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Consensus of Multi-Agent Networks in the
Presence of Adversaries Using Only Local

Information

Heath LeBlanc, Haotian Zhang, Shreyas Sundaram, and Xen&datsoukos

Abstract

This paper addresses the problem of resilient consensuseipriesence of misbehaving nodes.
Although it is typical to assume knowledge of at least som&lawal information when studying secure
and fault-tolerant consensus algorithms, this assumggiont suitable for large-scale dynamic networks.
To remedy this, we emphasize the use of local strategiesdbwdéh resilience to security breaches.
We study a consensus protocol that uses only local infoonaind we consider worst-case security
breaches, where the compromised nodes have full knowlefitfee metwork and the intentions of the
other nodes. We provide necessary and sufficient condifemthe normal nodes to reach consensus
despite the influence of the malicious nodes under diffeti@rgat assumptions. These conditions are

stated in terms of a novel graph-theoretic property refetoeasnetwork robustness

. INTRODUCTION

The engineering community has experienced a paradigm fsbiift centralized to distributed
system design, propelled by advances in networking andclast- high performance embedded
systems. In particular, this has led to significant interasthe design and analysis ofulti-

agent networksA multi-agent network consists of a set of individuals edlagents or nodes
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equipped with some means of sensing or communicating aldtig a@mputational resources
and possibly actuation. Through a medium, which is refetoeals thenetwork the agents share
information in order to achieve specifigcoup objectivesSome examples of group objectives in-
clude consensus [22], [26], synchronization [6], [27],v&iltance [5], and formation control [9].
In order for the group objectives to be achievddstributed algorithmsare used to coordinate
the behavior of the agents.

There are several advantages to using multiple agents osergke one. First, the objective
may be complex and challenging, or possibly even infeadilmea single agent to achieve.
Second, employing many agents can provide robustness ioag® of failures or faults. Third,
networked multi-agent systems are flexible and can suppodnfigurability. Finally, there are
performance advantages that can be leveraged from mudiggets. For example, in surveillance
and monitoring applications, a multi-agent network pregdedundancy and increased fidelity
of information [5], [14].

Along with the advantages come certain challenges. Pethapaost fundamental challenge in
the design of networked multi-agent systems is the regtndhat the coordination algorithms
use onlylocal information i.e., information obtained by the individual agent thrbusensor
measurements, calculations, or communication with neghin the network. In this manner,
the feedback control laws must léstributed

A second challenge lies in the fact that not only is each aggntally a dynamical system,
but the network itself is dynamic. This challenge arisesabge the agents may be mobile and
the environment may be changing, thus giving rise to dyngicswitching) networks. Since
the distributed algorithms depend directly on the netwdhis additional source of dynamics
can affect the stability and performance of the networkestesy.

An especially important challenge is that multi-agent roets, like all large-scale distributed
systems, have many entry points for malicious attacks ousians. For the success of the group
objective, it is important that the cooperative controlaaithms are designed in such a way that
they can withstand the compromise of a subset of the nodestdhguarantee some notion of
correct behavior at a minimum level of performan®¥e refer to such a multi-agent network
as beingresilient to adversaries. Given the growing threat of malicious &Haa large-scale
cyber-physical systems, this is an important and challepgroblem [4].

One of the most fundamental group objectives is to reachermus on a quantity of interest.



This concept is deeply intuitive, yet imprecise. Hence reéhare several variations on how
consensus problems are defined. At one extreme, consengusernaconstrainedand there is
no restriction on the agreement quantity. In other casesseartsus may bpartially constrained
by some rule or prescribed to lie in a set of possible agreenadnes which are in some way
reasonable to the problem at hand. At the other extremegosns may bé&unction constrained
or y-constrained, in which case the consensus value mustysatigfrticular function of the
initial values of the nodes [7], [28]. In all of these caséss important that consensus algorithms
be resilient to various forms of uncertainty, whether the source of uadely is caused by
implementation effects, faults, or security breaches.

