
Abstract

Model Integrated Computing involves defining a domain-
specific language that allows for someone to effectively
program an environment at whatever level the modeling-
environment-creator deems appropriate. We’ve taken
several complex, heterogeneous systems that posed
problems of needing integration and requiring frequent
reconfiguration at very high levels. This paper discusses
gathering the specifications for these systems, how the
systems can be represented at these high levels in a
paradigm also capturing the specifications, and then how
reconfiguring this group can proceed. All of the activities
constituting monitoring functionality and the resulting
decision making exposed by the information system will be
shown to have been solved through utilization of Model
Integrated Computing techniques.

1 Introduction

Numerous environments incorporate sensors that log real-
time process information. Any combination of these
readings over available history may be needed to provide
information to an operator or an automated application that
can make well-informed modifications to the current
environment state. Dispatching this information to sources
capable of manipulating it in an intelligent manner can
require numerous measures of system integration.
Additionally, there is a need to reconfigure this information
system to meet demands of new states. An operator
monitoring the results from this system who is distanced
from the details of the underlying information system would
be the desired individual to modify the configuration
state. [1]

Configurations for the information system can vary
drastically. Modifications may be as simple as moving
focus from one group of sensor information to another.
They can be as complex as shifting the entire architecture
around so that a user interface can now dispatch control
information to some other component in the system.
Modifying signal processing algorithms that might be
applied to the sensor information would be another major

change. Manually trying to apply drastic changes to the
information system is both time consuming and error prone.
The nature of gathering information via numerous data
paths is a process whose implementation should be
automated.

The Activity Modeling Tool introduced in this paper allows
for automatic generation of the target information system
following very high level designer specifications. This
saves a tremendous amount of time, reduces error
introduction, and completely abstracts the modeler from
details scattered within the run-time information system.

In this paper we will first summarize Model-Integrated
Computing. Then we will talk about the manner in which the
Activity Modeling Tool fits within the Model-Integrated
Computing framework. After discussing the details of the
tool requirements and modeling environment, we will touch
on the run-time implementation and the technologies linked
together. Finally, we will speak about the system’s
installation, and realized characteristics, and benefits.

2 Model Integrated Computing (MIC)

Model-Integrated Computing [2] is well suited for the rapid
design and implementation of complex computer-based
systems. MIC employs domain-specific models to represent
the software, its environment, and their relationships. With

Towards a Paradigm for Activity Modeling

J. T. Garrett and A. Ledeczi
Institute for Software Integrated Systems, Vanderbilt University

Nashville, TN 37203

F. DeCaria
Old Hickory Plant, E.I. du Pont Nemours and Company

Old Hickory, TN 37216

Model
Interpretation

Model Interpreters

Models

MIPS
Environment

Application
Domain

App.
1

App.
2

App.
3

Application
Evolution

Environment
Evolution

Meta-Level
Translation

Metaprogramming
Interface

Formal Specifications

Model Builder

Figure 1: The Multigraph Architecture

Model-Integrated Program Synthesis (MIPS), these models
are then used to automatically synthesize the embedded
applications and/or generate inputs to COTS analysis tools.
This approach speeds up the design cycle, facilitates the
evolution of the application, and helps system maintenance,
dramatically reducing costs during the entire lifecycle of the
system.

Creating domain-specific visual model building, constraint
management, and automatic program synthesis components
for a MIPS environment for each new domain would be
cost-prohibitive for most domains [3]. Applying a generic
environment with generic modeling concepts and
components would eliminate one of the biggest advantages
of MIC - the dedicated support for widely different
application domains. An alternative solution is to use a
configurable environment that makes it possible to
customize the MIPS components for a given domain.

Our Multigraph Architecture (MGA) [4] is a toolkit for
creating domain-specific MIPS environments. [5] The MGA
is illustrated in Figure 1. The metaprogramming interface is
used to specify the modeling paradigm of the application
domain. The modeling paradigm is the modeling language
of the domain specifying the modeling objects and their
relationships. In addition to syntactic rules, semantic
information can also be described as a set of constraints. The
Unified Modeling Language (UML) [6] and the Object
Constraint Language (OCL) [7], respectively, are used for
these purposes in the MGA. These specifications, called
metamodels, are used to automatically generate the MIPS
environment for the domain. An interesting aspect of this
approach is that a MIPS environment itself is used to build
the metamodels [8]. The automatically generated domain-
specific MIPS environment is used to build domain models
that are stored in a model database. These models are used
to automatically generate the applications or to synthesize
input to different COTS analysis tools. This process is called
model interpretation.

