensions, components can be simulated in the context of an actual system

implementation, and component implementations can be easily tested as part of a

simulation.

 Figure 17 shows the extended runtime architecture of the ACS toolset. The

runtime system is configured and managed through software executing on a host PC.

The virtual prototyping extensions to the toolset include the Matlab environment

 52

executing on the Host PC, which can communicate with the management software via an

interface called the Matlab Engine [12]. Matlab exports the Engine interface to allow

standalone software packages access to the computational power of the Matlab

environment. All operations which can be performed in the Matlab environment through

its command line interface can be invoked by an external program via the Engine

interface. Further, data may be exchanged between the external program and the Matlab

environment. A program can invoke Matlab functions through the Engine interface as

easily as it invokes native subroutines. By utilizing the Matlab Engine interface, the ACS

runtime environment has been extended to allow simulation components to execute in the

Matlab Environment and to exchange data with components executing in the

heterogeneous processing network.

Host SW

Matlab Environment

Matlab
Engine

Heterogeneous Processing
Network

Host PC

Figure 17. Architecture of the Virtual Prototyping Extensions to the ACS toolset.

 53

 The ACS toolset has been extended to support this runtime architecture. These

extensions involved updates to the modeling environment and model interpreter, as well

as extending the runtime environment to support the execution of simulation components

at runtime. The following sections discuss the extensions which were made.

Extending the Modeling Environment and Synthesis Tools

Modeling Environment Extensions

 The goal of the virtual prototyping extensions is to allow simulation components

to execute as part of a system at runtime. To represent this concept graphically in the

modeling tools, some minor modifications to the ACS modeling language were made.

By allowing simulation components to be integrated into a system, a simulation

component is, in a sense, equivalent to a system primitive component whose target

implementation is targeted to a processing element in the heterogeneous network. In the

same sense, the platform on which simulation components execute, namely the Matlab

execution environment, is equivalent to a network processing element. Accordingly, the

Matlab environment is modeled as a processing resource in the heterogeneous network.

As depicted in Figure 17, the Matlab environment actually executes on the host PC of the

system, and communicates with the host management software via the Engine interface.

This architecture is modeled by allowing a model of a host PC to connect to a Matlab

resource model. The modeling tools allow a PC resource to connect to a Matlab resource

model, representing the fact that the only means to communicate with the Matlab

resource is via the host management software and the Matlab Engine. The modeling

tools do not allow any other types of resources to connect directly to the Matlab resource

 54

model. Figure 18 depicts a set of resource models, showing a model of the Matlab

environment as a processing resource model, connected to the model of the host PC. The

host PC is in turn connected to the remaining resources in the network, in this case a

model of a TMS320C40 DSP, a TMS320C67 DSP, an Altera FPGA, and an SDRAM

module.

Figure 18. Resource Model showing the Matlab environment interfaced to the host

 The modeling environment represents the communication protocol established

between the Matlab environment and the Host management software via the Engine

interface as a protocol named Matlab Protocol, as depicted in Figure 19. The Protocol

attribute of the port of the Matlab resource model, along with the port of the Host

resource model connected to the Matlab resource model, must be set to “Matlab

Protocol” to correctly represent, and therefore synthesize, a virtual prototype system.

 55

Figure 19. Port Attributes showing Matlab Protocol as the selected communication protocol

Simulation components are explicitly modeled as part of the component dataflow

network. In contrast to the component simulations described in Chapter III, where all

system components were assumed to be simulation components regardless of their

associated resource mapping, an extension to the modeling paradigm allows a modeler to

categorize a primitive component model as a Matlab Simulation component. Models of

primitive simulation components can be mapped to the Matlab environment resource

model, just as models of primitive DSP components can be mapped to a model of a

TMS320C40 DSP. Because functions implemented cannot execute natively on any

resource except the Matlab environment, the only resource model to which models of

simulation components can be mapped is the Matlab resource model. By constructing

models of simulation components, a developer may represent a virtual prototype system

containing both simulation components and other executable components.

Extending Model Interpretation

 In keeping with the model-integrated approach to system design, a goal of the

virtual prototyping extensions of the toolset is to support the synthesis of a functional

 56

virtual prototype system directly from the models. The ACS model interpreter has been

modified to meet this goal. Because the Matlab environment is modeled as a kind of

processing resource, the interpreter can simply treat it as a node in the heterogeneous

network when generating middleware initializations and configurations. Some minor

additions were required to generate initializations for the middleware layer implementing

the runtime environment for the Matlab environment, however most of the configuration

code was simply inherited from the existing interpreter code base.

