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Abstract.   Model-based diagnosis schemes for hybrid systems are inherently complex because they deal with models that exhibit continuous and discrete dynamics, and tracking system behavior requires the continuous models to be switched as mode changes occur. Our approach to hybrid system diagnosis combines qualitative hypothesis refinement and quantitative parameter estimation techniques. The goal is to implement online schemes that are computationally feasible. We develop an approach in the paper to improve the computational efficiency of our hybrid diagnosis algorithm (H-TRANSCEND) [1]). The key innovation in this approach is to determine the point at which the qualitative hypothesis refinement procedure is no longer useful in isolating the fault candidate. The new logic used in the improved approach exploits insights from our previous work on measurement selection [4, 5]. We discuss the algorithm, and conduct a set of experiments to demonstrate the effectiveness of this approach.
I    INTRODUCTION 
The inherent computational complexity in analyzing embedded and hybrid systems’ behavior requires that the online algorithms responsible for monitoring, fault detection, fault isolation, and fault identification be efficient in time and space complexity. The overall goal is to achieve safety, reliability, and availability through fault accommodation, therefore, it is critical that faults be detected, isolated, and accommodated in a timely manner while the system is in operation. Our focus in this paper is to improve the effectiveness and efficiency of our previously developed hybrid diagnosis scheme called H-TRANSCEND, in particular the qualitative hypothesis refinement scheme [3].

Model-based diagnosis schemes employ a framework that explicitly links system behavior to system components and parameters. The model-based FDI task can be looked upon as a two step process [1]:

1. Residual generation.  Residual signals capture the difference between the observed behavior (measured signals) and the behavior predicted by the system model. 

2. Residual evaluation. The non-zero residual signals are linked to potential fault hypotheses using the system model with the goal of establishing the true fault candidates.

The TRANSCEND approach to model-based FDI of continuous dynamic systems [3] combines robust transient fault detection methods with an innovative fault isolation methodology that employs qualitative hypothesis generation and refinement with quantitative parameter estimation methods for fault identification. The qualitative fault isolation scheme uses a Temporal Causal Graph (TCG) representation that is directly derived from a Bond Graph (BG) model of the system [9]. Since the analysis is based on a qualitative representation of the fault transients, a signal-to-symbol generator [2] is used to convert sampled continuous residual signals to symbols that belong to the set {0, +, (} indicating nominal, above nominal, and below nominal values, respectively.
The overall diagnosis procedure consists of four component algorithms.
1. Hypotheses Generation uses a backward propagation algorithm [3] that propagates the recorded symbol discrepancy against the direction of edges of the TCG to generate a set of hypothesized faults that are consistent with the first recorded deviations in the measured variables.

2. Fault Signature Generation for the hypothesized faults in step 1 computes the qualitative effects of the hypothesized faults on measured system variables.  The signature is expressed as symbolic values for the magnitude and first and higher order derivatives. This is achieved by a forward propagation algorithm [3] that propagates symbols in the direction of edges of the TCG to compute fault signatures of a pre-specified order.
3. Progressive Monitoring compares the signatures generated against symbolic values for the measured variables, starting in a sequence from a discontinuous magnitude and first order change to a succession of higher order derivatives. The procedure eliminates inconsistent fault hypotheses as the tracking progresses [3]. 

4. Quantitative parameter estimation is initiated after progressive monitoring is terminated. The parameter estimation method uses a least square estimator with a hyperbolic error function to estimate faulty parameter values for each remaining fault candidate. The candidate that has the least estimation error is considered to be the true candidate [1].

