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Abstract—Component-based programming models are well-
suited to the design of large-scale, distributed applications be-
cause of the ease with which distributed functionality can be
developed, deployed, and validated using the models’ composi-
tional properties. Existing component models supported by stan-
dardized technologies, such as the OMG’s CORBA Component
Model (CCM), however, incur a number of limitations in the
context of cyber physical systems (CPS) that operate in highly
dynamic, resource-constrained, and uncertain environments, such
as space environments, yet require multiple quality of service
(QoS) assurances, such as timeliness, reliability, and security.
To overcome these limitations, this paper presents the design of
a novel component model called F6COM that is developed for
applications operating in the context of a cluster of fractionated
spacecraft. Although F6COM leverages the compositional capa-
bilities and port abstractions of existing component models, it
provides several new features. Specifically, F6COM abstracts the
component operations as tasks, which are scheduled sequentially
based on a specified scheduling policy. The infrastructure ensures
that at any time at most one task of a component can be active
— eliminating race conditions and deadlocks without requiring
complicated and error-prone synchronization logic to be written
by the component developer. These tasks can be initiated due to
(a) interactions with other components, (b) expiration of timers,
both sporadic and periodic, and (c) interactions with input/output
devices. Interactions with other components are facilitated by
ports. To ensure secure information flows, every port of an
F6COM component is associated with a security label such that
all interactions are executed within a security context. Thus, all
component interactions can be subjected to Mandatory Access
Control checks by a Trusted Computing Base that facilitates the
interactions. Finally, F6COM provides capabilities to monitor
task execution deadlines and to configure component-specific
fault mitigation actions.

Index Terms—component models, cyber physical systems, clus-
ter and cloud, wireless networking, mobility.

I. INTRODUCTION

Component-based software engineering (CBSE) [1] is based
on the notion that software should be assembled from pre-
fabricated and pre-tested components, which encapsulate parts
of a software system that implement a specific service or a
set of services. Several software component models have been
developed in the past, including COM and .NET by Microsoft,
the CORBA Component Model (CCM) defined by OMG and

implemented by many vendors, and the Enterprise Java Beans
(EJB) from Sun/Oracle, just to name the three major ones.
The component models define what a component is, how it
can be customized, assembled to form applications, deployed,
executed, and how the components interact with each other.
Each component model also defines a component platform: a
middleware software layer that implements common services
needed by applications. With increasing time-to-market pres-
sures that force significant reuse and the increasing scale and
complexity of applications, CBSE is generally the preferred
approach to developing and deploying large-scale distributed
applications.

Although CBSE has traditionally being used to develop
enterprise applications, a number of prior efforts [2], [3], [4],
[5] have also used CBSE for real-time and embedded appli-
cations. These component models for real-time and embedded
applications focus on assuring one or more of the different
domain requirements, such as meeting the different non-
functional properties (e.g., timeliness, reliability and security),
satisfying limitations on resources, and handling uncertainties
in operating environments.

The work presented in this paper describes a component
model called F6COM that we have developed to operate in a
real-time embedded environment of fractionated spacecraft [6]
(F6 stands for Future, Fast, Flexible, Fractionated, Free-Flying
[7] spacecraft). The fractionated spacecraft concept helps
increase mission reliability by virtue of using smaller form
factor and relatively inexpensive spacecraft that form a cluster
with potentially redundant capabilities. Space missions are
supported by distributed software applications whose function-
ality is spread across the different spacecraft in the cluster. The
cluster of fractionated spacecraft essentially provides a cloud
computing platform [8] in space where different, potentially
concurrent, missions can lease resources on the spacecraft
cluster for their needs.

Although computing on fractionated spacecraft shares many
of the same stringent requirements as other distributed real-
time embedded systems, it also presents a unique set of
challenges distinct from other such systems. For example,
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it is important to assure robust and reliable operations since
runtime debugging and firmware upgrades are often difficult,
and physical access to the hardware is practically impossible.
This requirement imposes the need for highly robust software
(e.g., free of race conditions and deadlocks). Second, space
computing presents with numerous additional dimensions of
uncertainties arising from faults in the hardware caused by,
for instance, radiation effects. This requirement imposes the
need for real-time anomaly detection and fault mitigation
capabilities. Third, communication links in the cluster can
exhibit a wide range of fluctuations in latency, reliability, and
speed, depending on the position and attitude of the satellite
and other environmental factors, which imposes the need for
dynamic resource management.

