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Abstract. An o�-line scheduling algorithm considers resource, prece-
dence, and synchronisation requirements of a task graph, and generates
a schedule guaranteeing its timing requirements. This schedule must,
however, be executed in a dynamic and unpredictable operating envi-
ronment where resources may fail and tasks may execute longer than
expected. To accommodate such execution uncertainties, this paper ad-
dresses the synthesis of robust task schedules using a slack-based ap-
proach and proposes a solution using integer linear programming (ILP).
Earlier we formulated a time slot based ILP model whose solutions max-
imise the temporal �exibility of the overall task schedule. In this paper,
we propose an improved, interval based model, compare it to the former,
and evaluate both on a set of random scenarios using two public domain
ILP solvers and a proprietary SAT/ILP mixed solver.

1 Introduction

Scheduling plays a crucial role in manufacturing and service industries where
companies must sequence their activities (or tasks) appropriately to meet cus-
tomer deadlines. An o�-line scheduling strategy considers resource, precedence,
and synchronisation requirements of tasks, and generates a static schedule sat-
isfying task timing constraints [1]. This schedule executes in a dynamic and un-
predictable operating environment where critical resources may fail, tasks may
execute longer than expected, or certain new tasks may need urgent processing.
Consequently, the task schedule must accommodate such execution uncertain-
ties.

In this paper we address the synthesis of robust task schedules using a slack-
based approach. In [2] we developed a method to construct schedules where indi-
vidual tasks retain some temporal �exibility in the form of slack while satisfying
their timing requirements. As opposed to reactive methods [3�5], which recover
from the disruption as it happens, our method was proactive, i.e. it constructed a
schedule that could absorb some disruptions without the need for rescheduling.
In previously proposed proactive methods, like [6] and [7], a given amount of



slack had been added to the tasks to accommodate expected repair times prior
to scheduling. This had resulted in an increased make-span of the entire sched-
ule. On the other hand, our method assumed that the tasks had explicit deadline
and resource requirements. The goal was then to maximise the slack of each task
such that the resulting schedule satis�ed all the temporal constraints and the
�exibility was maximal according to a given cost function. We proposed an Inte-
ger Linear Programming (ILP) model of the scheduling problem, and evaluated
it using two di�erent ILP solvers. In this paper, we advance our method by in-
troducing an improved ILP model that performs better on larger problems. We
also get a third kind of ILP solver involved in the evaluation of the new model,
and compare the evaluation results with those of the �rst model.

We begin the discussion in Sect. 2 with a brief introduction of the background
and preliminary assumptions. Section 3 summarises the �rst, slot based ILP
model formulated in [2] and introduces the second, interval based model. We
also show how the new model can incorporate additional forms of temporal
constraints. Section 4 evaluates the performance of both models and compares
the evaluation metrics. We conclude the paper with a discussion of future work
in Sect. 5.

2 Preliminaries

This section introduces the application domain, then goes on to discuss the task
model, sources of slack in a task schedule, and the slack distribution algorithm.

2.1 Application Domain

A research group of the Institute for Software Integrated Systems (ISIS) at Van-
derbilt University in Nashville had been participating in the Autonomous Nego-
tiating Teams (ANT) project [8, 9] of the Defense Advanced Research Projects
Agency (DARPA) for several years, in cooperation with the Information Sci-
ences Institute (ISI) at the University of Southern California in Los Angeles.
The deliverable result of the research was the prototype of a software tool to aid
the scheduling of �ight missions and regular maintenance of Harrier aircraft in
a U.S. Marine Corps squadron.