3 Activity Modeling Tool

The Activity Modeling Tool (AMT) is a MIPS environment
for building custom process monitoring and simulation
applications for chemical plants. AMT provides a means to
model all the components necessary (1) to interface to the
real-time database gathering plant sensory data, (2) to define
custom processing steps, (3) to create an operator interface,
and (4) to interface to a COTS process simulator. From this
set of integrated models, the interpreters synthesize the
components and combine them together to form a custom
process monitoring and simulation application.

3.1 Basic Modeling Overview

The core building blocks within this domain revolve around
Processing elements. Because the entire AMT
paradigm is quite complex, only the salient features for the
similar features between these building blocks will be
shown. Figure 2 depicts this block.

In the GME metamodeling environment, the syntax and part
of the static semantics of the domain are captured using
UML class diagrams. In the AMT paradigm, the
Compound, Primitive , InputSignal and
OutputSignal classes are the basic building blocks of
the hierarchical Signal Flow models. The Processing
and Signal classes are abstract base classes that are used
to simplify the metamodel itself. Primitives are the
elementary objects that correspond to computations at the
subroutine level in the target domain. The subroutine is
specified using the script attribute. In the context of the
signal flow models, Primitives can contain Input and
OutputSignals (through the aggregation inherited from
the Processing class), but not Processings . On the other
hand, Compounds can contain Processings , i.e.
Primitives and Compounds, creating a hierarchy of
possibly unlimited depth. DataflowConn is an
association among Signals . Its name indicates that this
association is implemented using connections as specified in
the presentation aspect of the metamodel (not shown in
Figure 2).

The core elements modeled within this domain represent the
different systems being integrated. Such an integration may
be seen in an AMT instance, shown in Figure 3. This high
level view demonstrates the manner in which system
integration proceeds. The Net_Data_Interface
represents the sensor or variable database. The
Aspen_Interface represents the simulation COTS tool.
The Graphical_User_Interface model represents
the operators interaction panel with the environment.
Finally, the Sim_Data_Holder represents a processing
block that works with data moving through the signal flow

Figure 2: Partial Metamodel
of the AMT Environment

pipeline.

Figure 3 enumerates the model representations of the
components desiring integration. All of these components
build from the structure presented in Figure 2 with some
extensions visually omitted for brevity. Core to these
components is the means for receiving and transmitting
information (this is modeled in Figure 2 through the
Processing class’s aggregation of the Signal basetype).
Although Signal instances have different meanings
within each of the components, they share the notion of
being a communication point. This commonality is also
shared through the configuration of the run-time kernel used
in the target and the pathways used for data propagation.

Each Signal is associated with a data type. This can be a
simple built-in type such as a double, float, integer or
character or an array of any one of these, or a user-defined
aggregate type. Aggregate types are explicitly modeled by
combining single (and arrays of) built-in types. This
Signal typing is easily specified within each component
instance. Included for the aggregate signal types are
elements (Converters , not shown in Figure 2)that allow
for breaking signals into constituent parts or combining
simple types into complex types. Merging several simple
streams into a larger structure helps reduce higher level
interconnection visual complexity if a logical grouping can
be developed.

After the syntactic and semantic information have been
captured by the metamodels, the presentation specifications
need to be added. This step is very specific to the MGAand
is beyond the scope of this paper. [8] Once the metamodels
are finished, the meta-level translator generates the
necessary configuration files to configure a new MGA
environment specific to the new paradigm.

In this generated environment, the Signal Flow and the Data
Type specifications are shown in different aspects (as
specified by the presentation specifications in the
metamodels). Figure 4 depicts the Signal Flow aspect of the
Net_Data model depicted in Figure 2. This simple model
shows four OutputSignals that are fed information
from elements representing variables from the variable
database. An intermediate component is also used (“x” and
“y” instances) to combine the variable information into a
logical structure used for propagating (x,y) data pairs.

Type specification for all the OutputSignals can be
found in the Signal Types aspect of the same model depicted
in Figure 5. There, associations, referred to as a
Conditionalization feature within the model editor, are made
between type instances and the desired Signal to be typed.
For example, the conditionalization of the 003_Var
element by the PlotEnvironmentStructRef is
shown via screendump after performing an operation (right
mouse click while in the proper editing mode)to indicate
what is being conditionalized by this element. For
completeness sake, the contents of the model being referred
by the PlotEnvironmentStructRef is shown below
the top view.

The correctness of signal type specification is enforced by a
set of constraints. By applying them, the constraint manager
component makes sure that every InputSignal and
OutputSignal has exactly one type associated with it. It
also guarantees that signals at each end of a connection are

Figure 4: Signal Flow Aspect
of Model "Net_Data"

Figure 5: Signal Type Aspect of
Model "Net_Data” (Top), and Contents

of Referred-To Aggregate Type (Bottom)

Figure 3: AMT Instance, Highest Level

of the same type and have the same size attribute. If signals
are conditionalized by aggregate types, then it is ensured
that the types are identical in composition.