An already formidable set of challenges manifested in space
computing are further amplified by the fractionated spacecraft
computing model, which implies that multiple missions can
be simultaneously hosted on the platform. This necessitates
the requirement for strict isolation between different yet con-
current missions, including strong security assurances. Since
multiple space missions can be hosted on a fractionated space-
craft cluster simultaneously, the system must support different
interaction semantics, such as synchronous remote method
invocations, asynchronous messaging, and publish/subscribe
— all subject to security constraints.

This paper therefore presents the design rationale and
evaluation of a new component model called F6COM for
fractionated spacecraft. The rest of the paper is organized
as follows: Section II describes related research comparing it
with F6COM; Section III describes the F6COM component
model in detail explaining how it resolves the challenges
described in this section and how it overcomes the limitations
in prior work; Section IV provides results of empirically
evaluating the F6COM capabilities; and finally Section V
provides concluding remarks and alludes to future work.

II. RELATED WORK

In [9], authors provide a detailed comparison of different
component frameworks that are tailored towards real-time and
embedded systems. For example, the Pervasive Component
Systems (PECOS) [2], [10] project describes a component
model for embedded systems and is specifically tailored to
field devices. Field devices are reactive, embedded devices
fitted with sensors and actuators, and are developed using the
most inexpensive of hardware. They are severely constrained
in the amount of RAM, CPU capacity and other resources. The
key contributions of PECOS are its support for non-functional
properties, such as maintaining hard real-time properties, and
lifecycle activities, such as specification, composition, deploy-
ment and configuration. Moreover, components in PECOS
could be active (which have their own thread of control
and support long lived activities), passive (which do not
own a thread of control and are scheduled by another active
component), and event components (which are triggered by
some events). PECOS also supplies the CoCo language used
to specify components and their composition.

In many respects F6COM shares the same goals as PECOS:
it is tailored to support multiple nonfunctional properties
in resource-constrained and highly uncertain environments.
F6COM also comes with model-driven engineering tools (not
discussed in this paper) to specify, compose, deploy and
configure F6 applications. However, there are key differences
between F6COM and PECOS. F6COM does not make a
distinction among component types; rather components can
exist in different states that dictate their behavior. In addi-
tion to event-triggered behavior, F6COM also supports time-
triggered actions. Moreover, F6COM provides finer granularity
of control and communication semantics by providing a variety
of port types that support both synchronous remote method
invocations and publish/subscribe forms of communication.
Additionally, F6COM support secure communications with ap-
propriate support at the level of ports. Finally, unlike PECOS,
which is tailored to support field devices that perform a limited
set of functions, F6COM are developed as reusable units of
functionality for a wide range of applications that can be
executed in distributed, space computing environments.

The PROGRESS component model [4], [11] is a recent ef-
fort to develop a component model for real-time and embedded
systems, most notably tailored towards supporting vehicular
and telecommunications-based embedded environments. For
applications based on PROGRESS, the component-based soft-
ware development philosophy is used in all stages of applica-
tion development. Support is provided for a variety of anal-
ysis including functional compliance, timing properties, and
resource usage to realize extremely robust applications. The
PROGRESS model supports two kinds of communications:
the first for messages within the same physical host, which is
supported through one subsystem of PROGRESS, while the
second supports messages sent over the bus. PROGRESS also
supports a two-level component model. The top level deals
with the distribution, concurrency, and synchronization aspects
and is used by components that are active and communicate
through ports using asynchronous messaging. At the bottom
layer is a low-level component model comprising components
that are passive and are activated by events at the higher level.

F6COM shares many of the same goals of PROGRESS,
i.e., they both seek to realize robust, secure, and reli-
able distributed, real-time and embedded systems. Unlike
PROGRESS, F6COM supports a single-layer component
model design that supports various kinds of communication
semantics. Security is also a key distinguishing characteris-
tic. With respect to concurrency, although F6COM supports
concurrent application threads, only one operation is allowed
to execute at any given time in a particular component to
eliminate any race conditions and the need for synchronization
at the application level. Moreover, although currently we are
developing F6COM for space-based computation, F6COM can
easily be used in a variety of other domains.