A considerable part of the e�ort was the development of the core scheduling
engine for maintenance tasks, which has been solved by implementing a �nite
domain constraint scheduler in Mozart-Oz [10]. This approach relies on a group
of propagators which act independently on a shared set of variables with �nite
integer domains [11], which, however, due to the independence of the propaga-
tors, can sometimes lead to inconveniently deep but solutionless subtrees in the
search tree of the entire problem. This in turn can produce an unpredictable be-
haviour, where the scheduling engine produces a solution in a matter of seconds
for one problem, but enters into a unacceptably long and fruitless search for
another. This problem is a current issue in the �eld of constraint programming
and it has been addressed by various research e�orts [12, 13]. Our response to



the problem was the attempt introduced in this paper to replace the domain of
�nite domain constraint programming with integer linear programming, which
is perhaps more reliable in this respect. A further advantage of the approach is
that it gives us an anytime algorithm [14] �for free�.

2.2 Modelling Assumptions

Figure 1 shows a directed acyclic graph G modelling task interaction. Tasks
are non-preemptive and have resource, precedence, and synchronisation require-
ments. The graph comprises vertices and edges representing tasks and precedence
constraints, respectively. Each vertex is labelled Ti/ci, where Ti is a task and ci

its estimated execution time in appropriate time units (seconds in this example).
We denote the precedence constraint between tasks Ti and Tj in the graph by
Ti → Tj . Tasks without predecessors are called entry tasks and tasks having no
successors are called exit tasks. We also assume that each task Ti requires a set
of resources Ri = {Rm} for its execution where Rm denotes a resource of type
m. Also, for each resource Rm, its available capacity at a given t point in time
is given by cap(Rm, t).

T0/1
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T4/1

T6/2

T8/2

T1/2

T3/1

T5/2

T7/1

T9/3

overalldeadline
:D=17s

Fig. 1. An example task graph G with an overall deadline of 17 seconds

Scheduling is a mapping of tasks to resources such that the speci�ed precedence
and deadline constraints are satis�ed. The desired result is a feasible schedule
specifying the start times (also referred to as release times) for each task Ti. It is
also necessary to introduce some slack in this schedule to improve its robustness
to execution uncertainties. In many cases, the necessary slack may be obtained
by appropriately dividing up the entire available time frame (i.e. the interval
between the overall start and deadline time, 0 s resp. 17 s in the example) among
the tasks.

Assume that tasks T0 and T1 start at 0 s, and that G must meet a deadline
of 17 seconds, i.e. T8 and T9 must �nish before 17 s. Note, however, that the



longest path T0T2T4T6T8 through G is only 7 s long. This implies that a slack
of 17 − 7 = 10 s can be distributed to tasks along that path to retain some
temporal �exibility during their scheduling. We now discuss a method aimed
at distributing G's overall slack among tasks such that the slack added to each
intermediate task is maximised. This process results in a scheduling range [ ri, di)
for each Ti where ri and di denote the earliest release time and latest deadline,
respectively.

2.3 Slack Distribution

Initially, only entry and exit tasks having no predecessors and successors, re-
spectively, have their release times and deadlines �xed. In the slack distribution
problem, the overall graph time frame must be distributed over each intermediate
task such that all tasks can be feasibly scheduled on their respective resources.
Slack distribution is NP-complete and various heuristics have been proposed to
solve it. We use the approach proposed in [15] to maximise the slack added to
each task in graph G while still satisfying its deadline D. The heuristic is sim-
ple, and for general task graphs, its performance compares favourably with other
heuristics [16].

As part of the slack distribution, entry and exit tasks in the graph are �rst
assigned release times and deadlines respectively. A path pathq through G com-
prises one or more tasks {Ti}; the slack available for distribution to these tasks
is:

slackq = Dq −
∑

i : Ti∈pathq

ci (1)

where Dq is the length of the time frame of pathq (i.e. the di�erence between the
deadline and the release time of the path) and ci is the execution time of task
Ti along this path. The distribution heuristic in [15] maximises the minimum
slack added to each Ti along pathq by dividing slackq equally among tasks.
During each iteration through G, a non-extensible path pathq is chosen such that
slackq/nq is minimal, where nq denotes the number of tasks along pathq. Then
the corresponding slack is added to each task along that path. The deadlines
(release times) of the predecessors (successors) of tasks belonging to pathq are
updated. Tasks along pathq are then removed from the original graph, and the
above process is repeated until all tasks are assigned release times and deadlines.