Extending the ACS Runtime Environment

 Chapter III described the synthesis of high-level simulations from dataflow

models of components. One drawback to that simulation was the fact that the MatSim

interpreter imposed a limitation on the types of system models it can simulate, due to

dataflow scheduling issues. The reasoning behind this tradeoff was that it was not

desired to require a developer to interact with a middleware layer which would perform

dynamic scheduling and buffer management. The rationale behind this choice was that

during the modeling phase of the design, a modeler is most concerned with representing

and properly composing a system. Components are seen as black boxes that perform

computations. At model building time, a developer is not concerned with how a

component performs those computations, or with any implementation details of the

component. The goal of the virtual prototyping extensions to the toolset is to support the

integration of simulation into component design and implementation. Obviously, when

components are designed and implemented, they are no longer treated as simple black

boxes that perform computations. In this phase, it is much more important to understand

the behavior of the component, in the context of the full system. As such, the virtual

 57

prototyping extensions include a middleware layer to implement the runtime environment

in the Matlab environment. As discussed in Chapter II, the runtime environment

facilitates component scheduling. It abstracts the details of inter-component and inter-

node communication from the components by servicing the communication needs of the

component through an API. The middleware layer implemented for Matlab facilitates the

communication between components executing in the Matlab environment and those

executing in the processing network. The implementation of the Matlab middleware

layer closely follows that of the runtime kernel for a stored-memory processor in the

processing network. The following sections review relevant details of the ACS runtime

kernel, followed by a description of how the runtime kernel features were implemented in

the Matlab middleware layer.

The ACS Runtime Middleware

 As discussed in Chapter II, each processor in the network runs a small dataflow

kernel [11], which supports deterministic dynamic memory management, stream-based

inter-process and inter-node communication, and process scheduling and management.

Figure 20 depicts the layered architecture of the runtime kernel. The API layer allows

components to access the services provided by the kernel, such as memory and stream

management. Through the API layer, a component may determine the state of its input

and output streams, thereby determining its schedulability. The API layer interacts with

the stream, memory, and process management facilities of the kernel. As previously

discussed, process management consists of a simple round-robin non-preemptive

scheduler, successively invoking each component mapped to the node. The kernel

memory management layer provides a memory pool from which processes may

 58

dynamically allocate buffers. The stream management layer implements the concepts of

dataflow streams connecting components, facilitating inter-component communication.

Inter-node communication is facilitated through a set of functions called interface

functions, which drive the communication hardware. As all communication links in the

heterogeneous network are point-to-point links between communication ports, each

communication port of a processor is assigned its own set of interface functions. The

interface functions implement a communication protocol, which determines the format

and organization of the data during transmission. Obviously, the two communication

ports connected by a link must support compatible communication protocols, or data will

not be transferred coherently. Interface functions are designed as a pair of functions, one

responsible for the transmission of data, while the other for receipt. The transmission

interface function for a port is invoked when a stream queue corresponding to that port

contains a message to transmit. The receive interface function for each port is always

active, awaiting the arrival of data. When a buffer is received, the receive interface

function notifies the stream management layer, which dispatches the received buffer to

the proper stream queue, determined by the message routing information passed with the

buffer. When the transmission of a buffer is completed, the stream management layer is

notified, whereon the buffer is removed from its stream’s queue.

 59

Application Program Interface

Stream Management Process Management Memory Management

Inter-node Communication Protocols

Communication Hardware

Figure 20. Layered architecture of the ACS runtime kernel

Matlab Runtime Middleware

 A goal of the virtual prototyping extensions is to accurately represent the

execution semantics of components at runtime. To facilitate the accurate representation

of dynamic scheduling and message passing, a runtime middleware layer was

implemented for the Matlab environment. The middleware implements a layered

architecture, shown in Figure 21, similar to that of a processor runtime environment.

However, there are some minor differences. There is no communication hardware

between the host management software and the Matlab environment. It has been

replaced by a Host Interface layer, which interacts with the interface functions in the host

management software via the Matlab Engine to facilitate data exchange. Dynamic

memory management is not required in the Matlab environment, because in the Matlab

environment, all memory allocation is dynamic and is handled by the environment. No

gains can be made by imposing another management layer on top of the environment.