The Component Integrated ACE ORB (CIAO) [3], [12]
project is our own related effort on component middleware for
distributed, real-time and embedded systems. CIAO is an im-
plementation of the OMG’s Lightweight CORBA Component
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Model (LwCCM) specification [13]. CIAO uses the TAO [14]
CORBA object request broker (ORB) as its default underlying
communication middleware. With the recent standardization
of connector mechanisms [15], CIAO is also able to support
asynchronous messaging and the OMG Data Distribution
Service (DDS) through its ports.

Although F6COM has been designed based on our expe-
riences with CIAO, there are key differences. First, unlike
CIAO, F6COM is not tightly coupled to the CORBA transport
mechanism. All communications in F6COM are through the
ports and use the connector technology [16] that enables
F6COM to use a variety of communication mechanisms.
Second, unlike CIAO, support for security is built into the port-
based communication of F6COM. Third, unlike CIAO which
borrows the threads of control from the underlying ORB to
execute application logic and can potentially have multiple
concurrent threads of execution, F6COM has its own thread
of control. Moreover, for safety and deadlock free behavior,
F6COM allows only one thread of control to be active at any
given instant in time.

The ARINC-653 Component Model (ACM) [5] is another
of our prior efforts in building component models for hard
real-time systems. ACM implements a component model for
the ARINC-653 standard [17] for avionics computing. The
F6COM design also incorporates our experiences from ACM.
In particular, we leverage the scheduling mechanism supported
in ACM, the component states, ports and port types as well
as the anomaly detection and fault mitigation capabilities
that include deadline monitoring. However, as noted earlier,
security in F6COM is not an afterthought but rather a first
class entity in its design. Similarly, focus on robustness and
deadlock/race condition-free behavior is a key design goal for
F6COM.

In summary, F6COM represents a hybrid between ACM and
CIAO leveraging the best features from these, and enhancing
them to suit the highly dynamic and uncertain but resource-
constrained space computing environment.

III. F6 COMPONENT MODEL
This section presents the F6COM component model by

describing its salient features that distinguishes it from other
component models and how they address key requirements of
distributed, real-time applications that execute on a fraction-
ated spacecraft. To better understand the F6COM model we
first briefly describe the overall architecture of the fractionated
spacecraft computing environment called the F6 Information
Architecture Platform (F6 IAP).

A. Overview of the F6 Information Architecture Platform
The F6 IAP is a layered architecture [18] shown in Fig-

ure 1 that comprises a novel operating system, a middle-
ware layer, and component-based applications. The operating
system provides primitives for concurrency, synchronization,
and secure information flows; it also enforces application
separation and resource management policies. The middleware
provides higher-level services supporting request/response and
publish/subscribe interactions for distributed software. The

Fig. 1. F6 Information Architecture Platform

component model facilitates the creation of software applica-
tions from modular and reusable components that are deployed
in the distributed system and interact only through well-
defined mechanisms. Redundant copies of components can
also be deployed to facilitate active fault management.

Components are grouped into actors: uniquely identifiable
and restartable processes that are (1) temporally and spatially
isolated from each other, and (2) that may be distributed and
replicated across nodes. Application actors form applications
and one application may be split across multiple application
actors, potentially on different nodes and satellites. Platform
actors provide system-level services, such as component de-
ployment and fault management.

One of the platform actors is called the Deployment Man-
ager. It provides the deployment and configuration capabilities
to the system and is responsible for instantiating the compo-
nents and configuring them [19]. A detailed discussion of the
deployment manager is out of scope of this paper.

Two cross-cutting aspects: multi-level security and multi-
layered fault management are addressed at all levels of the
architecture. The complexity of creating applications and per-
forming system integration is mitigated through the use of
a domain-specific model-driven development process called
Model Integrated Computing [20] that relies on a dedicated
modeling language and its accompanying graphical modeling
tools, software generators for synthesizing infrastructure code,
and the extensive use of model-based analysis for verification
and validation.

B. Design of the F6COM Component Model
We now present the F6COM component model and the

rationale behind the several different design decisions we
made. Figure 2 provides an overview of the various features
of a F6 component. We will discuss them later in this section.
The rest of this section is organized according to the decisions
we made and how they relate to supporting the mission-critical
applications that share the spacecraft cluster.

1) Component Lifecycle: Since components are reusable
units of functionality that can be composed to create appli-
cations and subject to active fault management, individual
F6COM components require a number of execution states.
For example, a component that is currently being configured
cannot be ready to execute the business logic - the non-
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Fig. 2. F6 Component

infrastructure software provided by component developers that
implements the component functionality. To address these
requirements, the F6COM supports four different component
execution (or lifecycle) states:

• Initial: This is the state in which the component starts
after being instantiated. In this state the deployment
infrastructure can configure the component parameters.
Component parameters may only be altered in this or the
inactive state, described below.