The problem of reaching consensus resiliently in the pmwsesf misbehaving nodes has
been studied in distributed computing [15], [20], commatien networks [11], and mobile
robotics [1], [3], [8]. Among other things, it has been shaat givenF' Byzantine or malicious
nodes, there exists a strategy for the misbehaving nodesstoptl consensus if the network
connectivity is 2F or less. Conversely, if the network connectivity is at leaBt+ 1, then there
exists strategies for theormal nodes to use that ensure consensus is reached [20], [23], [29
However, these methods either require that normal nodesditdeast some nonlocal information
or assume that the network @gmplete i.e., all-to-all communication or sensing [1], [3], [8],
[15], [16]. Moreover, these algorithms tend to be compautally expensive. Therefore, there is
a need for resilient consensus algorithms thatlawe complexityand operate using only local
information

Typically, an upper bound on the number of faults or threatthe network is assumed, i.e.,
at mostF out of n nodes fail or are compromised. We refer to tthissat assumptionor scope
of threat as theF'-total model In cases where it is preferable to make global assumptions
we are interested in other threat assumptions that arél\siocal. For example, whenever each
node only assumes that at mdstnodes in itsneighborhoodare compromised (but there is no
other bound on the total number of compromised nodes), thpesof threat isF'-local.

In addition to thenumberof misbehaving nodes, one can consider varitreat models

for the misbehaving nodes; examples incluae-colluding[23], malicious[16], [23], [29], or

1The network connectivity is defined as the smaller of the taltofving values: (i) the size of a minimal vertex cut and (ii)

n — 1, wheren is the number of nodes in the network.



Byzantind1], [15], [18], [32] nodes. Non-colluding nodes are unagvaf the network topology,
which other nodes are misbehaving, or the states of norithergng nodes. On the other hand,
malicious nodes have full knowledge of the networked systaththerefore, worst case behavior
must be assumed. The only difference between malicious azdrBine nodes lies in their
capacity for deceit. Malicious nodes are unable to convdferéint information to different
neighbors in the network, whereas Byzantine nodes can.

Recently, we have studied resilient algorithms in the preseof misbehaving nodes. In [16],
we introduce the Adversarial Robust Consensus ProtocoC&RRfor consensus in the presence
of malicious agents under the-total model in continuous-time complete networks, witle th
agents also modeled in continuous time. The results of [f&atended to both malicious and
Byzantine threat models in networks with constrained imiation flow and dynamic network
topology in [18]. In [34], we study general distributed algioms with F-local malicious adver-
saries, encompassing ARC-P. In [18], [34], we show thatiticathl graph theoretic properties
such as connectivity and degree, which have played a vitalinocharacterizing the resilience
of distributed algorithms (see [20], [29]), are no longeea@uate when the agents make purely
local decisions (i.e., without knowing nonlocal aspectshef network topology). Instead, in [34]
we introduce a novel topological property, referred tanasvork robustnessand show that this
concept is highly effective at characterizing the abilifypurely local algorithms to succeed.
Separate sufficient and necessary conditions are providi&#] for ARC-P to achieve resilient
consensus in discrete time, and it is shown that the prefatemttachment mechanism for
generating complex networks produces robust graphs.

In this paper, we continue our study of resilient consensushe presence of malicious
nodes while using only local information. We are interestegartially constrained, asymptotic
consensus in dynamic networks. To allow for multiple intetations of the results, we formulate
the problem in a setting common to discrete and continuane for node dynamics and time-
invariant or time-varying network topologies. We extene tAdversarial Robust Consensus
Protocol (ARC-P) introduced in [16] to weighted networkse \tthen describe robust network
topologies that are rich enough to enable resilience toawals nodes, but are not too restrictive
in terms of communication cost (i.e., number of communaratinks); in particular, we gener-
alize the robustness property of [34]. Given these topcokigiroperties, we fully characterize

the consensus behavior of the normal nodes using ARC-P uheét-total model of malicious



nodes, and provide, for the first time, a necessary and sirfficdondition for the algorithm to
succeed. Additionally, for thé'-local threat model, we provide improved separate necgssat
sufficient conditions for asymptotic agreement of the ndmuaales in the presence of malicious
nodes.

The rest of the paper is organized as follows. Section lbohiices the problem in a framework
common to discrete and continuous time. Section Il pres@RC-P in the unified framework.
Section IV motivates the need for robust network topologras introduces the formal definitions.
The main results are given in Section V. A simulation exangpf@esented in Section VI. Finally,

some discussion is given in Section VII.