Process management is handled in much the same way as the processor runtime

environment, as is stream management. The API layer allows simulation components to

access the stream management facilities of the middleware. The layered architecture for

the Matlab middleware is depicted in Figure 21. The middleware implementation

 60

allows components to be dynamically scheduled in the same manner as components

executing on a network processor are. Just as with a network processor, the details of

inter-component and inter-node communication are abstracted away from the component.

All the component sees is the API layer provided by the middleware.

Application Program Interface

Stream Management Process Management

Host Interface Communication Protocol

Matlab Engine Interface

Figure 21. Layered architecture of the Matlab middleware

 The Matlab Communication Protocol

 The architecture described facilitates the execution of simulation components at

runtime. Since the goal of the virtual prototyping extensions is to facilitate the exchange

of data between simulation components and network components at runtime, a

communication protocol has been implemented to take advantage of the Matlab Engine

interface to facilitate data exchange. Before describing the details of the host and Matlab

interface functions, a few points should be noted. The Matlab Engine interface provides

a unidirectional access path, meaning that the host management software can invoke

methods of the Matlab middleware, but the reverse is not possible through the Engine.

While the Engine provides access to the Matlab environment for a standalone program,

the Engine does not support multithreading, in that, when the host invokes a method in

the Matlab environment, the host is blocked until that method returns. The semantics is

 61

the same as when the host invokes a native function. Due to these limitations, the Matlab

middleware has been designed to operate as a slave to the host management software.

When the host transmit function is invoked to send the Matlab environment a buffer, the

transmit function must not only place that buffer in the Matlab workspace, but must

invoke the Matlab middleware receive interface function to allow the middleware to

properly store the received buffer. Likewise, the host receive function must invoke the

Matlab send interface function to allow the middleware to transmit data to the host.

Further, in order to allow simulation components to execute, the host has been designed

to periodically invoke the Matlab middleware process scheduling facility. This triggering

of the process management occurs at the end of every invocation of a host interface

function, thereby avoiding the starvation of the Matlab components.

 The interface functions are responsible for exchanging data with the Matlab

environment. Data is exchanged between processes in the form of messages. A message

consists of a header and a body, as depicted in Figure 22. The header contains the

routing information for the message, containing the handles of the node and stream where

the message initiated, as well as the handles of the intended destination node and stream.

A message in the Matlab execution environment is represented as two vectors. Each field

of a message header has a corresponding index into a header vector. A message body in

the host kernel is represented as an array of numbers. This is consistent with the Matlab

representation: a vector of numbers. When the host transmit interface function prepares

to send a message to the Matlab kernel layer, it allocates two vectors in the Matlab

workspace via the Engine, one vector for the header and another for the body. The data

from the host header is then copied, field-by-field, into the header vector. Similarly, the

 62

message body is then copied into the body vector. However, an issue arises when

copying data from a kernel message into a Matlab vector. The basic data type in the

Matlab computational environment is double precision floating-point, requiring all fields

to be cast to doubles as they are copied into a Matlab vector. When a message body is

copied to a body vector, the interface function must make an assumption about the

current data format of the host message body. Regardless of the explicit type declared in

the message body data structure, a component can store in a message data in an arbitrary

format, so long as the source component is consistent with the destination component.

However, the interface functions between the host and Matlab must make an assumption

about the format of the data contained in a message body, because it must convert the

data into double precision format. By convention, the interface functions assume that all

message bodies are currently stored in single-precision floating-point format, and the

responsibility for ensuring that this is the case is placed on the system developer.

Because there is no characterization of the type of information being passed in a buffer,

the interface functions are left with no other choice but to assume a format and perform

the conversion.

Header Body

Figure 22. Architecture of a message

Once the host transmission interface function copies the message header and body

into Matlab vector variables, the Matlab kernel layer receive function is invoked, passing

the header and body vectors as parameters. The Matlab receive interface function simply

 63

transfers the received message into the stream management layer, which dispatches the

message into the proper stream queue. The Matlab receive function then returns control

to the host. The host then frees the vectors which were allocated in the Matlab

workspace, and invokes the Matlab middleware process management routine. On return

from the process management, the host transmit interface function returns control to the

host kernel.

The host receive function is very similar to the send function, only it performs its

actions in the reverse order. The host receive function first invokes the Matlab kernel

send interface function. If there is a message awaiting transmission in the Matlab

middleware, the send function retrieves it from the stream management layer and returns

it to the host. The host receive function then verifies that an actual message has been

sent, then allocates a buffer from the host memory management system and copies, field-

by-field, the header vector and body vector into the allocated buffer. Just as before with

the host transmit function, the host must assume the format the message body is supposed

to be in is single precision floating point. When the message is successfully copied, it is

passed to the stream management layer of the host kernel. After storing the copied

message, the receive function invokes the process management function of the kernel

layer, and then returns.