The graph in Fig. 1 is used to illustrate the above procedure. First, we select
the path T0T2T4T6T8 shown in boldface in Fig. 2(a); the total execution time of
tasks along this path is 7 s, and as per the heuristic, a slack of (17−7)/5 = 2 s is
distributed to each task. Once their release times and deadlines are �xed, these
tasks are removed from the graph. Then path T1T3T5 and �nally path T7T9 is
chosen, as shown in Figs. 2(b) and 2(c), respectively. In the former case, a slack
of b(13− 5)/3c = 2 s is added to each task. Our algorithm leaves any remaining
slack (2 s in Fig. 2(b)) unexploited, although it could be distributed to tasks
with longer execution times to allocate the relative slack more evenly.
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Fig. 2. Steps corresponding to the the deadline assignment algorithm in [15]; the se-
lected paths are shown as bold edges

3 ILP Model Formulation

In this section we �rst describe the part of the scheduling problem that remains
after the slack distribution �nishes, and present how it can be formulated as
an ILP model. Two di�erent formulations are shown, one where a contiguous
sequence of uniform length time slots is assigned to each task, and another
where one of a set of possible predetermined intervals is chosen for each task.

3.1 Interval Allocation

Once tasks are assigned deadlines, each Ti has a scheduling range given by
[ ri, di). However, to generate a feasible mapping of tasks to a limited number
of resources, these scheduling ranges must be reduced appropriately to account
for resource contention during task execution; we adapt concepts from interval
scheduling [17] to solve this problem.

The scheduling range for Ti is �rst decomposed into a number of possibly
overlapping intervals {Iij}. Each Iij , corresponding to the jth possible scheduling
interval for Ti is such that:

Iij = [ rij , dij) where ri ≤ rij ≤ di − ci and ri + ci ≤ dij ≤ di. (2)

Iij is also assigned a weight

wij =
dij − rij − ci

dij − rij
(3)

denoting the scheduling �exibility within that interval in terms of available rel-
ative slack.

Robust schedule generation can now be formulated as an interval selection
problem where exactly one scheduling interval for each task must be selected
such that (i) at any point in the schedule, the overlapping task intervals do not
consume more than the number of available resources and (ii) the sum of the
interval weights is maximised.



3.2 Slot Based Approach

In [2], we proposed an ILP model using uniform length time slots, where the
solution of a problem is an assignment of a contiguous set of slots to each task,
such that the task can be executed in those slots without violating any of the
constraints. The interval selection described above appears in this model only
indirectly, since an interval is implicitly determined by the set of contiguous
slots selected for the task. The model is shown on Fig. 3, and can be explained
as follows. A boolean variable xit corresponds to each task-slot pair, such that
a speci�c task is scheduled to run in a particular slot if and only if the corre-
sponding variable is assigned the value 1 in the solution. It is also necessary to
introduce a set of auxiliary variables yik, such that yik is 1 if and only if the
total number of slots (viz. the length of the scheduling interval) assigned to task
Ti is exactly k. These values are used in the objective function to mask out the
predetermined interval length weights.3 The constraints ensure that resource ca-
pacities are not exceeded (4), that the intervals selected by the slot variables are
contiguous to ensure non-preemptive execution (5), that tasks are not executed
outside their scheduling ranges (6), and that the generated interval lengths are
long enough to accommodate the tasks (7). Equations (8) and (9) describe the
connection between the appropriate xit and yik variables.

The major weakness of this approach is hidden in (5), the constraint which
ensures that the scheduling intervals assigned to the tasks are contiguous. This
involves moving a simple convolution window over the entire scheduling range
and ensuring that there is not more than one 0-to-1 transition. Unfortunately,
this is a nonlinear requirement, thus the number of ILP inequalities it can be
expressed with is quadratic in the average size of the scheduling ranges, totalling
approximately

∑
i(di − ri)2. Another di�cult and ine�cient detail of the model

is the cost function, which cannot be expressed directly in terms of the slot
variables, but requires the introduction of a large number of auxiliary variables,
precisely

∑
i(di − ri − ci) many.