3.2 Additional Component Characteristics

Some additional characteristics of the other system
components will now be discussed. The essential features
of the variable database have been discussed; variable
elements shown in Figure 4 have attributes associated with
them identifying their counterpart in the actual database.
Similarly, the constituent elements for the process
simulation engine work through specifying these peers on
the simulation side. Elements representing different
variable quantities can have Signals entering them, and
variable quantities for which inspection is desired can have
emerging Signals . Feedback scenarios can easily be
achieved within the AMT architecture.

The user interface portion of the AMT has no COTS
component associated with it, thus more specification can be
made through the modeling environment. Development of
the user interface proceeded alongside that of the AMT. It
deviates the most from the core Signal Flow concepts
introduced in Figure 2. Description will proceed through
inspection of the abstracted high-level layer depicted in
Figure 3.

The GUIcan accept and supply Signals . Its presentation
is based on modeling its behavior through selection and
interconnection of various components. Figure 6 shows the
most descriptive view of the GUI: the Signal Flow aspect.

Within the Signal Flow aspect of the GUI, one chooses the
visual components they wish to appear. Each component
has associated with it an inherent distinction made regarding
its ability to send, receive, or send/receive information. The
middle elements shown in Figure 6 are (from top to bottom)
a PlotEnvironment, two text entry fields, four text display
fields, and a button. The data directions are obvious for
these components. One can see that the same Signal Flow
characteristics developed earlier are present within the GUI:
that of Signals and Converters.

Additional aspects are also used for modeling the GUI.
Similar specification of the Signals is necessary.
Additionally, an intuitive manner for graphically placing the
interface objects depicted in Figure 6 is accomplished again
through the conditionalization feature.

4 Run-Time Environment

Specification of the information system discussed in the
Introduction has been reviewed through the use of the
GME’s multi-aspect, containment based modeling features.
Constraint checking has been built into the AMT to ensure
that all specifications have been supplied for the target
environment. Pending this complete specification, synthesis
of the run-time environment can proceed.

The MultiGraph Kernel (MGK) component of the MGA[4]
tightly couples the visual interconnections used with a
programming interface that can accept configuration easily
through modeling interpretation. It is designed to handle the
propagation of simple and complex data-typed Signals ,
the execution of scripts associated with our Processing
elements, and any queuing needs that are either directly
specified through Processing nodes or implicitly used to
implement other system component needs.

The MGKrequires an envelope that can dispatch it control
to perform data propagation whenever system idle time
allows. This envelope uniting all of the components is a
standalone executable written with Microsoft Visual C++,
running under Win32 platforms. It performs the following
tasks: (1)communicating with the process simulation
engine, (2) communicating with the variable database, (3)
communicating with the remote user interface, and (4)
relinquishing control to the MGK for data propagation
among components pending the data collection and
marshalling steps found in 1, 2, and 3.

Synthesizing this run-time environment takes place through
the model-interpreters creation of both a specifications file
and C++code generation. Code generation commences to
replace files in the “envelope” server project workspace.
Recompiling this workspace creates a new server highly

Figure 6: GUI Model
in Signal Flow Aspect

suited to perform the tasks specified. A configuration file is
generated that will be dispatched to the remote GUI pending
its instantiation. This will allow the GUIto reconfigure
itself visually based on the component selection made
during modeling.

The process simulation engine interfaced with is Aspen Plus
Steady State simulation software [8]. Aspen Plus v10.1-0
exposes a COMinterface that has been hooked into by our
server. Additionally, it has a canonical way of referencing
desired quantities that allows for easily capturing model
specifications. Specifying attributes for Aspen at different
abstraction layers allow for separating configuration items
subject to change through model reconfiguration. Typically
all that requires specification are a project file that Aspen
loads and then the appropriate information for supplying
and receiving information pertinent to this project. Aspen’s
own GUIallows for further configuration of where its
simulation engine resides. The location of Aspen’s
simulation engine may range from the local PCto a remote
cluster of computers or supercomputers.

The next system is the Vantage Process Monitoring and
Control (PM&C)variable database running remotely on a
VAX machine. Interfacing with this is simplified through a
Windows wrapper called Net_Data [9]. Uniquely
identifying environment specific settings is very easy.
Variables are referred to with a simple number. Connection
information is unlikely to change, but modifiable through
global attributes for the Net_Data model in the modeling
environment. The location of the Vantage PM&C variable
database can be anywhere. The Net_Data wrapper for
Vantage can communicate over TCP/IPand DECnet.

