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The F6 IAP is a state-of-the-art software platform and toolsuite for the model-driven development of 

distributed real-time embedded systems1. It consists of two major subsystems: (1) a design-time 

toolsuite for modeling, analysis, synthesis, implementation, debugging, testing, and maintenance of 

application software built from reusable components, and (2) a run-time software platform for 

deploying, managing, and operating application software on a network of computing nodes. The 

platform is tailored towards a managed network of computers and distributed software applications 

running on that network: a cluster of networked nodes.  

The toolsuite supports a model-based paradigm of software development for distributed, real-time, 

embedded systems, where modeling tools and generators automate the tedious parts of software 

development and also provide a design-time framework for the analysis of software systems. The run-

time software platform reduces the complexity and increase reliability of software applications by 

providing reusable technological building blocks in the form of an operating system, middleware, and 

application management services.    

 

The Information Architecture Platform 

The IAP is a complete, end-to-end solution for software development: from modeling tools to code to 

deployed applications. It is open and extensible, and relies on open industry standards, well-tested 

functionality and high-performance tools. It focuses on the architectural issues of the software, and 

promotes the modeling of application software, where the models are directly used in the construction 

of the software.  
                                                           
1
 This work was supported by the DARPA System F6 Program under contract NNA11AC08C through NASA ARC. 
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Applications 
Software applications running on the IAP are distributed: an application consists of one or more actors 

that run in parallel, typically on different nodes of a network. Actors specialize the concept of processes: 

they have identity with state, they can be migrated from node to node, and they are managed.  Actors 

are created, deployed, configured, and managed by a special service of the run-time platform: the 

deployment manager – a privileged, distributed, and fault tolerant actor, present on each node of the 

system, that performs all management functions on application actors. An actor can also be assigned a 

limited set of resources of the node it runs on: memory and file space, a share of CPU time, and a share 

of the network bandwidth.  

Applications are built from software components – hosted by actors – that interact via only well-defined 

interaction patterns using security-labeled messages, and are allowed to use a specific set of low-level 

services provided by the operating system. The low-level services include messaging and thread 

synchronization primitives, but components use these indirectly: via the middleware libraries.  

The middleware libraries implement the 

high-level communication abstractions: 

synchronous and asynchronous 

interactions, on top of the low-level 

services provided underlying distributed 

hardware platform. Interaction patterns 

include (1) point-to-point interactions (in 

the form of synchronous and 

asynchronous remote method 

invocations), and (2) group 

communications (in the form of 

asynchronous publish-subscribe 

interactions). Component operations can 

be event-driven or time-triggered, 

enabling time-driven applications. 

Message exchanges via the low-level messaging services are time-stamped, thus message receivers are 

aware of when the message was sent. Hence temporal ordering of events can be established (assuming 

the clocks of the computing nodes are synchronized).  

Specialized, verified platform actors provide system-wide high-level services: application deployment, 

fault management, controlled access to I/O devices, etc. Each application actor exposes the interface(s) 

of one or more of its components that the components of applications can interact with using the same 

interaction patterns. Applications can also interact with each other the same way: exposed interfaces 

and precisely defined interaction patterns.  

The F6 Operating System – a set extension to the Linux kernel – implements all the critical low-level 

services to support resource sharing (incl. spatial and temporal partitioning), actor management, secure 

(labeled and managed) information flows, and fault tolerance. A key feature of the OS layer is support 

for temporal partitions (similarly to the ARINC-653 standard): actors can be assigned to a fixed duration, 

periodically repeating interval of the CPU’s time so that they have a guaranteed access to the processor 

Applications, actors, components, and services 
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in that interval. In other words, the actors can have an assured bandwidth to utilize the CPU and actors 

in separate temporal partitions cannot inadvertently interfere with each other via the CPU.  