3.3 Interval Selectors

To circumvent the shortcomings of the slot based model, the number of equations
was reduced at the cost of increasing the number of variables, in the hope that the
ILP solvers can cope better with the latter than the former. In the new model,
a boolean variable was assigned to each selectable scheduling interval of each
task de�ned in (2). A solution is an assignment of 0/1 values to these variables,
such that exactly one out of all the variables belonging to a task is assigned the
value 1, in addition to satisfying all the resource and temporal constraints. The
complete model is shown in Fig. 4.

The constraints de�ned by (10) ensure that the time dependent resource ca-
pacities are never exceeded. For each particular resource and time slot, we select

3 Weights must be calculated in advance and �hardwired� into the model, because as
long as they are nonlinear in terms of interval length, they cannot be expressed
explicitly in a linear model.



Index sets and constant parameters:

L := {i | i is the index of task Ti}
R := {R1, R2, . . .} set of cumulative resources

Ri := {Ri1, Ri2, . . .} ⊆ R, i ∈ L set of resources used by task Ti

Ki := {ci, ci + 1, . . . , (di − ri)}, i ∈ L interval lengths for Ti

wik := (k − ci)/k, i ∈ L, k ∈ Ki weight of interval of length k for Ti

Variables:

xit =

{
1 if interval for Ti occupies slot t

0 otherwise
i ∈ L, −1? ≤ t ≤ D

yik =

{
1 if interval of length k is selected for Ti

0 otherwise
i ∈ L, k ∈ Ki

Maximise
∑
i∈L

∑
k∈Ki

yikwik subject to the following constraints:

Resource availability:

∀Rm ∈ R, ∀ 0 ≤ t ≤ D :
∑

i∈{i |Rm∈Ri}

xit ≤ cap(Rm, t) (4)

Interval contiguity:

∀i ∈ L, ∀t ∈ {ri − 1, . . . , di − 4}, ∀l ∈ {t + 2, . . . , di − 2} :

xit+1 − xit + xil+1 − xil < 2 (5)

Interval length:

∀i ∈ L, ∀t ∈ {−1? . . . , ri − 1, di, . . . , D} : xit = 0 (6)

∀i ∈ L :
∑

ri≤t≤di

xit ≥ ci (7)

Variable consistency:

∀i ∈ L :
∑

ri≤t≤di

xit −
∑
k∈Ki

kyik = 0 (8)

∀i ∈ L :
∑
k∈Ki

yik = 1 (9)

? For technical reasons, the index t of xit can take −1 as its value. Since a task
cannot start at time −1, xi,−1 = 0 by de�nition.

Fig. 3. The slot based ILP model



all the possible scheduling intervals containing this slot of all the tasks using the
given resource. The sum of these 0/1 values equals the actual resource usage of
any speci�c solution, therefore it must not be greater than the corresponding
capacity. Constraint (11) encodes the requirement that exactly one interval is
chosen for each task.

Index sets and constant parameters:

L : i task indices Zi : j interval indices for Ti, i ∈ L

R : cumulative resources Ri ⊆ R : resources used by Ti, i ∈ L

Iij := [ rij , dij), i ∈ L, j ∈ Zi jth possible scheduling interval for Ti

wij :=
dij − rij − ci

dij − rij
, i ∈ L, j ∈ Zi weight corresponding to interval Iij

Variables:

xij =

{
1 if interval Iij is selected for task Ti

0 otherwise
i ∈ L, j ∈ Zi

Maximise
∑
i∈L

∑
j∈Zi

xijwij subject to the following constraints:

Resource availability:

∀Rm ∈ R, ∀ 0 ≤ t ≤ D :
∑∑

i∈{i |Rm∈Ri}
j ∈{j | t∈ Iij}

xij ≤ cap(Rm, t) (10)