The TRANSCEND scheme has been extended for the diagnosis of hybrid systems [1]. The hybrid diagnosis approach requires the use of multiple models that correspond to the different modes of system operation. During online diagnosis, as the system undergoes mode transitions, the appropriate TCG has to be derived from the Hybrid Bond Graph (HBG) model of the system [1, 8], and the fault signatures have to be derived from the new TCG to continue candidate refinement using the progressive monitoring scheme. 
The computational complexity of the hybrid diagnosis algorithm increases significantly because mode transition and model generation tasks have to be performed at run time to execute the monitoring, control, and fault isolation tasks. Further, when performing hybrid diagnosis, if the qualitative predictions of the fault signature do not match the current observations, we have to consider one of the two possible situations: (i) either the fault candidate is invalid or (ii) a mode change has occurred in the system. To cover all possibilities, all possible mode changes from the current mode are hypothesized. For each of the hypothesized modes, the forward propagation algorithm is repeated to generate the qualitative fault signatures. This process is repeated during the fault hypotheses refinement process, and, therefore, a large number of trajectories that have to be tracked. Further qualitative diagnosis schemes often produce ambiguous results, i.e., there may insufficient evidence in the qualitative residuals to uniquely isolate a fault. To overcome this, we have developed parameter estimation techniques. The parameter estimation scheme is computationally expensive, and, therefore, it is applied only when the number of possible fault candidates is small. In keeping with the overall goal of fault accommodation, the steps in the diagnosis algorithm have to: (i) be performed online, so we may detect and isolate faults in a timely manner while the system is in operation, (ii) employ analytic redundancy methods since the number of sensors available in the system may be small, and (iii) ensure the combined isolation and identification problem be completed as quickly as possible. 

For diagnosis on continuous systems, we have developed measurement selection algorithms [4, 5] to ensure complete diagnosability with a minimal set of measurements. These algorithms are applied at design time. A design time measurement selection algorithm for hybrid systems will require the analysis be performed for each mode of system operation, because mode changes cause model changes, and this affects the fault signatures that govern the relation between fault candidates and the measurements. Applying the measurement selection algorithm for all possible modes of operation, and then taking the union of all measurements selected at design time is computationally infeasible. This paper employs ideas from measurement selection techniques in continuous systems to develop an Online Measurement Analysis algorithm that helps to determine when the measurements provide no further qualitative discriminatory evidence among the fault candidates. This allows for more efficient switching from qualitative progressive monitoring to quantitative parameter estimation.
The remainder of this paper is organized as follows. Section II describes our hybrid diagnosis methodology in more detail. Section III describes the online measurement analysis approach proposed in the paper. Section IV describes experimental results. Section V presents the conclusions of the paper.

II   HYBRID FDI Algorithm
The TRANSCEND approach to hybrid diagnosis, illustrated in Fig. 1, uses a hybrid observer to track nominal system behavior, a fault detector to detect statistically significant deviations from nominal behavior, and a fault isolation unit to generate, refine, and identify fault candidates. The hybrid model is derived from the hybrid bond graph (HBG) [1, 8] of the system. The continuous model in each mode is defined by a bond graph. Systematic methods exist to derive state equation and TCG [3] models from the bond graph representation. 

[image: image5.wmf]r


Figure 1: Hybrid Diagnosis architecture


The Hybrid FDI algorithm is triggered by a fault detection scheme, which signals the presence of a fault. The fault isolation unit generates fault candidates and refines them by analyzing measurements from the system. Details of the fault detection scheme are presented in [10]. As discussed, fault isolation in hybrid systems is a complex task. The residual analysis scheme used to track system behavior has to include mode identification schemes, and handle discrete mode changes with the resulting abrupt change in variable values plus model changes to achieve correct fault isolation. However, the occurrence of a fault invalidates the model used for tracking system behavior. Therefore, the state estimates made by the observer [6] may no longer be correct. Abrupt faults (i.e., step changes) may produce a discontinuous jump in the values of the state and the output variables. 