These interface functions allow the Matlab execution environment to exchange

data at runtime with processes running on the network. The model interpreter facilitates

data forwarding across the nodes in the network to handle the situation where a process

executing on a DSP in the network generates a message for a process executing in the

Matlab environment. The generated message is forwarded to the host management

 64

software on the Host PC, where it is subsequently transmitted to the Matlab environment.

A similar process is performed for the reverse direction of communication. This

communication framework allows data to be exchanged between components executing

in the Matlab environment and any other component in the network.

Virtual Prototyping

 With the extensions to the runtime environment and modeling tools, a developer

can now construct a virtual prototype of a system. A system can be modeled as a set of

simulation components, which can be implemented using the Matlab language and kernel

layer API. A functional system can be synthesized from the models with the model

interpreter, and can be loaded onto the resource network. During initial design stages,

this resource network could consist of a host PC with the Matlab environment. After

compiling and loading the code, the developer may test the system to verify its behavior.

After the behavior has been verified, the resulting system represents a virtual system

prototype, exhibiting the functionality of the target system, but implemented using a

simulation language. The virtual prototype will obviously not meet the performance

requirements of the target system, but will demonstrate the core behaviors of the target.

 After the virtual prototype has been constructed, it can be used during the

component implementation design phase. The modeling tools automate the selection of

implementation alternatives from the models. When a system is modeled, alternative

implementations for each component can be explicitly included in the models. As one

alternative implementation for a component, the user provides a Matlab-based simulation

implementation. A second alternative implementation is the actual target

implementation. When constructing the virtual prototype, the target implementations for

 65

system components need not be constructed, nor even modeled. However, the user

should make use of template models to allow alternative implementations to be modeled

later. With a system modeled in this fashion, a designer can select a full simulation-

based implementation for the system and generate a virtual prototype with the synthesis

tools. The virtual prototype can then be executed and verified against the functional

requirements of the system. After verifying the correctness of the virtual prototype, the

developer can use the prototype as a framework for testing component implementations.

When a component is implemented, the tools can be used to select the simulation

implementations of all system components except for that particular component, whose

target implementation is included in the final design. After this design is synthesized and

loaded, the user can verify that the component’s target implementation exhibits the same

behavior as the simulation implementation. The virtual prototype provides an ideal

testing framework because each simulation component has, at this point, already been

verified and the simulation components can be used to manipulate the inputs and display

the outputs of the component under test. Each component is tested in the context of the

system, and the designer is saved the effort of building a testbench framework for each

component.

 The virtual prototype also provides an excellent framework to perform system

integration. As components are implemented and tested, they may be integrated into the

prototype system one at a time, replacing their simulation-based counterparts. As more

components are included in this system, integration issues may be uncovered.

Previously, integration issues could not be thoroughly examined until most or all of the

components had been implemented and could be included in a synthesized system.

 66

Because the virtual prototype system allows components to be integrated seamlessly,

integration issues can be examined much earlier in the design phase. Systems can be

synthesized where some of the components are simulation-based, while others are

implemented as their target implementations. Through testing these systems, the

designer can examine how components interact in a more controlled environment.

 Matlab components can be used as a debugging tool. Because network

components can exchange data with Matlab components at runtime, the designer can

insert a Matlab component in the data path between two components to visualize the

contents of the messages being exchanged. Matlab components can also be used to

modify the inputs to a network component, allowing a greater versatility in testing.

 The user is provided with a powerful tool to perform verification, debugging,

component testing, and system integration through virtual prototyping. By providing an

interface between the Matlab computational environment and the processing network, a

developer is allowed to utilize the power of Matlab at runtime, intermixed with

implemented components.

 67

CHAPTER V

AN IMPROVED DESIGN FLOW

 The extended ACS toolset provides an improved platform for designing

embedded systems. The addition of simulation capabilities to the toolset leads to an

improved design flow, which leads to better, more efficient system development.