Singular interval selection:

∀i ∈ L :
∑
j∈Zi

xij = 1 (11)

Fig. 4. The interval based ILP model

3.4 Jobs as Groups of Tasks

In addition to maintenance tasks, the application domain also operates with the
concept of jobs. Regular aircraft maintenance consists of independent jobs (e.g.
56-DSI, an inspection scheduled about every 56 days), which are built up from
smaller, interrelated tasks (e.g. remove wings to give access to the engine). When
this is translated into a graph, each job constitutes a connected subgraph of the
entire task graph, and slack distribution can be performed on these subgraphs
independently. In addition, maintenance can only be performed while the aircraft
is on the ground, and a job cannot be interrupted with a �ight mission (for
example because the aircraft is not yet completely reassembled). Assuming that



mission planning always precedes maintenance scheduling, the interval based
model must be extended to avoid scheduling jobs during and across missions.

Let us introduce the notion of jobs, denoted by Jk, which are sets of Ti tasks,
and the concept of job spans, those time intervals within which jobs can be
performed. A job span is denoted by Hkl = [ skl, ekl), and either all or none of
the tasks constituting the job must be completed in it.

The overall algorithm is then modi�ed as follows. Slack distribution described
in Sect. 2.3 is executed for each job (i.e. a connected graph) and for each job span
separately, assigning a separate scheduling range to each task of the job within
each span. Then each of these scheduling ranges is used to generate possible
scheduling intervals according to (2), with the added notational complexity that
now there is more than one scheduling range per task. The remaining problem
is again a singular interval selection for each task, but this time we must also
ensure that for all tasks of a single job we select intervals from the same job
span.

The extension of the model is shown on Fig. 5 (only new or modi�ed elements
are listed). For each job Jk, it introduces a second set of boolean variables, ykl,
one for each job span, which is 1 if and only if the corresponding span contains
all tasks of the Jk in the resulting schedule.

Index sets and constant parameters:

M : k job indices Nk : l job span indices for Jk, k ∈ M

Hkl := [ skl, ekl), k ∈ M, l ∈ Nk lth possible job span for job Jk

Variables:

ykl =

{
1 if job span Hkl is selected for job Jk

0 otherwise
k ∈ M, l ∈ Nk

Consistent & singular interval selection (replacing (11)):

∀k ∈ M, ∀l ∈ Nk, ∀i ∈ {i |Ti ∈ Jk} :
∑

j ∈{j | Iij⊆Hkl}

xij = ykl (12)

∀k ∈ M :
∑
l∈Nk

ykl = 1 (13)

Fig. 5. Extending the interval model with jobs

Equation (11) is replaced with two new equations. Constraint (12) encodes the
requirement that all the tasks of a job must be executed in the same job span.
The equation speci�es that a particular job span is selected (ykl = 1) if and only
if all the tasks constituting the job have exactly one interval selected within that
job span. Finally, (13) ensures that exactly one job span is selected for each job.



An obvious special case of the extended model is when there is exactly one
job, containing all the tasks, and there is exactly one job span. Then the extended
model behaves exactly like the simple interval based model on Fig. 4.

3.5 E�ciency Considerations

To avoid the explosion of the number of variables as the number of tasks and the
size of the scheduling ranges (di − ri) increase, we decided to limit the number
of possible scheduling intervals per task. The algorithm we created to determine
the intervals is as follows. For each task:

1. The number of intervals per job span is set to be proportional to the size of
the span.

2. For each span, generate a set of possible starting points, at which all eventu-
ally created intervals will start. The number of points is chosen by keeping
two goals in mind:
� the number of intervals is not less than two per point;
� the distance between neighbouring points is not less than the execution
time of the task.