This abrupt change may result in a sudden transition from one mode to another. Also, autonomous mode transitions may no longer be correctly predicted after the occurrence of a fault [7]. Therefore, designing fault observers becomes a nontrivial task. In our work, we mitigate this problem to some extent by using tracking schemes that operate in a qualitative domain. 
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Figure 2: Fault detected after mode transitions have occurred 
A second issue that we have to deal with in hybrid fault isolation is that the fault may be detected only after mode transitions have occurred. The result is the situation shown in Fig. 2. First, the fault is detected in a different mode from when it occurred. To address the problem of using the right model to generate the fault hypotheses, one has to traverse the mode trajectory backwards. Since, the observer model is incorrect the predicted trajectory may not be the true trajectory. However, the trajectory was correct to the point where the fault occurred. To solve this problem, we have introduced a fast roll back process [1] to determine the possible modes in which the fault could have occurred. Solving the fault isolation problem requires determining the mode along with the parameter value change that explains the observed discrepancies in system behavior. The residual analysis task for hypothesis refinement requires a fast roll forward process to determine the current mode of the system. Multiple hypotheses may be generated, and the fault identification process then determines the true fault.
To summarize, the fault isolation methodology for hybrid systems is broken down into four steps:

1. A fast roll back process using qualitative reasoning techniques to generate possible fault hypotheses. Since the fault could have occurred in a mode earlier than the current mode, fault hypotheses need to be characterized as <mode, fault parameter, deviation>, where mode indicates the mode in which the fault occurs, and fault parameter is the parameter of an implicated component whose deviation possibly explains the observed discrepancies in behavior. 
2. A fast roll forward process using progressive monitoring techniques to refine the possible fault candidates. The goal is to retain only those candidates whose fault signatures are consistent with the current sequence of measurements. After the occurrence of a fault, the observer's predictions of autonomous mode transitions may no longer be correct, therefore, determining the consistency of fault hypotheses also requires the fault isolation unit to roll forward to the correct current mode of system operation. 

3. When performing progressive monitoring, a candidate is dropped only if the symbolic observation does not match the signature for that candidate and that observation, and the diagnosability number of K modes has been reached. Using diagnosability studies [1] we have determined that any fault must manifest itself within K modes. Otherwise, it is assumed that a mode change has occurred. Possible mode changes are considered, and for each mode change a new trajectory is initiated to continue tracking and progressive monitoring.
4. The hypothesis refinement in step 2 above, switches to parameter estimation from qualitative analysis in an attempt to isolate and identify the true fault.  In the real-time parameter estimation algorithm, for each candidate we derive the state space equations of the system in the current mode. In case of transitions during the estimation, we can switch modes and derive the new input output models and continue the estimation in the new mode. 

III ONLINE MEASUREMENT ANALYSIS
When considering the efficiency of our H-TRANSCEND algorithm, a key observation is that as time progresses, the qualitative hypothesis refinement process using progressive monitoring may provide no discriminatory information for fault isolation. As discussed earlier, we need to establish a tradeoff whereby the qualitative progressive monitoring scheme significantly reduces the number of fault hypotheses before parameter estimation is initiated, but we want to avoid situations where the progressive monitoring schemes continue to operate even though the signatures provide no discriminatory evidence among the remaining fault hypotheses.

A way to avoid this is apply measurement selection techniques online, and ignore measurements that provide no discriminatory evidence between the current set of candidates in the current mode of operation. The measurement analysis part of the improved hybrid diagnosis algorithm is invoked when mode changes occur and fault signatures have to be recomputed, and within a mode, when the set of fault candidates change. We briefly review measurement selection concepts from our earlier work, and then discuss in detail the improved hybrid diagnosis algorithm which uses ideas from the measurement selection techniques.
3.1 Measurement selection concepts
A fault isolation system is completely diagnosable if the set of hypothesized faults can be uniquely isolated given a set of measurements. The problem of finding the minimum subset of observations that achieve complete diagnosability is called the measurement selection problem [5]. 
Figure 3: Three-tank system
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3.1.1 Discriminatory power of a signature: Consider the three tank system in Fig. 3. 
The two flow sources into tanks 1 and 3 are indicated by Sf1 and Sf2, respectively, the tank capacities are shown as C1, C2, and C3, and the pipes are modeled by simple resistances, R1 through R6. The valves are modeled by switched junctions. The control signals for turning these junctions on and off are generated by a finite state automata and the toggling signal for the automata [8] comes directly from the supervisory controller. The system may also have autonomous transitions, which are also modeled by switched junctions. Autonomous transition conditions are computed from system variables. A mode in the system is defined by the state of the controlled junctions in the hybrid bond graph model. When mode changes occur, the appropriate controlled junctions are toggled, and a new bond graph model is derived corresponding to the current system configuration. Therefore, if n is the number of switched junctions, then theoretically the system can be in 2n different modes.