The final system allowed, at this point, for integration within
the AMT is the GUI. The GUIwas developed in tandem
with the AMT Paradigm and the model interpreter used in
conjunction with this paradigm. It is implemented in the
form of a Java Applet (or application) that can be located
anywhere a network connection permits a TCP/IP
connection over a model-time specifiable port to our
synthesized server. This might be a web page set as the
default for a remote monitoring “terminal” located across
the world, or a stand alone application on the same machine
that the server is running. Communication between client
and server uses a proprietary message based protocol built
atop TCP/IP. As mentioned beforehand, when the client is
instantiated, the server will transmit the configuration
settings to it that were generated from the modeling
environment. The client will then create the appropriate
visual components and allow user interaction to commence.

Figure 7 depicts the client’s rendition of the target modeling
environment specified in Figure 6. Visual placement and
size of the components adheres to the modeler’s choice as
specified in another GUImodel aspect. The
PlotEnvironment occupies the majority of the view at the
top of Figure 7. Then the next row is occupied by text entry
fields named “str_1_press” and “str_1_temp”. They are
designed to allow for a user to specify information to be
supplied to the simulation engine. One can observe this
through Signal Flow aspect inspection of Figures 3 and 6.
On the two subsequent rows reside text output fields bearing
names “str_3_pressure” through “str_2_temp”.
Specifically, these entry and display elements correspond to
modifying stream pressures and temperatures entering a
chemical flash project, and the resulting streams from this
project. The final row, with the Simulate button, allows the
user to asynchronously initiate this simulation.

5 Conclusions

A prototype has been installed and is being evaluated at the
DuPont Chemical Corporation’s Old Hickory DMTplant.
This prototype allows for a modeler to reconfigure the
system rapidly. Instances of the server configuration can be
installed on one or several machines allowing for a client to
simultaneously monitor different environmental settings by
instantiating multiple clients on the same remote machine.

Ideas have already been brought forth about how to expand
the existing framework to work with Dynamic Simulations
and also in expanding the assortment of components
available for placement within the GUI. This type of
extension will prove both easy to implement at a modeling
level and routine to implement at the programming level
beneath. Once the changes have been made to the modeling
environment and run-time infrastructure, previous models

Figure 7: Client’s GUI

can be recreated or migrated into the new paradigm. The
new functionality will then be present for making additions
to existing models.

Both a solution to the application and domain specific
problems and the domain-relevant need of requiring
frequent reconfiguration have been found through utilizing
Model-Integrating Computing tactics. The results are far
superior to “manual” integration strategies. Aside from
solving the system integration problems at hand, the
individual designing the environments can focus on the
semantics of the constituent systems rather than their
interconnection syntax. This is due to the efforts placed in
moving the difficulties associated with system integration
into capturing environment characteristics, creating a
framework that is capable of having modular modifications
made to its structure, and using the modeled information to
synthesize a target environment.

Acknowledgements

Research efforts for this project were funded in part by the
DuPont Chemical Corporation, Old Hickory Plant,
Tennessee.

References

[1] G. Karsai and F. DeCaria, Model-Integrated On-line
Problem-Solving Environment for Chemical
Engineering, IFAC Control Engineering Practice, Vol.
5, No. 5, pp. 1-9, 1997.

[2] J. Sztipanovits and G. Karsai, Model-Integrated
Computing, IEEE Computer, pp. 110-112, April, 1997.

[3] A. Ledeczi, M. Maroti, G. Karsai, G. Nordstrom,
Metaprogrammable Toolkit for Model-Integrated
Computing, Proceedings of the Engineering of
Computer Based Systems (ECBS) Conference, pp. 311-
317, Nashville, TN, March, 1999.

[4] J. Sztipanovits, G. Karsai, C. Biegl, T. Bapty, A.
Ledeczi, A. Misra, MULTIGRAPH: An Architecture for
Model-Integrated Computing, Proceedings of the
International Conference on Engineering of Complex
Computer Systems, pp. 361-368, Ft. Lauderdale,
Florida, Nov. 6-10, 1995.

[5] A. Ledeczi, M. Maroti, G. Karsai, G. Nordstrom,
Metaprogrammable Toolkit for Model-Integrated
Computing, Proceedings of the Engineering of
Computer Based Systems (ECBS) Conference, pp. 311-
317, Nashville, TN, March, 1999.

[6] James Rumbaugh, Ivar Jacobson, and Grady Booch,
The Unified Modeling Language Reference Manual,
Addison-Wesley, 1999.

[7] Jos Warmer and Anneke Kleppe, The Object Constraint
Language: Precide Modeling with UML, Addison-
Wesley, 1999.

[8] G. Nordstrom, Formalizing the Specification of
Graphical Modeling Languages, Proceedings of the
IEEE Aerospace 2000 Conference, CD-ROM
Reference 10.0402, Big Sky, MT, March, 2000.

[9] Aspen Technologies. http://www.aspentech.com/

[10]Steven L. Lightbody, Net_Data V2.2 Reference
Manual, 1998.