Il. PROBLEM FORMULATION

Consider a time-varying network modeled by the (finite, dahplirected graph or digraph,
Dlt] = {V,&[t]}, whereV = {1, ...,n} is thenode seand&|[t] C V xV is thedirected edge seit
timet. The nodes are assumed to have unique identifiers that footalbytordered sef. Without
loss of generality; the node set is partitioned into a set/fnormal nodes\V = {1,2,..., N}
and a set ofd adversary nodesA = {N + 1,N +2,...,n}, with A =n — N. Let ', denote
the set of all digraphs on nodes, which is of course a finite set. Note tt] < I',, for all
t, wheret € R, for continuous time and € Z-, for discrete time. When we wish to refer to
both discrete and continuous time, we generically aatimet.

The time-varying topology of the network is governed by acpigise constant switching
signalo(-), which is defined orZ, for discrete time and-, for continuous time, and takes
values inT’,. In order to emphasize the role of the switching signal, weotieD, ) = D]t].
Let {7}, k € Z>, denote the set of switching instances. For continuous timeeassume that
there exists some constantc R., such thatr;; — 7, > 7 for all £ > 0. In other wordsg(-)
is subject to thedwell timer.

Each directed edggj,i) € £[t] modelsinformation flowand indicates that nodecan be
influenced by (or receive information from) nogdeat time¢. The set ofin-neighbors or just
neighbors of node: at timet is defined as/;[t] = {j € V: (j,4) € £[t]} and the (in-)degree of
i is denotedd;[t] =|V;[t]|. Likewise, the set obut-neighborsof nodei at timet is defined as

There exists a bijection frorf to V = A U A.



VUt = {j € V: (i,5) € £[t]}. Because each node has access to its own state at,timeealso
consider thenclusive neighbor®f nodei, denoted”;[t] = V;[t] U {i}. Note that time-invariant

networks are represented simply by dropping the dependamd¢ene.

A. Update Model

Suppose that each nodec V begins with some private value;[0] € R (representing a
measurement, opinion, vote, etc.), which evolves over.tioeex [t] = [z1[t], 22[t], ..., ox[t]"
andz 4[t] = [xni1[t], znaa(t], .. ., ,[t]]T denote collectively the value (or sté}drajectories of
the normal and adversary nodes, respectively, and[tet= [z }/[¢], z)[t]]T. The nodes interact
synchronously by conveying their value to (out-)neighborshe network. Each normal node

updates its value over time according to a prescribed rutegiwis modeled as
D [xl[t“ = fi,U(t) (twr./\/u .Z’_A), 1€ N; Do(t) S Fna

where D [z;[t]] = ;[t] is thederivative operatorfor continuous time and [z;[t]] = x;[t + 1] —
x;[t] is theforward difference operatofor discrete time. Collectively, we define the system of

normal nodes by
Dlan[t] = fowy(t,zn, 24), xx[0] € RY, Dy € T, (1)

where f,)(-) = [fi.00():-- -, fvow(-)]T. Each of the functionsf; . (-) can be arbitrary,
and may be different for each node, depending on its role ennétwork. These functions are
designeda priori so that the normal nodes reach consensus. However, some abtles may
not follow the prescribed strategy if they are compromisgdab adversary. Such misbehaving
nodes threaten the group objective, and it is important &igiethe f; . (-)’s in such a way
that the influence of such nodes can be eliminated or redudtebwi prior knowledge about

their identities.

B. Threat Model

Definition 1: A nodek € A is said to bemalicious if

3Throughout this paper we refer to a node’s value and stagecinangeably.

“*In continuous time f, 1) (-) must satisfy appropriate assumptions to ensure existenselutions.



« it is not normal (i.e., it does not follow the prescribed uggdanodel either for at least
one time-step in discrete time, or for some time interval ofizero Lebesgue measure in
continuous time);

. it conveys the same value,[t], to each out-neighbor;

« (for continuous-time systems) its value trajectaryjt| V¢, is a uniformly continuous func-
tion of time on|0, o).

A few remarks are in order concerning malicious nodes. Faé@th malicious node is allowed
to be omniscient (i.e., it knows all other values and the ffieffwork topology; it is aware of the
update rulesf; ,)(-), Vi € N; it knows which other nodes are adversaries; and it knows the
plans of the other adversaries). The statement in the definihat the malicious nodes are not
normal is intended to capture the idea that they do not ap@yptescribed update rule for all
time. The second assumption is intended as an assertioneametivork realization. That is, if
the network is realized through sensing or broadcast conuation, it is assumed that the out-
neighbors receive the same information. The third point technical assumption that applies
only to malicious nodes modeled in continuous time. Limitedy by these assumptions, the

malicious nodes are otherwise allowed to operate in anrarpifpotentially worst case) manner.