Analysis of ACS Design Flow

 The ACS design flow allows a developer to build models and synthesize systems

from those models, as was discussed in Chapter II. Figure 23 is similar to the design

flow presented in Chapter II, depicting the different phases of design when using the

ACS toolset to develop a system. First, algorithms and ideas are developed and explored,

possibly constructing a simulation prototype, using other tools. This development builds

a high-level representation of the system under development and allows the developer to

explore different concepts to be included in the design. After completing this exploration

step, a developer then uses the modeling environment provided in the ACS toolset to

build and refine system models, breaking complex systems into simple, modular

components. These models form a second representation of the system, graphically

capturing system requirements and specifications. After the models are developed, the

components are individually implemented and tested. When all components have been

implemented, the developer may synthesize a complete system from the models using the

model interpreters. This synthesized system provides all “glue code” to connect system

 68

components and handle inter-component communication. This system can be loaded

onto the resource network and tested for integration issues.

Develop / Simulate
Initial Design
Architecture

Construct / Refine
System Models

Implement / Test
Components

Synthesize / Test
Integrated System

Figure 23. ACS system design flow

 While a developer can use the ACS toolset to design complex systems, some

issues with the design flow arise through design iteration. First, the construction of a

high-level functional simulation is not supported directly by the tools. The modeler has

no direct means for checking system models against functional requirements prior to

system implementation. If a design flaw is introduced when modeling the system and is

not caught until system integration, the effect of the flaw could possibly propagate across

several component implementations. As a consequence, the correction of the flaw

requires significant time and effort, which could be completely avoided by catching such

flaws at model building time.

 69

 A second issue with the ACS design flow can be seen during system integration.

Full integration cannot proceed until all components have been implemented and

individually tested. Often, integration can uncover inconsistencies between components,

requiring component adjustment or redesign. Iteration during this phase in the design is

costly, but can be minimized by enforcing consistent component interfacing and synthesis

of glue code for integration. However, design errors will inevitably occur, so a better

approach is needed to catch such errors as individual components are implemented.

 A final issue with the ACS toolset is that no support is provided for high-level

design verification. The modeling language and environment enforces a designer to be

consistent in design entry, and to have syntactically correct models. However, the

language cannot enforce correct semantics. Simulation at model building time can add

aid the developer to verify design semantics before proceeding to implementation.

Simulation at runtime can facilitate system debugging.

Analysis of the Extended ACS Design Flow

 By adding the simulation capabilities to the ACS toolset described in this thesis,

an improved design flow has emerged. Figure 24 depicts this improved design flow. The

first step is to construct and verify system models. This step proceeds from a high level

of abstraction, beginning with a model of the initial design architecture. Simulation of

this initial system architecture model is facilitated through the MatSim interpreter. The

designer verifies the high-level architecture against system requirements. The designer

proceeds to recursively decompose the high-level architecture into simpler pieces. At

each step in the decomposition, the modeler may generate a functional simulation to

verify the modeled system against the requirements. By verifying the system models as

 70

they are constructed, the modeler can catch design flaws early in the process, prior to

proceeding to the component design and implementation phases.

 The next step in the design process is the design and simulation of system

components. The virtual prototyping extensions to the ACS toolset are utilized at this

stage to create a simulation of the system which accurately represents the execution

semantics of the actual runtime environment. To construct a virtual prototype, system

components are modeled as implementation alternatives, with a simulation

implementation as an available alternative. The developer constructs a simulation-based

component for each system component, and the tools are used to synthesize a simulation-

based system by selecting the simulation implementation of each system component.

This simulation-based system can be executed and tested, allowing the developer to

verify the behavior of each system component. The developer spends time at this stage to

ensure the virtual prototype correctly exhibits the specified behavior (except for

performance) of the target application. If any inconsistencies are uncovered through the

development of the prototype, the models are adjusted and prototype development

continues. After the virtual prototype has been verified, the developer is left with an

accurate simulation of each component in the system. These simulation components act

as a design specification for the later state of component implementation. The next

design step is to implement, test, and integrate system components. At this stage, the

developer has a correct virtual prototype of the full system. As described in Chapter IV,

a consequence of the automated selection between design alternatives is the ability to

synthesize a system consisting of a single component implemented for its target platform

in the processing network, with the remaining components implemented in simulation.