The points themselves are distributed evenly within the job span. These
rules help to maintain a healthy balance between the number of choices in
the starting point and the length of the scheduling interval. And even though
the rules are arbitrary, measurement results summarised in Sect. 4.3 indicate
that these limitations do not e�ect the quality of the solutions signi�cantly:
the maximal objective values returned by the solvers using the latter model
are not worse than those running on the former.

3. For each starting point, generate the required number of intervals (number
intervals in the span divided by the number of points), in gradually increasing
length from the minimally required up to a globally �xed multiple of the
execution time.

Note that due to rounding and integer division, the number of actually generated
intervals may not reach the limit. In our current solution, this remainder capacity
is unexploited.

Figure 6 shows a robust schedule for the task graph displayed in Fig. 1, gen-
erated using an ILP solver on the de�ned model. Here we assumed that each
task uses exactly one of the two available resources. The intervals corresponding
to tasks T5 and T7 are shorter than the scheduling ranges in the solution, there-
fore they are shown in bold. The dotted sections are indicating the subintervals
removed to satisfy the constraints.

4 Performance Evaluation

In [2], two ILP solvers were tested: a pure ILP called LP_SOLVE4, a freely
available generic linear programming solver [18], and a specialised 0-1 ILP solver

4 We used version 2.0 of LP_SOLVE in our experiments. Since then, newer versions
of the software have been released, at the time of writing this article the newest is
version 5.5, which might (or might not) perform better on the test data sets.
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Fig. 6. The robust schedule generated with the ILP model

targeting pseudo-boolean optimisation problems called PBS [19], which can also
handle SAT formulæ. In order to use PBS, the integer constraints in the ILP
model were converted to their appropriate pseudo-boolean and conjunctive nor-
mal forms. Now we added a second pure ILP solver called GLPK [20] to the
list5, which is also available under a free license.

We have tested the interval based model with real life data take from the
software tool mentioned in Sect. 2.1, and veri�ed that the ILP solvers were able
to create valid schedules for them in an acceptable time frame. However, the
slot based model was not elaborate enough (i.e. no notion of jobs) to handle
these scenarios, and also these data represented only a small number of points
in the entire problem space. In order to be able to perform a more thorough and
systematic evaluation of the models, we turned to random problem generation.
Here, our goal was to make the generated problems similar in structure to real
life scenarios, so that the evaluation of the former would give us some feel for
the performance of the solvers on the latter as well.

4.1 Expectations

Since the new model does not include constraints which could be encoded as
clauses of a SAT formula, we expected a drop in the performance of PBS when
moving from the slot based to the interval based model. On the other hand, since
the number of constraints has decreased, we hoped that the pure ILP solver will
tackle the problem better than before. As for the new GLPK solver, we did not
have any previous experience to begin with.

5 GLPK version 4.4 was used in the tests. The most recent version at this time is 4.13.



4.2 Problem Generation

The random task graphs used in our experiments were obtained as follows. To
generate a directed acyclic graph (DAG) with a speci�c number of tasks, a certain
number of layers are �lled by randomly distributing a number of independent
tasks to each layer.6 Next, we randomly link the edges between tasks in di�erent
layers. Finally, tasks are assigned execution times uniformly distributed between
[2, 5] secs. A set of resource types R = {Rm}, each with a speci�c capacity is also
generated. In our experiments, these resources are distributed uniformly among
tasks such that each task is allocated exactly one resource of a certain type. The
original resource capacity can also be increased (decreased) as needed. Finally,
the graph deadline D is set to (1+ slack) · pmax , where pmax denotes the longest
path length through the graph and slack is a user-speci�ed value.

4.3 Analysis of Measurement Results

The slot based model has been evaluated with two solvers, LP_SOLVE and
PBS. Table 1 summarises the performance of the two solvers given four resource
types, each with a capacity of three. The experiments were performed on a 3.2
GHz Pentium 4 processor wit 1 GB of RAM. Graph deadlines are derived using
slack = 1.0. The table shows the �rst solution (value of the objective function
in the ILP model) returned by both solvers as well as the time taken to do so.
(The resolution of the timer was 15 seconds in these experiments.) The solvers
were then allowed to improve on their initial solutions up to a time-out period
of �ve minutes and the best solution returned by the solvers after that period is
also shown. If a problem is shown to be infeasible by a solver (i.e. it can prove
that there is no solution), this fact is denoted by `Inf.' in the appropriate cell,
while a solver time-out without returning any solution is denoted by `�'.