• Passive: In this state the component is semi-activated.
It can only execute operations that can update its own
state, but cannot affect the state of other components.
That is, it can change the value of its own state vari-
ables, can perform consumer operations, and can execute
facet operations with only in arguments and receptacle
operations with only out arguments. This state can be
used to support the primary-backup replication scheme
used for fault tolerance.

• Inactive: This is a stricter version of the passive state
described above. In this state, components may not gen-
erate or respond to any events. Any incoming events
from other components will not be handled; only the
deployment infrastructure is allowed to alter the state of
the component by changing its component parameters.

• Active: In this state the component is fully activated and
is performing its operations when triggered.

State transitions are managed by the F6IAP deployment
infrastructure. Figure 3 illustrates the lifecycle of a F6COM
component and its interactions with this deployment infras-
tructure, called the F6 Deployment Manager (shown as DM)
and the Component Fault Manager shown as (FM).

2) Component Interactions: Fractionated spacecraft are in-
tended to provide a cluster computing environment where
space mission applications can lease resources on the cluster to
support their mission operations. Since these applications are
likely to require heterogeneity in their interaction semantics
and since they are all developed using components, it was im-
portant for F6COM to support different interaction semantics.

To support different interaction semantics, a F6 component
in F6COM can have four different kinds of ports: consumer
port, publisher port, facet port, and receptacle port. A publisher
port is a point of data emission and distribution; a consumer
port is a point of data reception. All data published or
consumed are strongly typed. These interactions are specified
in the OMG Data Distribution Services standard [15].

Initial

Parameters and 

connections can be 

configured

Inactive

Parameters and 

connections can be 

configured

Passive

Component State can 

be updated

Active

Fully Functional

Restore (FM)

Configured(DM)

Passivate(DM/FM)

Activate(DM)

Passivate(DM/FM)

Checkpoint

Fig. 3. F6 Component Lifecycle

A facet (of a server) is attached to the implementation of the
methods defined in the provided interface and it services the
requests issued through a receptacle on another component
(a client) for these interface methods. Through these ports,
three basic kinds of interactions can be realized: (a) anony-
mous, asynchronous, and non-blocking publish/subscribe, (b)
synchronous call/return type point-to-point interactions, and
(c) asynchronous method invocations by virtue of using facets
and receptacles interacting asynchronously using call backs.

3) Timers and State Variables: F6COM also provides peri-
odic and aperiodic time-based triggers that initiate component
operations. Additionally, it supports state variables: component
attributes with (limited) history, which are often needed in
software interacting with physical phenomena. Their values
represent a complete state of the component and they are often
used by mathematical algorithms, e.g. Kalman filters for state
tracking.

4) Extensible and Loosely Coupled Design using Connec-
tors: The use of typed ports in F6COM dictates the interaction
styles applications may use. However, ports alone do not
decide the communication transport mechanism that will be
used to implement these interaction styles. A number of
choices are available. For example, synchronous call/return
and asynchronous messaging can be supported using OMG’s
CORBA transport while the publish/subscribe mechanism can
be supported using OMG DDS. A long term goal of the F6
program is to enable new transport mechanisms. Consequently,
we had to decouple the transport mechanism from the struc-
tural artifacts of a F6 component, such as the ports.

Figure 4 illustrates the use of connectors [16], which
decouple the transport and event handling mechanisms from
the business logic of the ports. As shown in the figure, the
component is clearly divided into two regions, the component
executor region and the connector region. Typically, the com-
ponent executor code is provided by the component developer
and uses a local function call to interact with the connectors.
The connector code is provided by the middleware vendor
and together with the component business logic can be used
to provide the different interaction semantics.

In our current implementation, the connectors are used
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Fig. 4. F6 Connectors

to implement the interface/request-reply style messaging
(CORBA) as well as data-centric publish/subscribe style mes-
saging (DDS). They are also used for client (using asyn-
chronous message invocation, i.e., AMI) and for servant (using
asynchronous message handling, i.e., AMH) are handled using
an AMI connector. Timer-based events are handled through
timer connectors. Components manage their state variables
using the state variable connector.