We assume that the measurements made on the system are PressureTank1 = e3, PressureTank2 = e12, PressureTank3 = e16, FlowR3 = f11, and FlowR4 = f14. Let the system be in a mode in which the source Sf2 is inactive and the valve in pipe R5 is closed. Given an initial deviation of e16+ (increase in height of tank 3), the fault candidates generated are shown in the first column of Table 1. The 2nd order signatures for each candidate measurement set are listed in the subsequent columns of Table 1.
	Fault
	e3
	e12
	e16
	f11
	f14

	C1-
	+(+
	0+(
	00+
	+(+
	0+(

	C2-
	0+(
	+(+
	0+(
	(+(
	+(+

	C3-
	00+
	0+(
	+-+
	0(+
	(+(

	R1-
	0(+
	0+(
	00+
	0-+
	0+(

	R3-
	0(+
	0+(
	00+
	+(+
	0+(

	R4-
	00(
	0(+
	0+(
	0+(
	0+(

	R6+
	000
	00+
	0+(
	00(
	0(+


Table 1: Candidates generated and their signatures for initial deviation of e3+
A particular measurement, m is said to discriminate between any two candidates A and B, if the fault signatures for that measurement for the two candidates are different. More precisely, using the discrimination lemma discussed elsewhere [4, 5], two fault signatures for two measurements are different if (i) the signals show discontinuities, then the magnitude change and the slope for the two measurements are different, and (ii) the signals show no discontinuous effects, then the first non-zero value in the signature string is different. So essentially the four categories of signatures that are useful for discrimination are: <+,(>, <(,+>, <0…+>, and <0…(>. To demonstrate how measurements can separate fault candidates depending on the category in which its signatures fall, measurement e3 in Table 1, divides the fault hypotheses set into three sets: {C2-, C3-, R6+}, {C1-} and {R1-, R3-, R41, R6+}. Similarly, measurement f11 divides the candidate set into the following sets: {C1-, R3-}, {C2-}, {C3-, R1-, R6+}, and {R4-}. 

3.2 The improved hybrid diagnosis algorithm
In this section, we present an improvement to the H-TRANSCEND algorithm discussed earlier [7, 11]. This approach uses measurement analysis when mode changes occur and when the number of fault candidates change, to find the set of measurements that are useful for discriminating among candidates.
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Figure 4: Roll forward process including the new measurement analysis algorithm
In the original H-TRANSCEND algorithm, signature generation is performed immediately after a mode change occurs so that progressive monitoring may be applied with the new signatures for candidate refinement. As shown in Fig. 4, the online Measurement Analysis algorithm is invoked at the same time, or when the fault candidates change so that the set of discriminatory measurements can be recomputed. The non discriminating measurements are not used in the progressive monitoring scheme.
The details of the Measurement Analysis algorithm, explained in  Fig. 5, starts with the current set of measurements and checks if the measurements can discriminate (see section 3.1.1) between the current set of fault candidates. In other words, if a measurement’s signature for each of the fault candidates in the hypotheses set falls in the same category (i.e., it is not discriminatory), then that measurement is dropped and not used for progressive monitoring in the current mode. To illustrate this point, we continue with the three tank system example (Fig. 3) and the fault signatures illustrated in Table 1. Let us suppose that at some point during the progressive monitoring step the fault hypothesis set reduces to the three candidates shown in Table 2. The table shows that measurement e3 cannot discriminate among the fault candidates, so the Measurement Analysis algorithm will inform the progressive monitoring module not to track measurement e3 further in this mode. At each mode change, the measurement analysis algorithm again considers the full set of measurements, and by analysis of the new signatures, again finds the measurements that do not discriminate between the fault candidates. Similarly, when progressive monitoring drops a fault candidate, the remaining measurements are reanalyzed to determine if any of them are non discriminatory. When a situation arises where the set of available measurements cannot discriminate between the current fault candidates, we stop progressive monitoring and initiate the parameter estimation scheme if sufficient measurement samples have been collected. If sufficient samples are not available for parameter estimation, we suspend progressive monitoring till a mode change occurs, and then the measurement analysis algorithm is reapplied to determine the discriminatory measurements in the new mode.