Table 1. Results of the slot based model with 4 resources of capacity 3 and slack = 1.0

Tasks
Scheduling
intervals

LP_SOLVE PBS
First

solution
Time
(secs.)

Best
solution

First
solution

Time
(secs.)

Best
solution

∼25 892 12.52 < 15 13.02 2.35 < 15 10.66

∼50 2628 19.41 75 21.26 13.37 < 15 18.92

∼75 2639 18.53 135 20.77 13.44 < 15 17.97

∼100 3091 � � � 14.12 < 15 21.83

∼150 7326 � � � 30.64 15 33.03

For small numbers of intervals, the solutions returned by LP_SOLVE are supe-
rior to PBS at the cost of greater time overhead. For larger numbers of intervals,

6 The number of tasks per layer is chosen randomly from a speci�ed range, and the
number of layers is implicitly determined by the total number of tasks and the
number of tasks chosen for each layer.



however, LP_SOLVE was unable to return a solution within the time-out period
whereas PBS returned the �rst solution very quickly.

Now let us turn to the interval based model. It has been evaluated with both
solvers used earlier, as well as GLPK, a second pure ILP solver. The results are
summarised in Table 2. The test parameters and conditions were chosen to be
identical to the previous tests (in fact, the very same task graphs were used) in
order to make comparison possible, only in this case larger problems have been
tested as well, since the speedup of the solvers using the new model permitted
this increase in size. The time resolution has also been re�ned to 5 seconds.

Table 2. Results of the interval based model with 4 resources of cap. 3 and slack = 1.0

Tasks
Sched.
ints

LP_SOLVE PBS GLPK
First
sol.

Time
Best
sol.

First
sol.

Time
Best
sol.

First
sol.

Time
Best
sol.

∼25 892 13.02 < 5 13.02 11.22 < 5 11.22 13.02 < 5 13.02

∼50 2628 28.00 < 5 28.00 13.82 < 5 16.42 27.99 < 5 28.00

∼100 3091 32.81 < 5 32.81 17.02 10 17.02 32.73 < 5 32.81

∼150 7326 63.4 25 63.4 32.06 15 32.06 63.41 < 5 63.43

∼200 9167 72.77 25 72.82 � � � 72.72 10 72.82

∼500 17613 157.78 275 157.78 � � � 157.78 15 157.78

The results clearly show that the interval based model suits the taste of the
integer linear solvers much better. For all but the smallest problem, the solu-
tions returned by LP_SOLVE are better than with the slot based model, and
with much quicker response times. This solver has also been able to cope with
problems containing 100�150 tasks, which earlier caused a time-out, and even
with problems of 200�500 tasks, which were not even attempted. It is also worth
pointing out that the quality of the �rst and the best solutions di�er only min-
imally (if at all). The results of the GLPK solver are very similar to those of
LP_SOLVE, only with smaller run times. (In fact, it would be interesting to ob-
serve how GLPK behaves with even larger problem sizes.) On the other hand, the
performance of PBS is clearly poorer. Even though the quality of the �rst solu-
tions is better than before for smaller problems, the quality of the best solutions
has diminished. This change for the worse could be explained by the fact that
while the slot based model contained a number of SAT encodable constraints,
the interval based model does not, and we believe that the main strength of
PBS, which gave it an edge over LP_SOLVE, lies in the SAT solver core. Since
it has not been able to exploit this feature with the interval based model, its
performance has degraded.