The connectors are able to interact with the component
executor region via the component message queue (CMQ),
explained later in Section III-B5.

5) Component Operations — Promoting Race Condition-
free and Deadlock-free Behavior: Robustness of mission-
critical applications can be enhanced if the behavior is free
of race conditions and deadlocks. Multiple threads with con-
current access to the internal state variables of the component
will necessitate appropriate synchronization to be used. Such
synchronization primitives often lead to unanalyzable code and
can cause run-time deadlocks and race conditions.

The F6COM avoids such situations by breaking the different
component activities into tasks or operations and ensuring
that operations are scheduled one at a time and run to
completion before another is scheduled. The component state
can be updated only within the context of an operation. To
implement the operation-based abstraction, the F6COM uses a
dispatch queue that holds the ready operations, one of which
is selected as next to run. The benefits of this decision are
manifold: (a) application logic remains very simple, (b) there
is no requirement for any synchronization primitives in the
component code, and (c) the entire system is easier analyze
for other properties of interest.

Figure 5 illustrates the Component Message Queue ap-
proach used by F6COM. Any incoming interaction request on
a port (shown as middleware connectors in the figure), or an
internal task generated due to timer expiration (shown as timer
connectors in the figure) is placed into the message queue.
All operations are quantified with two parameters, priority and
deadline. The deadlines are expressed in absolute time and are
judged from when the operation was inserted into the message
queue. Scheduling of requests for execution is done based on a
configurable scheduling discipline; currently, Earliest Deadline
First (EDF), First In First Out (FIFO), and Priority FIFO are
supported.

Queuing the activation record of an operation involves
an admittance check, set by the component configuration.
For example, the admittance check can ensure whether the

Fig. 5. F6 Component Message Queue

deadline of the newly queued operation is beyond an estimated
deadline given all the pending activations in the queue. A
separate thread in the component framework: the fault manager
thread is notified if a task is rejected. Once put into the
queue, the tasks are sorted based on the queuing discipline.
The component’s main thread (component executor) picks the
activation record from the queue based on the configured
scheduling policy and runs the operation to completion. Op-
erations must terminate in a finite amount of time and cannot
be preempted by another operation of the same component.

6) Contract-based Programming for Robust Behavior:
F6COM supports contract-based programming, which is nec-
essary to realize robustness properties that are key objectives.
To enable these capabilities, F6COM allows a component
developer to specify pre-conditions and post-conditions that
can be injected into the call path of the associated operation,
such as publish and subscribe operations, as well as method
invocations. These capabilities are as follows:

• Pre-conditions: This is a function with a Boolean return
value, supplied by the component developer. It specifies
a condition that must be satisfied before the operation
is performed. This is typically used to build software
anomaly detectors that can evaluate guard conditions over
the current and historical values of input parameters of
the operation, as well as current and historical values of
the state variables of the component.

• Post-conditions: This is similar to a pre-condition, with
the difference that a post-condition is checked after the
operation completes.

• Invariants: F6COM supports the concept of state vari-
ables with history as it is common to store and process
historical values in software components implementing
mathematical algorithms that are likely to exist in the
software interacting with physical phenomena. This his-
tory can be used to describe temporal properties over
the component’s state that must always be satisfied. Such
conditions are expressed as invariants, and provide a way
to detect anomalous conditions that violate the safety
assumptions and are always evaluated when the state
variables are updated.

Pre- and post-conditions, as well as invariants can be supplied
by the developer as hand-crafted code, or auto-generated from
models. In summary, together with invariants, pre-conditions
and post-conditions specify the contracts that must be valid
for components during runtime. Although these concepts are
not new, their inclusion in the context of all other capabilities
that F6COM supports makes this component model attractive.
Note that the total time taken by a component operation will
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be the time needed to complete the operation’s business logic
plus the time taken to evaluate the pre- and post-conditions.

7) First Class Support for Non-Functional Properties:
Supporting nonfunctional properties, such as timeliness, fault
tolerance and security are not an afterthought but rather
an integral part of the F6COM design. For instance, every
operation on a component can be associated with a deadline
that the developer can specify. A developer can also specify
time-based triggers that determine when selected component
operations will be scheduled.