 71

This system can be executed and verified. The advantage of such a system is that the

virtual prototype acts as a testbench for the single component implementation. The

implemented component is effectively integrated into the pre-verified simulation,

allowing the component to be tested in the context of the full system using application

data. This process is repeated for each component, allowing the testing of components to

proceed in a semi-automated fashion. Further, as components are implemented, partial

system integration can be performed, swapping simulation components for implemented

components. In this fashion, as components are designed and implemented, system

integration issues may be examined at a much earlier stage than previously possible. The

virtual prototype provides not only a framework for verifying design semantics, but a

framework for testing component correctness, and a framework for partial system

integration. It also provides a unique environment for debugging a system. Simulation

components can be used to quickly visualize data between components, as well as to

inject data into components at run time, thus allowing a developer the ability to “zoom

in” on problems in a system.

 The last step in the design is to test a final system. This is performed after all

components have been implemented and integrated. At this stage, a design must be

tested to verify that it meets performance requirements, and any other issues which could

not be addressed through the testing with the simulation components “in the loop.”

 72

Construct / Refine
 and Verify System

Models

Design / Simulate
Components

Implement / Test /
Integrate Components

Verify Final
System

Figure 24. Improved design flow for extended ACS toolset

 The improved design flow allows a designer to more effectively design systems.

By integrating the complete design flow into one tool, the designer can develop systems

from a single design representation. The simulation capabilities streamline the design

process at each stage of development, allowing design flaws to be caught early, removing

the tendency towards design iteration discussed in Chapter II. Iteration in system design

is in general inevitable, because mistakes will be made. However, in this improved

design flow, catching flaws and errors earlier in the design process minimizes iterations.

 73

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

 A model-based approach to embedded system development aids the design of

complex embedded systems. The work presented here enables the use of simulation

techniques in conjunction with model-based design methodologies when constructing

complex embedded systems.

MatSim: A Functional Simulation Generator

 A functional simulation of a system is an executable system representation, which

exhibits, to one degree or another, the behavior of the final product. A design engineer

can construct a functional simulation as part of an initial exploration of a design concept.

When thinking on this level, a designer is not concerned with, and therefore should not be

burdened with concern for, hardware architectures or platforms. The designer can use the

functional simulation capabilities discussed here to verify a set of system models.

MatSim allows a designer to write Matlab code representing the functionality of a

component using the Matlab language. The designer does not need to be aware of any

API or kernel, and can do quick computation and analysis using the computation and

visualization capabilities which the Matlab environment provides. All the glue code

connecting components is synthesized by the tool, and all components are scheduled

properly by the tool, so the designer need only be concerned with expressing the behavior

of the system components.

 74

 By allowing the designer to generate an executable functional simulation from the

system models, the tools not only provide a solid basis for experimentation, but models

used in constructing the functional simulation can be reused in successive design phases.

When system models are updated, a new functional simulation can be regenerated by

adjusting the simulation components and executing the code generator on the updated

models. High-level functional simulation can be used to verify a high-level design prior

to implementation.

 The MatSim interpreter was utilized in the design of two real-world applications,

an automatic target recognition system for missile guidance, and a probabilistic neural

network system used for image classification. The tool was found to be very helpful in

quickly producing Matlab simulations of the systems, allowing the visualization of high-

level behavior and functionality. The plotting and data visualization routines provided by

Matlab proved highly valuable at this stage. However, the restriction placed on the

modeling semantics by the MatSim tool was found to be cumbersome when constructing

component simulations. The tool proved highly useful in simulating the effects of fixed-

point arithmetic on algorithm correctness. The target platform for the image

classification application is a set of FPGA nodes, with all operations performed in fixed-

point arithmetic. By simulating the effects of datapath width variations, a reduction in

the number of gates required to implement the system was achieved. Overall, MatSim

proved to be a useful tool for generating simulations during system modeling.

A Virtual Prototype

 The functional simulation generated by the MatSim model interpreter provides a

complete, executable virtual system prototype. However, this prototype is essentially

 75

used for high-level simulation at model-building time. A stronger virtual prototyping

mechanism is provided by allowing Matlab-based components to be run “in the loop” at

runtime with components executing on their native platforms.

 This virtual prototyping mechanism provides the designer with a powerful system

integration and debugging tool. When the models have been constructed and the designer

begins implementing the system components, the virtual prototype using Matlab-based

components and a middleware layer to facilitate communications with the network

runtime environment provides a framework for system integration, as well as a testbench

for each component. When a component implementation is introduced into the system, it

can be tested in the context of the final system framework by replacing the Matlab

version of the component with the final implementation version. This new system can

then be tested, just as the prototype itself was tested. Inputs to the component can be

easily generated, and outputs are readily visualized through the remaining Matlab

components. By having the virtual prototype act as the testbench for each component in

the system, not only does the designer alleviate the task of reproducing testbenches for

each component, but the components are arguably tested in a better context, the final

application.