In [2] we presented a table which emphasised the e�ect of increasing slack
values on solver performance. It showed that when slack was increased, a larger
number of possible scheduling intervals was generated, which in turn caused a
larger search space and thus more time-outs. On the other hand, the robustness
of the schedules improved where the solvers �nished in time. Table 3 shows a



similar data set for the interval based model, including results for the two ILP
solvers. Since the objective values returned by LP_SOLVE and GLPK were
always very close (and almost always equal), the table includes a single set of
objective values, i.e. those of the best solutions found by both solvers. (A ∼ sign
denotes where there was a minor di�erence in the values.) Two further columns
per slack value show the total run time of the two solvers (i.e. the time required
to be able to tell that the found solution is indeed the best).

Table 3. E�ect of slack values on solver performance

T#
slack = 0.5 slack = 0.8 slack = 1.0

int# obj LPS GLPK int# obj LPS GLPK int# obj LPS GLPK

∼25 436 9.48 0.03 0.13 747 12.52 0.04 0.23 892 13.02 0.05 0.25
∼50 1338 19.66 0.11 0.34 1961 ∼ 24.7 0.18 0.53 2628 28 0.27 0.88
∼100 1384 Inf. 0.12 0.28 2277 Inf. 0.31 0.48 3091 32.81 3.72 1.19
∼150 3638 33.2 > 300 2.01 5839 56.65 > 300 3.76 7326 ∼ 63.4 > 300 4.3
∼200 4234 Inf. 0.74 1.07 6886 58.79 60.99 2.7 9167 72.82 > 300 12.9
∼500 8582 Inf. 1.99 2.38 14257 ∼ 126.3 > 300 30.32 17613 157.78 > 300 17.06

It is interesting to see that there is a jump in the time values of LP_SOLVE,
where it was not able to �nish within the time limit any more. Nonetheless, it
always found a solution7, which was not even worse than the best solution found
by GLPK. However, the time results of GLPK are convincing, it appears that
GLPK scales well with the problem size.

5 Conclusions

This paper has addressed the problem of generating robust task schedules under
explicit deadline constraints and proposed a new ILP-based solution. In addition
to an earlier model of ours, we formulated a second ILP model whose solution
maximises the temporal �exibility of the overall task schedule. This model was
solved using three integer solvers LP_SOLVE, PBS and GLPK that use widely
varying solution techniques. Our experiments show that while LP_SOLVE pro-
vides superior solutions for the smallest problems, it is outperformed by GLPK
both in speed and scalability. The SAT based PBS solver �nished poorly in our
tests. We believe this is because the strength of this solver lies in the SAT solver
core, but our ILP model did not contain SAT encodable constraints.

5.1 Future Work

The tests clearly showed that even with the new model, the performance of the
solvers degrades drastically as the problem size increases. To face the issue of

7 ILP searches can be considered anytime algorithms for practical purposes, knowing
that they use the branch-and-bound algorithm, and assuming that the search tree is
interspersed with solutions, which is apparently true our case.



scalability, we are experimenting with generating solutions in multiple passes,
using a technique we call rolling horizon. First, scheduling ranges are determined
as usual. The idea is then to generate a robust schedule for a relatively short
period of the entire planning horizon in each pass, giving greater �exibility to
the tasks scheduled at the end of this period, i.e. with the interval weights
de�ned in (3) being modi�ed to be monotonous in rij . Then in the next pass,
the scheduling intervals selected for the trailing part (i.e. part of the output of the
�rst pass) are used as new, reduced scheduling ranges (i.e. as input of the second
pass). The second pass will then �nalise these tasks by selecting a subinterval of
these reduced ranges. This way each pass has the ability to slightly modify the
decisions made in the previous pass near the �seams� without breaking any of
the already satis�ed temporal constraints.

The advantage of this �divide and conquer� approach is that it could help to
keep the complexity of the problem linear in the number of tasks. When the ILP
models are applied to the entire problem, the increase in run times is steeper
than linear as shown in Sect. 4.3. By using a rolling horizon, however, the number
of tasks per pass can be kept constant.
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