
1

F6 Model-driven Development Kit:
Information Architecture Platform
Last updated: June 12, 2013

The F6 IAP is a state-of-the-art software platform and toolsuite for the model-driven development of

distributed real-time embedded systems1. It consists of two major subsystems: (1) a design-time

toolsuite for modeling, analysis, synthesis, implementation, debugging, testing, and maintenance of

application software built from reusable components, and (2) a run-time software platform for

deploying, managing, and operating application software on a network of computing nodes. The

platform is tailored towards a managed network of computers and distributed software applications

running on that network: a cluster of networked nodes.

The toolsuite supports a model-based paradigm of software development for distributed, real-time,

embedded systems, where modeling tools and generators automate the tedious parts of software

development and also provide a design-time framework for the analysis of software systems. The run-

time software platform reduces the complexity and increase reliability of software applications by

providing reusable technological building blocks in the form of an operating system, middleware, and

application management services.

The Information Architecture Platform

The IAP is a complete, end-to-end solution for software development: from modeling tools to code to

deployed applications. It is open and extensible, and relies on open industry standards, well-tested

functionality and high-performance tools. It focuses on the architectural issues of the software, and

promotes the modeling of application software, where the models are directly used in the construction

of the software.

1
 This work was supported by the DARPA System F6 Program under contract NNA11AC08C through NASA ARC.

2

Applications
Software applications running on the IAP are distributed: an application consists of one or more actors

that run in parallel, typically on different nodes of a network. Actors specialize the concept of processes:

they have identity with state, they can be migrated from node to node, and they are managed. Actors

are created, deployed, configured, and managed by a special service of the run-time platform: the

deployment manager – a privileged, distributed, and fault tolerant actor, present on each node of the

system, that performs all management functions on application actors. An actor can also be assigned a

limited set of resources of the node it runs on: memory and file space, a share of CPU time, and a share

of the network bandwidth.

Applications are built from software components – hosted by actors – that interact via only well-defined

interaction patterns using security-labeled messages, and are allowed to use a specific set of low-level

services provided by the operating system. The low-level services include messaging and thread

synchronization primitives, but components use these indirectly: via the middleware libraries.

The middleware libraries implement the

high-level communication abstractions:

synchronous and asynchronous

interactions, on top of the low-level

services provided underlying distributed

hardware platform. Interaction patterns

include (1) point-to-point interactions (in

the form of synchronous and

asynchronous remote method

invocations), and (2) group

communications (in the form of

asynchronous publish-subscribe

interactions). Component operations can

be event-driven or time-triggered,

enabling time-driven applications.

Message exchanges via the low-level messaging services are time-stamped, thus message receivers are

aware of when the message was sent. Hence temporal ordering of events can be established (assuming

the clocks of the computing nodes are synchronized).

Specialized, verified platform actors provide system-wide high-level services: application deployment,

fault management, controlled access to I/O devices, etc. Each application actor exposes the interface(s)

of one or more of its components that the components of applications can interact with using the same

interaction patterns. Applications can also interact with each other the same way: exposed interfaces

and precisely defined interaction patterns.

The F6 Operating System – a set extension to the Linux kernel – implements all the critical low-level

services to support resource sharing (incl. spatial and temporal partitioning), actor management, secure

(labeled and managed) information flows, and fault tolerance. A key feature of the OS layer is support

for temporal partitions (similarly to the ARINC-653 standard): actors can be assigned to a fixed duration,

periodically repeating interval of the CPU’s time so that they have a guaranteed access to the processor

Applications, actors, components, and services

3

in that interval. In other words, the actors can have an assured bandwidth to utilize the CPU and actors

in separate temporal partitions cannot inadvertently interfere with each other via the CPU.

Run-time Software Platform
The run-time software platform has several layers, as shown in the figure. Practically all layers are based

on existing and proven open-source technology. Starting from the bottom, the operating system layer

extends the Linux kernel with a number of

specific services, but it strongly relies on the

code available in the Linux kernel (currently:

version 3.2.17). The advantage of this

approach is that developers can use existing

Linux system calls, side-by-side with the F6OS

system calls.

The C and C++ run-time support libraries

implement the conventional support services

needed by the typical C and C++ programs. The

C run-time library has entry points to access the

F6OS system calls. These calls utilize data

structures that have been defined using the

standard Interface Definition Language (IDL),

and can be created and manipulated using

generated constructor and manipulation

operators. The implementation of the F6OS

operating system calls checks the integrity of all

data structures passed on the interface. This

enables validation of the data structures on the

interface, preventing potential abuse of the

F6OS system calls.

Layered on the C and C++ run-time libraries the

Adaptive Communication Environment (ACE)

libraries provide a low-overhead isolation layer

for the higher level middleware elements that

support CORBA and DDS. The CORBA

implementation is based on The ACE ORB (TAO,

currently: version 6.1.4) that implements a subset of the CORBA standard for facilitating point-to-point

interactions between distributed objects. Such interactions are in the form of Remote Method

Invocations (RMIs) or Asynchronous Method Invocations (AMIs). RMIs follow the call-return semantics,

where the caller waits until the server responds, while the AMIs follow the call-return-callback

semantics, where the caller continues immediately and the response from the server is handled by a

registered callback operation of the client. The CORBA subset implemented by the middleware has been

selected to support a minimal set of core functions that are suitable for resource-constrained embedded

systems.

IAP Run-time Software Layers

4

The DDS implementation is based on the OpenDDS (currently: version 3.4) that implements a subset of

the DDS standard for facilitating anonymous publish/subscribe interactions among distributed objects.