Run-time Software Platform 
The run-time software platform has several layers, as shown in the figure. Practically all layers are based 

on existing and proven open-source technology. Starting from the bottom, the operating system layer 

extends the Linux kernel with a number of 

specific services, but it strongly relies on the 

code available in the Linux kernel (currently: 

version 3.2.17).  The advantage of this 

approach is that developers can use existing 

Linux system calls, side-by-side with the F6OS 

system calls.  

The C and C++ run-time support libraries 

implement the conventional support services 

needed by the typical C and C++ programs. The 

C run-time library has entry points to access the 

F6OS system calls. These calls utilize data 

structures that have been defined using the 

standard Interface Definition Language (IDL), 

and can be created and manipulated using 

generated constructor and manipulation 

operators. The implementation of the F6OS 

operating system calls checks the integrity of all 

data structures passed on the interface. This 

enables validation of the data structures on the 

interface, preventing potential abuse of the 

F6OS system calls.  

Layered on the C and C++ run-time libraries the 

Adaptive Communication Environment (ACE) 

libraries provide a low-overhead isolation layer 

for the higher level middleware elements that 

support CORBA and DDS. The CORBA 

implementation is based on The ACE ORB (TAO, 

currently: version 6.1.4) that implements a subset of the CORBA standard for facilitating point-to-point 

interactions between distributed objects. Such interactions are in the form of Remote Method 

Invocations (RMIs) or Asynchronous Method Invocations (AMIs). RMIs follow the call-return semantics, 

where the caller waits until the server responds, while the AMIs follow the call-return-callback 

semantics, where the caller continues immediately and the response from the server is handled by a 

registered callback operation of the client. The CORBA subset implemented by the middleware has been 

selected to support a minimal set of core functions that are suitable for resource-constrained embedded 

systems. 

IAP Run-time Software Layers 
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The DDS implementation is based on the OpenDDS (currently: version 3.4) that implements a subset of 

the DDS standard for facilitating anonymous publish/subscribe interactions among distributed objects. 

In these interactions publishers send typed messages of specific topics via the middleware which then 

distributes them to subscribers interested in those 

topics. Subscribers can be anywhere on the network, 

they can join and leave the system at any time – the 

distribution middleware decouples publishers from the 

subscribers. There are several quality-of-service 

attributes associated with publishers and subscribers 

that control features like buffering, reliability, delivery 

rate, etc. DDS is designed to be highly scalable, and its 

implementations meet the requirements of mission-

critical applications.  

CORBA and DDS provide for data exchange and basic 

interactions between distributed objects, but in the IAP 

objects are packaged into higher-level units called 

components. A component, shown on the figure, 

publishes and subscribes to various topics (possibly 

many), implements (thus provides) interface(s), and expects (thus requires) implementations of 

interfaces. Note that a component may contain several, tightly coupled objects.  Components may 

expose (part of) their observable state via read-only state variables, accessible through specific 

methods. Components are configured via parameters, and have memory resources needs. Component 

operations are scheduled based on events or elapse of time. An event can be the arrival of a message 

the component has subscribed to or an incoming request on a provided interface. Time triggering is 

done by associating a timer with the component that invokes a selected operation on the component 

when a configurable amount of time elapses, possibly periodically repeating the operation. Component 

operations can perform computations, publish messages, and call out to other components via the 

required interfaces. To avoid having to write complex locking code for components, component 

operations are always 

single threaded: inside of 

one component at most 

one thread can be active 

at any time.  

Actors are formed from 

interacting components, 

and applications are 

formed from actors that 

interact with each other 

via their interacting 

components. Actors 

(together with their components) can be deployed on different nodes of a network, but their 

composition and interactions are always clearly defined: they must happen either via remote method 

invocations or via publish/subscribe interactions. The figure above shows an application where a 

A component 

Interacting components deployed on two different nodes 
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Sensor component periodically (P) publishes a message that a GPS component subscribes and which, 

in turn, sporadically (S) publishes another message that a NAVDisplay component consumes. This last 

component invokes the GPS component via a provided interface, when it needs to refresh its own state. 