After individual components have been verified, they can be used in the prototype

along with other implemented components, interfacing to the virtual prototype. In these

stages, combinations of components can be tested together, to check for system

integration issues. Using the new virtual prototype as an integration framework, system

integration issues can be examined as components are implemented, rather than waiting

 76

until all components have been implemented to test the integrated system. This allows

errors to be caught and addressed earlier in the design process.

Virtual prototyping was applied to in the development of the neural network

image classification system, as well as the automatic target recognition system. The

ability to execute simulation components concurrently with a system implementation

proved highly useful in design implementation. It was seen, as expected, that operations

performed by the simulation components were much slower than those performed on the

embedded processors. However, virtual prototyping enabled the use of data visualization

routines at runtime. Further, the ability to integrate system components into the

simulation proved useful, providing flexibility in component implementation. The data

conversion restriction imposed by the virtual prototyping interface proved cumbersome,

as it was always necessary to perform conversions, whenever data was to be sent to the

Matlab environment. The ability to visualize the state of a system at runtime proved very

useful as well. Overall, the virtual prototyping mechanisms allowed component

development to proceed more smoothly, and provided a useful framework for system

debugging.

Future Work

 While the extensions to the design tool allow certain simulation techniques to be

applied to the design process of embedded systems, there are some areas where more

work could be done.

 Currently, when a virtual prototype component is interfaced to a network

component and an exchange of data takes place, the interface assumes that all data to be

sent to the Matlab component is in single precision floating point format, and that the

 77

data being sent to the network component should be converted to single precision floating

point format. This assumption was made because Matlab performs all calculations in

double precision floating-point format. There is not currently a convenient way to

discern what format a buffer of data should be in. The current assumption is that it is the

designer’s responsibility to handle any data formatting issues, but a better solution to this

problem could be explored, involving a finer-grained modeling of the type of data being

exchanged between components.

MatSim provides limited support for exploring precision effects on algorithm

mathematics. However, this support is provided as a call to a vectorized truncation

function, which rounds results to the bit-widths specified by the port attributes in the

models. This solution is not adequate for two reasons. The first is related to the problem

with implicit conversions mentioned above: if the user chooses to pass data between

components in the form of a data structure, the vectorized truncation function will not

work. The toolset needs a better idea of the type of data to be used in parameter passing.

The second reason is it is very difficult to perform a tradeoff analysis, because when

attempting to adjust the widths used in an algorithm, it is necessary to adjust the attributes

on each port of each component involved in the change. A better, more modular

approach to specifying bit-widths in the models is needed.

In a more general sense, further simulation techniques could be applied during

system design. Currently, all simulations execute through the Matlab environment. A

new type of simulation could be introduced into the system which integrates a VHDL

simulation with a Matlab simulation. This would allow a designer to execute simulations

of hardware components based on their native language, along with the simulations of

 78

other components. This would require the interfacing of a VHDL simulator to either the

MatSim interpreter or to the runtime environment. In a similar context, it could be

possible to interface an instruction set simulator for a processor to the tools as well,

allowing a designer to simulate most aspects of a system based on the same set of

models.

 79

REFERENCES

[1] M. Moore, "A DSP-Based Real-Time Image Processing System," Proceedings of the
6th International Conference on Signal Processing Applications and Technology, pp.
1042-1046, Boston, MA, Aug. 1995.

[2] T. Bapty, B. Abbott, "Portable Kernel for High-Level Synthesis of Complex DSP-
Systems," Proceedings of the International Conference on Signal Processing
Applications and Technology, Boston, MA, Aug, 1995.

[3] A. Misra, J. Sztipanovits, A. Underbrink, J. R. Carnes, B. Purves, "Diagnosability of
Dynamical Systems," Proceedings of the Third International Workshop on
Principles of Diagnosis, Rosario, WA, Oct. 1992.

[4] B. Abbott, T. Bapty, C. Biegl, G. Karsai, J. Sztipanovits, "Model-Based Approach
for Software Synthesis," IEEE Software, pp. 42-53, May 1993.

[5] G. Karsai, J. Sztipanovits, S. Padalkar, F. DeCaria, "Model-embedded On-line
Problem Solving Environment for Chemical Engineering," Proceedings of the
International Conference on Engineering of Complex Computer Systems, pp. 227-
233, Ft. Lauderdale, FL, Nov. 1995.