Section III-B4 described how the connector mechanism
decouples the trigger type from the trigger port in a F6COM
component. A special mechanism described below tracks
whether the operation will meet its deadline or not. It also de-
scribes what happens when the deadline is not met. Timeliness
assurances in F6COM are provided through two mechanisms:
deadline checks and deadline monitoring. A deadline check is a
mechanism that is performed before the operation is actually
executed and is invoked at the following stages: (a) Before
the activation record is queued, the system checks the current
state of the queue, the queuing discipline used, and determine
if this operation can finish before its deadline, and (b) Before
the activation record is processed and the operation is actually
executed, the system will determine if this operation can finish
by its deadline. In either case, if the check fails, the fault
manager (discussed next) is notified.

Deadline monitoring is invoked when the operation is al-
lowed to execute and is accomplished as follows: the compo-
nent container that releases the thread running the business
logic of the component monitors the deadline. If a hard
deadline is reached but the current operation is still active,
then the framework notifies the fault manager. The fault
management mechanism, in brief, is described below; detailed
description, however, is not in the scope of this paper.

Fault management in F6COM is supported through a local
fault manager, which is an integral part of the component.
The fault management logic maps incoming anomaly events
(precondition violations, post condition violations, deadline
violations, admittance rejections) and maps them to pre-
configured mitigation actions. In the past, we have shown how
such fault management logic can be generated from timed state
machine models [21], [22].

As part of the component implementation, the developers
have to implement two interface operations onCheckpoint
(out OctetSequence) and onResume (in
OctetSequence) to serialize and de-serialize the state of
the component, respectively, for use by the fault manager
before checkpointing and after restarting. Checkpoint requests
can be queued like any other operation. Resume can only be
called if the component is in the Inactive state. In the Inactive
state, the ready queue is empty. The “resume” operation
will be pushed to this queue and immediately executed.
Subsequently, the component can be brought out of the
inactive state. These states are described in Section III-B1.

The underlying implementation to support the deadline
monitoring and fault management involves three types of

threads for a given F6COM component: a Pusher thread
queues activation records into the ready queue as described
in Section III-B5. It also monitors the currently executing
operation for deadline violations, which can be caused by dif-
ferent factors such as high priority preemption or incomplete
out-bound calls. The Component Executor thread runs the
component implementation code, i.e., picks the next operation
to be activated (described in Section III-B5), and the Fault
manager thread, whose operations were described above.

Security is handled using the concept of a security label
(or a collection of labels) that are associated with the ports.
Security labels determine the security classification(s) of the
information propagated through the port, and they are assigned
by some appropriate authority. These labels play a role in im-
plementing support for Multi-Level Security (MLS). Although
the security architecture in F6IAP is outside the scope of
this paper, the core security mechanism works as follows. In
F6IAP, the basic form of network communication (call/return
or publish/subscribe) is through an operating system feature
called Secure Transport. The basic communication unit in
secure transport is endpoints (functionally similar to sockets)
and flows.

A flow (configured by a suitably privileged actor) connects
one source endpoint to one or more destination endpoints.
When the business logic of an actor sends a message with a
label through a port of one of its components, the underlying
operating system (also developed in this project) checks the
label of the message against the labels of the endpoint, which
are securely stored inside the kernel and are known to be a
subset of the labels of the actor. If the message label is not
among the labels of the endpoint, the message is not sent (in
the case of a writing-side endpoint) or delivered (in the case
of a reading-side endpoint), but instead it is discarded. These
checks are performed by the operating system and cannot be
bypassed. Similar checks are also performed on the receiving
end. See [18] for more details on secure transport.

8) Supporting Long Running and I/O-bound Operations:
Space missions often may involve long running operations and
multiple I/O bound operations (e.g., sensor I/O). Since F6COM
allows only one active operation to execute at a time within
a component, it is possible that when an operation is waiting
on I/O, a compute-ready operation may unnecessarily remain
blocked. There are three options available to the component
developer: (1) use blocking I/O, (2) use polling, and (3) use
asynchronous I/O.

In the case of blocking I/O (every operation blocks until
the transfer is complete) the component is unavailable while
the operation is running. Other components may be running
in the system, but the one waiting for the I/O is completely
blocked. Through component-to-component interactions this
blocking could propagate and introduce significant delays
in the system. If polling is used, some activity has to be
periodically scheduled that checks the completion of the I/O.
Obviously this leads to a waste of resources and can lead
to decreased performance. Hence, the only viable alternative
is to use asynchronous I/O, where a component activity can
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launch an I/O operation, not wait for its result, and when the
result arrives, another activity — within the component —
shall finish the operation.