	Fault
	e3
	e12
	e16
	f11
	f14

	C2-
	0+-
	+-+
	0+-
	-+-
	+-+

	C3-
	00+
	0+-
	+-+
	0-+
	-+-

	R6+
	000
	00+
	0+-
	00-
	0-+


Table 2: Fault hypotheses set at a point in progressive monitoring for the three tank system

IV EXPERIMENTS and RESULTS
We demonstrate the effectiveness of our improved diagnosis scheme for hybrid systems, by running simulation experiments on a real world example, the fuel transfer system of a fighter aircraft. The fuel system is designed to provide an uninterrupted supply of fuel at the desired rate to the aircraft engines, and at the same time to maintain the centre of gravity of the aircraft. The fuel transfer system is symmetrically divided into the left and right parts with four supply tanks (Left Wing (LWT), Right Wing (RWT), The Left Transfer (LTT), and Right Transfer (RTT)). During engine operation, fuel is transferred from the supply tanks to the receiving tanks (Left Feed (LFT) and Right Feed (RFT)) based on a pre-defined sequence. The fuel transfer sequence is controlled by valves at the outlet of the supply tanks and the inlet to the feed tanks. The pump is modeled as a source of effort (pressure) with a transformation factor that defines its efficiency, and the tanks are modeled as capacitances. The pipes are modeled as nonlinear resistances. A complete description of the fuel system model and diagnosis experiments run on the fuel system model are presented in [11,12].
A number of fault scenarios were created with fault introduced as abrupt (discrete) changes in parameter values that are assumed to occur at a point in time. To illustrate the difference between the old and new diagnosis schemes, we describe a fault experiment for a Right Wing Tank (RWT) pump degradation (the pump efficiency reduced to 66%) that occurred at time step 100 (Case I) and compare these results against those generated by the new scheme (Case II).
Case I: Table 3 summarizes the results of the experimental run on the original system. The table indicates that the fault that occurred at time step = 100 was detected at time step 106, and 13 initial candidates were generated. At time step 107, a discontinuity was detected in the measurement, and this reduced the candidate set to 10. Column 2 of the table shows the progression in candidate changes as more measurement deviations were observed, and also the mode changes that occurred during the fault isolation process. Finally at time step, 457, when the fourth mode change occurred and a sufficient number of samples were available for parameter estimation procedure (a least squares method), was initiated with four candidates. Column 3 indicates that 7 measurements were used for all of the progressive monitoring steps.
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Case II: The TCG log that appears on the right bottom of the screen in Fig. 6 shows that progressive monitoring was completed by time step 308 (as opposed to time step 457 in Case I). The report file (top left of Fig. 6) that logs the steps of the online measurement analysis algorithm, shows a table of the measurements tracked at each time step for progressive monitoring and the current fault candidates along with the signature of each [measurement, fault candidate] set. When the candidates’ set changed from 10 to 4, the Online Measurement Analysis algorithm was triggered and since all the measurements being tracked (LeftFeedTank.Pressure, LeftWingTank.Pressure, RightWingTank.Pressure, and XMP) did not discriminate between the set of fault candidates, the Measurement Analysis algorithm flagged that progressive monitoring could be stopped in that particular mode. Parameter estimation started immediately at time step 308, because by that time we had collected 200 data samples.