The messages published can be quite small, while the method invocation (that happens less frequently, 

and on demand) may transfer larger amounts of data. The number of possible combination of 

interactions among components is quite large, but each interaction pattern is precisely defined, allowing 

the application writer to understand all operational scenarios. Note that applications are multi-

threaded, only individual components are single threaded.  

Interactions are realized by connectors that support specific interaction patterns. In addition to the two 

main ones described above, components can interact with network sockets (for conventional message 

oriented networking using POSIX standard socket APIs), timers, and I/O devices. For each case, the 

synchronization between component code execution and the events of the external world are precisely 

defined, and allow the implementation of various interactions to enable high degree of asynchrony and 

responsiveness.  

The run-time software platform includes a key platform actor: the Deployment Manager (DM) that 

instantiates, configures, and 

dismantles applications. Every node 

on a network has a copy of the DM 

that acts as a controller for all 

applications on that node. The DMs 

communicate with each other, with 

one being the lead ‘Cluster’ DM. This, 

cluster leader DM orchestrates the 

deployment of applications across 

cluster with the help of the node 

DMs. For deployment the binaries of 

application components and a 

deployment plan (an XML file) should 

be placed on each node, then the 

cluster lead DM reads and executes 

the plan: it starts the actors, installs 

components, configures the network connections among the components, etc., and finally activates the 

components. This last step releases the execution threads of the components. When the applications 

need to be removed, the DM stops the components, removes the network configurations, and stops the 

actors. A key feature of the deployment process is that the network connections among the parts: i.e. 

actors and components of the distributed application are managed: the application business logic does 

not have to deal with this problem; everything is set up based on the deployment plan.  

Design-time Development Platform 
Configuring the middleware and writing code that takes advantage of the component framework is a 

highly non-trivial and tedious task. To mitigate this problem and to enable programmer productivity a 

model-driven development environment is available that simplifies the tasks of the application 

developers and system integrators.  

Deployment Manager and Applications 
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In this environment, developers define with graphical and textual models various properties of the 

application, including: interface and message types, components types (in terms interfaces and 

publish/subscribe message types), component implementations, component assemblies, and 

applications (in terms interacting components and actors containing them). Additionally, the hardware 

platform for the cluster can be modeled: 

processors, network and device interfaces, 

network addresses, etc. Finally, the deployment 

of the application(s) on the hardware platform 

can be modeled (in terms mapping actors onto 

hardware nodes, and information flows onto 

network links). The deployment can change over 

time but the deployment is stable and static for 

most of the time.  Models are processed by code 

generators that produce several artifacts from 

them: source code, configuration files, scripts 

that facilitate the automated compilation and 

linking of the components, and other documents. 

The application developer is expected to provide 

the component implementation code in the form 

of C++ code (currently; in the future: any other, 

supported executable language) and add it to the 

generated code. The compilation and debugging of the applications can happen with the help of a 

conventional Interactive Development Environment (currently: Eclipse) that supports editing, compiling, 

and debugging the code.  The result of this process is a set of component executables and the 

deployment plan – ready to be deployed on a cluster of nodes.  

The model-driven approach has several benefits. (1) The model serves as the single source of all 

structural and configuration information for the system. (2) The tedious work of crafting middleware 

‘glue’ code and configuration files for deployment is automated: everything is derived programmatically 

from the models. (3) The models provide an explicit representation of the architecture of all the 

applications running on the system – this enables architectural and performance analysis on the system 

before it is executed. (4) Models can also be used for rapidly creating ‘mockup’ components and 

applications for rapid prototyping and evaluation.  

Summary 
The F6IAP provides a sophisticated, end-to-end solution for building and running distributed real-time 

embedded applications. It contains not only a run-time framework with a state-of-the-art operating 

systems extended with special features for resource, application, and network management together 

with a component framework with a precise defined model of computation, but also a model-driven 

development toolchain that assists developers and integrators in managing the development process.  

Model-driven Development 