In these interactions publishers send typed messages of specific topics via the middleware which then

distributes them to subscribers interested in those

topics. Subscribers can be anywhere on the network,

they can join and leave the system at any time – the

distribution middleware decouples publishers from the

subscribers. There are several quality-of-service

attributes associated with publishers and subscribers

that control features like buffering, reliability, delivery

rate, etc. DDS is designed to be highly scalable, and its

implementations meet the requirements of mission-

critical applications.

CORBA and DDS provide for data exchange and basic

interactions between distributed objects, but in the IAP

objects are packaged into higher-level units called

components. A component, shown on the figure,

publishes and subscribes to various topics (possibly

many), implements (thus provides) interface(s), and expects (thus requires) implementations of

interfaces. Note that a component may contain several, tightly coupled objects. Components may

expose (part of) their observable state via read-only state variables, accessible through specific

methods. Components are configured via parameters, and have memory resources needs. Component

operations are scheduled based on events or elapse of time. An event can be the arrival of a message

the component has subscribed to or an incoming request on a provided interface. Time triggering is

done by associating a timer with the component that invokes a selected operation on the component

when a configurable amount of time elapses, possibly periodically repeating the operation. Component

operations can perform computations, publish messages, and call out to other components via the

required interfaces. To avoid having to write complex locking code for components, component

operations are always

single threaded: inside of

one component at most

one thread can be active

at any time.

Actors are formed from

interacting components,

and applications are

formed from actors that

interact with each other

via their interacting

components. Actors

(together with their components) can be deployed on different nodes of a network, but their

composition and interactions are always clearly defined: they must happen either via remote method

invocations or via publish/subscribe interactions. The figure above shows an application where a

A component

Interacting components deployed on two different nodes

5

Sensor component periodically (P) publishes a message that a GPS component subscribes and which,

in turn, sporadically (S) publishes another message that a NAVDisplay component consumes. This last

component invokes the GPS component via a provided interface, when it needs to refresh its own state.

The messages published can be quite small, while the method invocation (that happens less frequently,

and on demand) may transfer larger amounts of data. The number of possible combination of

interactions among components is quite large, but each interaction pattern is precisely defined, allowing

the application writer to understand all operational scenarios. Note that applications are multi-

threaded, only individual components are single threaded.

Interactions are realized by connectors that support specific interaction patterns. In addition to the two

main ones described above, components can interact with network sockets (for conventional message

oriented networking using POSIX standard socket APIs), timers, and I/O devices. For each case, the

synchronization between component code execution and the events of the external world are precisely

defined, and allow the implementation of various interactions to enable high degree of asynchrony and

responsiveness.

The run-time software platform includes a key platform actor: the Deployment Manager (DM) that

instantiates, configures, and

dismantles applications. Every node

on a network has a copy of the DM

that acts as a controller for all

applications on that node. The DMs

communicate with each other, with

one being the lead ‘Cluster’ DM. This,

cluster leader DM orchestrates the

deployment of applications across

cluster with the help of the node

DMs. For deployment the binaries of

application components and a

deployment plan (an XML file) should

be placed on each node, then the

cluster lead DM reads and executes

the plan: it starts the actors, installs

components, configures the network connections among the components, etc., and finally activates the

components. This last step releases the execution threads of the components. When the applications

need to be removed, the DM stops the components, removes the network configurations, and stops the

actors. A key feature of the deployment process is that the network connections among the parts: i.e.

actors and components of the distributed application are managed: the application business logic does

not have to deal with this problem; everything is set up based on the deployment plan.

Design-time Development Platform
Configuring the middleware and writing code that takes advantage of the component framework is a

highly non-trivial and tedious task. To mitigate this problem and to enable programmer productivity a

model-driven development environment is available that simplifies the tasks of the application

developers and system integrators.

Deployment Manager and Applications

6

In this environment, developers define with graphical and textual models various properties of the

application, including: interface and message types, components types (in terms interfaces and

publish/subscribe message types), component implementations, component assemblies, and

applications (in terms interacting components and actors containing them). Additionally, the hardware

platform for the cluster can be modeled:

processors, network and device interfaces,

network addresses, etc. Finally, the deployment

of the application(s) on the hardware platform

can be modeled (in terms mapping actors onto

hardware nodes, and information flows onto

network links). The deployment can change over

time but the deployment is stable and static for

most of the time. Models are processed by code

generators that produce several artifacts from

them: source code, configuration files, scripts

that facilitate the automated compilation and

linking of the components, and other documents.

The application developer is expected to provide

the component implementation code in the form

of C++ code (currently; in the future: any other,

supported executable language) and add it to the

generated code. The compilation and debugging of the applications can happen with the help of a

conventional Interactive Development Environment (currently: Eclipse) that supports editing, compiling,

and debugging the code. The result of this process is a set of component executables and the

deployment plan – ready to be deployed on a cluster of nodes.

The model-driven approach has several benefits. (1) The model serves as the single source of all

structural and configuration information for the system. (2) The tedious work of crafting middleware

‘glue’ code and configuration files for deployment is automated: everything is derived programmatically

from the models. (3) The models provide an explicit representation of the architecture of all the

applications running on the system – this enables architectural and performance analysis on the system

before it is executed. (4) Models can also be used for rapidly creating ‘mockup’ components and

applications for rapid prototyping and evaluation.

Summary
The F6IAP provides a sophisticated, end-to-end solution for building and running distributed real-time

embedded applications. It contains not only a run-time framework with a state-of-the-art operating

systems extended with special features for resource, application, and network management together

with a component framework with a precise defined model of computation, but also a model-driven

development toolchain that assists developers and integrators in managing the development process.

Model-driven Development