[6] J. R. Davis, "Integrated Safety, Reliability, and Diagnostics of High Assurance, High
Consequence Systems," Ph.D. Dissertation, Vanderbilt University, 2000.

[7] J. Nichols, S. Neema, "Dynamically Reconfigurable Embedded Image Processing
System", Proceedings of the International Conference on Signal Processing
Applications and Technology, Orlando, FL, Nov. 1999.

[8] A. Misra, G. Karsai, J. Sztipanovits, A. Ledeczi, M. Moore, "A Model-Integrated
Information System for Increasing Throughput in Discrete Manufacturing,"
Proceedings of the International Conference and Workshop on Engineering of
Computer Based Systems, pp. 203-210, Monterey, CA, Mar. 1997.

[9] M. Moore, S. Monemi, J. Wang, J. Marble, S. Jones, "Diagnostics and Integration in
Electric Utilities," Proceedings of the IEEE Rural Electric Power Conference,
Louisville, KY, May 2000.

[10] T. Bapty, S. Neema, J. Scott, J. Sztipanovits, S. Asaad, “Model-Integrated Tools for
the Design of Dynamically Reconfigurable Systems,” VLSI Design, Vol. 10, pp. 281-
306, 2000.

[11] J. Scott, S. Neema, T. Bapty. "Runtime Environment for Dynamically
Reconfigurable Embedded Systems," Proceedings of the International Conference
on Signal Processing Applications and Technology, Orlando, FL, Nov. 1999.

 80

[12] Matlab Application Program Interface Guide, The MathWorks, Inc, 1998.

[13] Using Matlab, The MathWorks, Inc, 1999.

[14] A. Ledeczi, M. Maroti, G. Karsai, G. Nordstrom, “Metaprogrammable Toolkit for
Model-Integrated Computing,” Proceedings of the Engineering of Computer Based
Systems (ECBS) Conference, pp. 311-317, Nashville, TN, March, 1999.

[15] J. Sztipanovits, G. Karsai, C. Biegl, T. Bapty, A. Ledeczi, A. Misra,
"MULTIGRAPH: An Architecture for Model-Integrated Computing," Proceedings
of the International Conference on Engineering of Complex Computer Systems, pp.
361-368, Ft. Lauderdale, FL, Nov. 1995.

[16] B. Cmelik, D. Keppel, “Shade: A Fast Instruction-Set Simulator for Execution
Profiling,” Proceedings of the Third Workshop on Computer Architecture Education,
Feb. 1997.

[17] G. Bassak, “Focus-Report: HDL Simulators,” Integrated System Design, Jun. 1998.

[18] http://www.mathworks.com/products/simulink

[19] http://www.mathworks.com/products/xpctarget/index.shtml

[20] E. Lee and D. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs
for Digital Signal Processing,” IEEE Transactions on Computers, pp. 237-247, Jan.
1987.

[21] M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-
Vincentellli. “Hardware/software codesign of embedded systems,” IEEE Micro,
14(4):26-36, August 1994.

 81

ELECTRICAL ENGINEERING

INTEGRATING HIGH-LEVEL SIMULATION INTO A MODEL-INTEGRATED

EMBEDDED SYSTEM DESIGN TOOLSET

BRANDON K. EAMES

Thesis under the direction of Dr. Gabor Karsai

The design of modern complex embedded systems is difficult. Resource,

performance, and cost constraints require application-specific implementations. Design

engineers often apply simulation techniques early in the design process to uncover

problem areas prior to implementation, before they result in costly errors and design

flaws. However, even with advances in simulation techniques, the design of complex

systems remains a challenge.

Through the Adaptive Computing Systems (ACS) project at the Institute for

Software Integrated Systems, a high-level system design tool has been developed to aid

the design of adaptive embedded computer systems. The tool applies the principles of

Model-Integrated Computing, allowing a designer to create high-level models of a

system, and then directly generate system specifications and architectures from the

models. The use of this tool greatly simplifies many of the complexities involved in

embedded system design.

While the ACS design tool incorporates principles of model-integrated computing

in the design of an actual system, it does not provide any support for simulation. This

 82

thesis describes an extension of the ACS toolset to allow simulation techniques to be

integrated into a Model-Integrated embedded system design process. Specifically, the

Matlab language and computation environment are integrated into the design flow,

allowing models to be functionally verified prior to implementation, and components to

be implemented in the Matlab language and executed as part of a heterogeneous

embedded system.

Approved__ Date______________