C. Scope of Threats

While there are various stochastic models that could be wtgefdrmalize the threat as-
sumptions, here we use a deterministic approach and congiger bounds on the number of
compromised nodes either in the network-fotal) or in each node’s neighborhoofi{ocal).

Definition 2 (F-total set): A setS C V is F-total if it contains at mostF' nodes in the
network, i.e.,|S| < F, F € Zxy.

Definition 3 (F-local set): A setS C V is F-local if it contains at mostF' nodes in the
neighborhood of the other nodes for alli.e., |V;[t](S| < F,Vi € V\'S, F € Z>y.

It should be noted that because the network topology maynee-varying, the local properties
defining anF'-local set must hold at all time instances. These definitfangitate the definitions
of the scope of threat models.

Definition 4: A set of adversary nodes i8-totally bounded or F-locally bounded if it is
an F'-total set orF-local set, respectively. We refer to these threat scopebes’-total and

F-local models, respectively.



Note that whenever the set df adversary nodegl is F-totally bounded, we knowid < F.
On the other hand i is F-locally bounded, it is possible that > F'. Indeed, there is no upper
bound for F-locally boundedA since it is feasible that many adversaries may not be neirghbo
with any of the normal nodes over time. As a matter of terndgg) we will refer to the threat
model consisting off’-totally (or F-locally) bounded malicious nodes as tRetotal malicious
model (or F-local malicious model). The -total fault model has been studied in distributed
computing [15], [20], [32] and mobile robotics [1], [3], [8pr both stopping (or crash) failures
and Byzantine failures. Thé&-local fault model has been studied in the context of Byzemnti

fault-tolerant broadcasting [12], [24].

D. Resilient Asymptotic Consensus

Given the threat model and scope of threats, we formally deégilient asymptotic consensus.
Let M[t] and mt] be the maximumand minimum values of the normal nodes at tinte
respectively.

Definition 5 (Resilient Asymptotic Consensd$)e normal nodes are said to achieesilient
asymptotic consensus in the presence ofa) F-totally bounded, or(b) F-locally bounded
misbehaving nodes if

« L € R such thatlim, .., z;[t| = L for all « € N/, and

« [m[0], M[0]] is an invariant set (i.e., the normal values remain in theria for all ),
for any choice of initial values. Whenever the scope of thigainderstood, we simply say that
the normal nodes readmsymptotic consensus.

The resilient asymptotic consensus problem has three taqmtoconditions. First, the normal
nodes must reach asymptotic consensus in the presence lhaisng nodes given a particular
threat model (e.g., malicious) and scope of threat (é.gqtal). This is a condition oagreement
Additionally, it is required that the interval containingetinitial values of the normal nodes is an
invariant set for the normal nodes; this isafetycondition. This safety condition is important
when the current estimate of the consensus value is used afiety ritical process and the
interval [m[0], M[0]] is known to be safe. The agreement and safety conditions) whbined,
imply a third condition orvalidity: the consensus quantity that the values of the normal nodes

converge to must lie within the range of initial values of timmal nodes.



The validity condition is reasonable in applications whary value in the range of initial
values of normal nodes is acceptable to select as the carsgakie. For instance, consider a
large sensor network where every sensor takes a measuremenenvironment, captured as a
real number. Suppose that at the time of measurement, alésvdhken by correct sensors fall
within a range[a, b], and that all sensors are required to come to an agreementcomion
measurement value. If the range of measurements taken byadimeal sensors is relatively
small, it will likely be the case that reaching agreement omalue within that range will
form a reasonable estimate of the measurements taken byerabis. However, if a set of
malicious nodes is capable of biasing the consensus valsalelof this range, the error in the
measurements could be arbitrarily large.

More generally, suppose the nodes are trying to distriblytiminimize > h;(0), where each
of the h;’s is a local convex function and is the optimization variable. If the initial value of
each node represents the value @fthat minimizesh;, a convex combination of these initial
values will represent an estimate of the optiMalwithin some bounded error. On the other
hand, if an adversary is capable of biasing the consensue \abitrarily, the resulting value
of the objective function will also be arbitrarily far awayom its minimum value. One can
formulate similar motivating examples for the validity cbion in other applications as well;
for instance, a swarm of robots that are trying to flock shawtbe pulled in arbitrary directions

by a malicious agent in the network.