Such asynchronous operations can be broken down into
three activities as follows: (a) The starter activity that prepares
an I/O operation and then informs the framework that the
I/O operation can be scheduled, optionally passing data to the
operation. (b) The I/O activity that actually launches the I/O
operation and waits for its results. When the I/O completes
the operation hands over the data (if any) resulting from
the I/O operation to the framework and returns. This I/O
activity is handled outside the context of the component and
hence cannot impact the component state directly. (c) The
handler activity that receives the result of the I/O operation
and processes it, possibly forwarding it to another component.

Note that only the starter and handler activities are handled
within the context of the component and interact with the
component state and message queue. The I/O activity is
handled by a connector that executes outside the context of
the component and hence cannot impact the component state
directly. When the operation returns, the I/O connector queues
the request for activation of the handler activity.

This approach is needed to allow maximum concurrency in
the component on one hand, and to ensure safety on the other
hand. The activity starts and executes an I/O operation that
can block. This blocking is acceptable because the component
can still be used by other threads and all other components can
be active. The physical I/O operation finishes and the rest of
activity retrieves the data and hands it over to the framework
for passing that to the handler. At this point the framework
is free to release the handler activity that will be handed the
data produced in the I/O activity. The handler will lock the
component and can modify the component state, and can also
propagate the data from the component to other components.

9) Resource-aware Allocation: Recall that F6 mission ap-
plications can span multiple compute nodes, spread across a
potentially unreliable distributed network. These applications
are realized as a workflow of F6 actors. Since the F6 cluster of
fractionated spacecraft illustrates a highly resource-constrained
environment, applications are not allowed to consume arbitrary
amount of resources. Therefore, F6COM is supported by
a platform and deployment infrastructure that follows fixed
resource allocation scheme where the component’s resource
needs are declared at development time, verified at system
integration time, and enforced at run-time.

IV. ILLUSTRATING F6COM FEATURES ON A CASE STUDY

This section describes an example software assembly that
illustrates some of the features of the F6COM component
model. In order to show that the components always execute
one operation at a time, we designed our experimental testbed
to have three different components as shown in Figure 6. All
three components run in their own actor and are co-located
in a single physical node (for simplicity). The following is a
brief description of functionality of each component:

DDS Sender

Receiver 

Component

(DDS Receiver 

and

AMI Receiver)

AMISender 

Component

Trigger

=20 HZ

Trigger

=20 HZ

Component A Component B Component C

Fig. 6. An example Component Assembly

TABLE I
SOURCE CODE EVALUATION (SLOC)

Component Generated Written Total
AMI Sender 2121 289 2410
DDS Sender 2604 249 2853

Receiver 3230 242 3472

Component A: A DDS Sender that publishes a data
instance every 50 milliseconds. Component C: An AMI
(sender) client that sends Asynchronous Method Invocation
requests every 50 milliseconds. The reply from the server is
handled using the AMI callback operation. Component B: The
receiver component with two ports: (a) DDS receiver port and
(b) a server port that is used to handle the incoming AMI
requests.

Table I shows the number of lines of code generated by the
development tools such as IDL compiler and the number of
lines of code written to implement the business logic of all
three components. Approximately, 91% of the total code was
generated.

Deployment and execution of all components results in a
time sequence graph shown in Figure 7, which shows the
activation periods of five different component operations — (a)
DDS Send (DDS_S), (b) AMI Send (AMI_S), (c) AMI Sender
Callback (AMI_SC), (d) DDS Receive (DDS_R), and (e) AMI
Receive (AMI_R). It can be seen that AMI_R and DDS_R op-
erations do not execute simultaneously. Both of these operation
are executed in the same component (Receiver), however, we
see that these operations do not overlap each other. This shows
that the Receiver component always runs a single thread of
operation. The AMI Sender component receives callback from
the Receiver component when the AMI_R operation ends. The
Receiver component receives DDS samples when the DDS_S
operation starts but before the operation ends. This is because,
the DDS Sender component performs some book keeping after
publishing the data sample in the same operation.