Figure 5: The new Online Measurement Analysis Algorithm








	Time Step
	Fault Hypotheses set
	Measurement set

	106
	13: LWT_Pipe.R+, LeftFeedTank.C+, LeftWingTank.C+, LeftWingTank.R+, LeftWingTank.TF-, Leg21.R-, Leg210.R-, Leg25.R-, Leg26.R-, RWT_Pipe.R+, RightWingTank.C+, RightWingTank.R+, RightWingTank.TF-
	7



	107
	10: LWT_Pipe.R+, LeftWingTank.R+, LeftWingTank.TF-, Leg21.R-, Leg210.R-, Leg25.R-, Leg26.R-, RWT_Pipe.R+, RightWingTank.R+, RightWingTank.TF-
	7

	120
	Mode change

	122
	Mode change

	307
	4: Leg25.R-, RWT_Pipe.R+, RightWingTank.R+, RightWingTank.TF-
	7

	412
	Mode changed

	457
	Mode changed; Progressive monitoring finished in 351 steps, starting parameter estimation for: [RWT_Pipe.R+   Leg25.R-   RightWingTank.TF-   RightWingTank.R+]


Table 3: Summary of results: Case I – Original system


Details of working of the Online Measurement Analysis algorithm for this fault scenario are summarized in Table 4. After fault detection at time step 106, tracking began with the full set of 7 available measurements. As a result of applying the measurement analysis algorithm at time step 107, 3 of the 7 measurements were considered not to provide any discriminating evidence among the fault candidates for that mode of operation. So, progressive monitoring was applied with 4 measurements. Table 4 shows that after a mode change occurred (time steps 120 and 122), the  Measurement Analysis algorithm was invoked, and as a result 3 of the measurements which were non discriminatory were not used further for progressive monitoring in that mode. Again at time step 307, when the set of candidates changed, the Measurement Analysis algorithm was invoked and it determined that there were no measurements that could distinguish between the candidates in the fault hypotheses set and flagged that progressive monitoring could be stopped at time step 308. 

Figure 6: Experiment with the improved hybrid diagnosis scheme - RWT Pump degradation to 66% starting at time = 100
Comparing Tables 3 and 4, progressive monitoring was conducted for 351 steps in the old scheme, whereas it ran for 202 steps with the improved algorithm. So there was 42.45% reduction in the number of time steps for which progressive monitoring ran with 4 candidates left for estimation in both cases. Also, starting parameter estimation earlier as when decided by the Online Measurement Analysis algorithm, did not affect the accuracy of our final result. For both situations, the estimate of the true fault is 0.604261 and the error percentages are same as evident from the TCG logs. Also, the average number of measurements observed during each step of progressive monitoring for case II was 4.0445 whereas for Case I it was 7.
	Simulation Time
	Fault Hypotheses set
	Measurement set
	Measurements not being observed

	106
	13: LWT_Pipe.R+, LeftFeedTank.C+, LeftWingTank.C+, LeftWingTank.R+, LeftWingTank.TF-, Leg21.R-, Leg210.R-, Leg25.R-, Leg26.R-, RWT_Pipe.R+, RightWingTank.C+, RightWingTank.R+, RightWingTank.TF-
	7: LeftFeedTank.Pressure

LeftFuselageTank.Pressure,

LeftWingTank.Pressure,

RightFeedTank.Pressure,

RightFuselageTank.Pressure,

RightWingTank.Pressure, XMP
	

	107
	10: LWT_Pipe.R+, LeftWingTank.R+, LeftWingTank.TF-, Leg21.R-, Leg210.R-, Leg25.R-, Leg26.R-, RWT_Pipe.R+, RightWingTank.R+, RightWingTank.TF-
	4: LeftFeedTank.Pressure,

LeftWingTank.Pressure,

RightWingTank.Pressure, XMP
	3: LeftFuselageTank.Pressure,      RightFeedTank.Pressure,      RightFuselageTank.Pressure