V. CONCLUSIONS

Component-based Software Engineering (CBSE) is gener-
ally the preferred approach to develop large-scale, distributed
systems. When CBSE is applied to develop distributed, real-
time and embedded systems, the component model must sup-
port a number of features including robust application behavior
that is free of race conditions and deadlocks while simplifying
application development; first class support for multiple non-
functional properties like timeliness, fault tolerance and secu-
rity; dynamic resource management; full component lifecycle
management. The F6COM component model presented in
this paper supports all these capabilities. In addition, F6COM
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Fig. 7. A time sequence showing the activation of different operations in the assembly shown in 6. (DDS_S: DDS Sender, AMI_S: AMI Sender, AMI_SC:AMI
Sender Callback, DDS_R: DDS Receiver, and AMI_R: AMI Receiver) .
also supports effective resource sharing and isolation among
applications, as well as allows applications to use different
communication semantics. A qualitative evaluation of the
capabilities of F6COM validates our claims about its design.
Although F6COM has been designed for the fractionated
spacecraft operating environment, it is suitable for many other
kinds of distributed and embedded environments. In future,
we intend to demonstrate its capabilities in a variety of cyber-
physical environments.
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parison of Component Frameworks for Real-Time Embedded Systems,”
in Component-Based Software Engineering, ser. Lecture Notes in Com-
puter Science, L. Grunske, R. Reussner, and F. Plasil, Eds. Springer
Berlin / Heidelberg, 2010, vol. 6092, pp. 21–36.

[10] O. Nierstrasz, G. Arévalo, S. Ducasse, R. Wuyts, A. Black, P. Müller,
C. Zeidler, T. Genssler, and R. Van Den Born, “A Component Model
for Field Devices,” Component Deployment, pp. 1–13, 2002.

[11] J. Kim, O. Rogalla, S. Kramer, and A. Hamann, “Extracting, Speci-
fying and Predicting Software System Properties in Component based
Real-time Embedded Software Development,” in Software Engineering-
Companion Volume, 2009. ICSE-Companion 2009. 31st International
Conference on. IEEE, 2009, pp. 28–38.

[12] N. Wang, D. C. Schmidt, A. Gokhale, C. Rodrigues, B. Natarajan, J. P.
Loyall, R. E. Schantz, and C. D. Gill, “QoS-enabled Middleware,” in
Middleware for Communications, Q. Mahmoud, Ed. New York: Wiley
and Sons, 2004, pp. 131–162.

[13] Light Weight CORBA Component Model Revised Submission, OMG
Document realtime/03-05-05 ed., Object Management Group, May
2003.

[14] D. C. Schmidt, B. Natarajan, A. Gokhale, N. Wang, and C. Gill, “TAO: A
Pattern-Oriented Object Request Broker for Distributed Real-time and
Embedded Systems,” IEEE Distributed Systems Online, vol. 3, no. 2,
Feb. 2002.

[15] Object Management Group, DDS for Lightweight CCM Version 1.0 Beta
2, OMG Document ptc/2009-10-25 ed., Object Management Group, Oct.
2009.

[16] W. R. Otte, A. Gokhale, D. C. Schmidt, and J. Willemsen,
“Infrastructure for Component-based DDS Application Development,”
in Proceedings of the 10th ACM international conference on Generative
programming and component engineering, ser. GPCE ’11. New
York, NY, USA: ACM, 2011, pp. 53–62. [Online]. Available:
http://doi.acm.org/10.1145/2047862.2047872

[17] Document No. 653: Avionics Application Software Standard Inteface
(Draft 15), ARINC Incorporated, Annapolis, Maryland, USA, Jan. 1997.

[18] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, and W. O. et al., “A
Software Platform for Fractionated Spacecraft,” in Proceedings of the
IEEE Aerospace Conference, 2012. Big Sky, MT, USA: IEEE, Mar.
2012, pp. 1–20.

[19] OMG, “Deployment and Configuration Final Adopted Specification.”
[Online]. Available: http://www.omg.org/members/cgi-bin/doc?ptc/
03-07-08.pdf

[20] J. Sztipanovits and G. Karsai, “Model-integrated computing,” Computer,
vol. 30, no. 4, pp. 110 –111, apr 1997.

[21] N. Mahadevan, A. Dubey, and G. Karsai, “Application of software health
management techniques,” in SEAMS, 2011, pp. 1–10.

[22] ——, “Architecting Health Management into Software Component As-
semblies: Lessons Learned from the ARINC-653 Component Model,”
in ISORC, 2012, pp. 79–86.

Accepted for publication at the 16th IEEE International Symposium on Object/Component/Service-oriented Real-time Distributed Computing  (ISORC 2013). 