	120
	Mode changed

	121
	10: LWT_Pipe.R+, LeftWingTank.R+, LeftWingTank.TF-, Leg21.R-, Leg210.R-, Leg25.R-, Leg26.R-, RWT_Pipe.R+, RightWingTank.R+, RightWingTank.TF-
	7: LeftFeedTank.Pressure

LeftFuselageTank.Pressure,

LeftWingTank.Pressure,

RightFeedTank.Pressure,

RightFuselageTank.Pressure,

RightWingTank.Pressure, XMP
	

	122
	Mode changed

	123
	10: LWT_Pipe.R+, LeftWingTank.R+, LeftWingTank.TF-, Leg21.R-, Leg210.R-, Leg25.R-, Leg26.R-, RWT_Pipe.R+, RightWingTank.R+, RightWingTank.TF-
	7: LeftFeedTank.Pressure

LeftFuselageTank.Pressure,

LeftWingTank.Pressure,

RightFeedTank.Pressure,

RightFuselageTank.Pressure,

RightWingTank.Pressure, XMP
	

	124
	10: LWT_Pipe.R+, LeftWingTank.R+, LeftWingTank.TF-, Leg21.R-, Leg210.R-, Leg25.R-, Leg26.R-, RWT_Pipe.R+, RightWingTank.R+, RightWingTank.TF-
	LeftFeedTank.Pressure,      LeftWingTank.Pressure,      RightWingTank.Pressure,      XMP,
	3: LeftFuselageTank.Pressure,      RightFeedTank.Pressure,      RightFuselageTank.Pressure

	307
	4: Leg25.R-, RWT_Pipe.R+, RightWingTank.R+, RightWingTank.TF-
	0
	4: LeftFeedTank.Pressure,      LeftWingTank.Pressure,      RightWingTank.Pressure, XMP,

	308
	Progressive monitoring finished in 202 steps, starting parameter estimation for: [Leg210.R+   Leg21.R+]


Table 4: Summary of results for the experiment shown in Figure 8

We ran a number of diagnosis experiments for different types of faults in the fuel transfer system. For each fault type, we ran experiments using both the earlier hybrid diagnosis algorithm and the improved algorithm so that we can compare the results. The results for the five different fault scenarios are summarized in Table 5.
	Fault Scenario
	1: Pipe Block. Increase in resistance by a factor of 100 from time step 350
	2: Left Fuselage Tank Pump degradation to 66% starting at time step 650
	3: Left Wing Tank Pump degradation to 66% starting at time step 100
	4: Right Fuselage Tank Pump degradation to 33% starting at time step 850
	5: Right LCV Pipe Block. Increase in resistance by a factor of 100 from time step 100

	Time step at which fault is detected (both case1 and case2)
	481
	813
	455
	851
	178

	Case 1:

Earlier algorithm for diagnosis of hybrid systems
	average # of measurements observed throughout PM

	7
	7
	7
	7
	7

	
	# of mode changes during PM 
	4
	4
	4
	5
	2

	
	Time steps for which PM is run
	308
	246
	296
	200
	200

	
	# of fault candidates for PE

	2
	4
	4
	4
	1

	
	Time step at which PE starts
	789
	1059
	868
	1051
	378

	
	Results of parameter estimation
	Leg210.R+ error: 24956.2

Leg21.R+ error: 53.5371

Leg21.R's fault coefficient = 99.9999
	Seg18.R+ error: 1141.24

LTT_Pipe.R+ error: 1140.57

LeftFuselageTank.R+

error: 1132.82

LeftFuselageTank.TF-

error: 56.6986

LeftFuselageTank.TF's fault coefficient = 0.653198
	LWT_Pipe.R+ error: 1578.36

LeftWingTank.R+

error: 1568.46

LeftWingTank.TF-

error: 125.163

Leg26.R- error: 1589.06

LeftWingTank.TF's fault coefficient = 0.648281
	RTT_Pipe.R+ error: 1742.43

Seg18.R+ error: 1716.79

RightFuselageTank.TF-

error: 77.4031

RightFuselageTank.R+

error: 1707.68

RightFuselageTank.TF's fault coefficient = 0.331331
	RightLCV.R+

error: 131.787

RightLCV.R's fault coefficient = 99.5269

	Case 2:

Improved algorithm for diagnosis of hybrid systems
	average # of measurements observed through out PM
	4.2250
	1.4868
	3.0048
	2.0774
	4.2400

	
	# of mode changes during PM 
	2
	11
	5
	13
	2

	
	Time steps for which PM is run
	200
	530
	413
	607
	200

	
	# of fault candidates for PE
	2
	3
	3
	3
	1

	
	Time step at which PE starts
	681
	1343
	868
	1458
	378

	
	Results of parameter estimation
	Leg210.R+ error: 24956.2

Leg21.R+ error: 53.5371

Leg21.R's fault coefficient = 99.9999
	LTT_Pipe.R+

error: 1140.57

LeftFuselageTank.R+

error: 1132.82

LeftFuselageTank.TF-

error: 56.6986

LeftFuselageTank.TF's fault coefficient = 0.653198
	LWT_Pipe.R+ error: 1578.36

LeftWingTank.R+

error: 1568.46

LeftWingTank.TF-

error: 125.163

LeftWingTank.TF's fault coefficient = 0.648281
	RTT_Pipe.R+

error: 1742.43

RightFuselageTank.TF-

error: 77.4031

RightFuselageTank.R+

error: 1707.68

RightFuselageTank.TF's fault coefficient =  0.331331
	RightLCV.R+

error: 131.787

RightLCV.R's fault coefficient = 99.5269

	Time step at which the Improved algorithm in Case 2 flags that PM is no longer useful
	548
	1343
	868
	1458
	NA


Table 5: Experimental results for different fault scenarios for the fuel transfer system.




It is clear that in all cases there is a significant reduction in the total time for diagnosis and the number of measurements used for progressive monitoring are significantly reduced. It is interesting that for faults 2 and 4 the progressive monitoring ran longer than in the original algorithm. This is because the measurement analysis algorithm found that the available measurements were still discriminative. As a result, the number of candidates was reduced from 4 to 3, which then results in substantial computational savings during parameter estimation. For fault scenario 3, the number of candidates is reduced to 3 but the improved algorithm does not run for additional time steps. On the average 4 measurements are used for the new algorithm, and 7 in the original algorithm. All of the results demonstrate that the correct fault was identified, and the estimated values were equally accurate.
V   CONCLUSIONS

This paper presents a Measurement Analysis algorithm that is combined with our previous hybrid diagnosis methodology, H-TRANSCEND to develop a more efficient online hybrid diagnosis algorithm. To demonstrate the efficiency of the improved hybrid diagnosis approach we conducted a set of experiments on a real world application example. From our experiments we demonstrated that:

1. Only measurements useful in discriminating among the fault candidates are tracked for progressive monitoring.  

2. If all measurements cannot discriminate between the fault candidates we suspend progressive monitoring, and wait till a sufficient number of samples are collected for parameter estimation, or wait for a mode change before we initiate progressive monitoring again. 

3. The accuracy of parameter estimation is not affected if we stop progressive monitoring earlier as when decided by the online measurement analysis algorithm.

In the new approach we run progressive monitoring even after 4 mode changes (the stopping criterion for the first algorithm) as long as the measurements are useful in discriminating among the fault candidates. We have demonstrated that this further reduces the fault candidate set. Here there is a tradeoff between estimating more number of parameters and carrying progressive monitoring for longer as discussed in detail the experiments section. The interesting question that we will address in future work is to determine how long progressive monitoring should be run to reduce candidates versus switching to parameter estimation with a larger number of candidates so that the overall time taken in isolating and identifying the fault is reduced. This is because parameter estimation is computationally expensive, and the overall goal is to minimize computation so the method can be applied online even for complex systems. 

4. 
5. 
6. 
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