1. CONSENSUS ALGORITHM

Linear consensus algorithms have attracted significaatast in recent years [22], [26], due
to their applicability in a variety of contexts. In such ségies, at timeg, each node senses or
receives information from its neighbors, and changes itlsevaccording to

Dlai[t] = Y wiltle;[t]. (2)
JeTilt]
wherew;;[t] is the weight assigned to nodés value by node at timet.
Different conditions have been reported in the literatweshsure asymptotic consensus is

reached [13], [21], [25], [31], [33]. In discrete time, it ®@mmon to assume that there exists a



constanto € R, 0 < a < 1 such that all of the following conditions hofd:

« w;;[t] =0 wheneverj € Ji[t],i € N, t € Z>o;

o wiylt] > a, V5 e Vilt],i € N, t € Zso;

o« wylt] > a—1,Vi e N, t € Zso;

o Yo wilt] =0,Vie N, t € Zso.

In continuous time there are similar conditions, excepthis tase the self-weights are given
by

walt] = — Y wylt], Vi€ NVt € Ry,

JeVilt]
In this case, the weights must be piecewise continuous aifdronly bounded. That is, there
exists € R.o, 8 > «, such thatw;;[t] < j, for all i, j € N andt € Rx(. Similar to the discrete
time case, the weights;;[t] are zero precisely whenevérg 7;[t|, and bounded below by
otherwise. Together, these conditions imply the analogubefourth condition above.

Given these conditions, a necessary and sufficient conditioreaching asymptotic consensus
in time-invariant networks is that the digraph hasoated out-branchingalso called aooted
directed spanning tref26]. The case of dynamic networks is not quite as straigimdiod. In this
case, under the conditions stated above, a sufficient ¢gonddr reaching asymptotic consensus
is that there exists a uniformly bounded sequence of cootiguime intervals such that the
union of digraphs across each interval has a rooted outhnag [25]. Recently, a more general
condition referred to as thanfinite flow propertyhas been shown to be both necessary and
sufficient for asymptotic consensus for a class of disdiate-stochastic models [30]. Finally,
the lower bound on the weights is needed because there arpksaof asymptotically vanishing
weights in which consensus is not reached [19].

In general, the problem of selecting the best weights initheal update rule (2) is nontrivial,
and the choice affects the rate of consensus. The problenelettig the optimal weights
(with respect to the speed of the consensus process) initvagant, discrete-time, bidirectional
networks is addressed in [33] by formulating a semidefinitgpam (SDP). However, this SDP is

solved at design time with global knowledge of the netwopology. A simple choice of weights

>The conditions on the weights are modified from what is reqbiin the literature to account for the forward difference
operator. Accounting for this, the updated value of eacheriedormed as a convex combination of the neighboring vaunes

its own value.



for discrete-time systems that requires only local infaiorais to letw;;[t] = 1/(1 + d,[t]) for
J € V[t] andw;;[t] = —d;[t]/(1 + d;[t]). In continuous time, a simple choice is to lef; = 1
for j € V;[t] andw;;[t] = —d;[t].

One problem with the linear update given in (2) is that it ig nesilient to misbehaving
nodes. In fact, it was shown in [10], [13] that a single ‘leadeode can cause all agents
to reach consensus on an arbitrary value of its choosingiftiatly resulting in a dangerous
situation in physical systems).

The Adversarial Robust Consensus Protocol (ARC-P) adelsebss vulnerability of the linear
update of (2) by a simple modification. Instead of trustingrgweighbor by using every value
in the update, the normal node first removes the extreme ¥&lam consideration in the update
by effectively setting their weights (temporarily) to zetbis be shown in subsequent sections

that this simple strategy provides resilience againstcitals nodes in robust networks.

A. Description of ARC-P

At time ¢, each normal nodéobtains the values of other nodes in its neighborhood. Attmos
F of nodei’s neighbors may be malicious; however, nads unsure of which neighbors may be
compromised. To ensure that nodapdates its value in a safe manner, it removes the extreme

values with respect to its own value according to the follayvprotocol.

1) At time ¢, each normal nodeé obtains the values of its neighbors, and forms a sorted list.
2) If there are less thaf' values strictly larger than its own value;[t], then normal nodeé
removes all values that are strictly larger than its own.eDilise, it removes precisely the
largestF’ values in the sorted list (breaking ties in a deterministanmer; e.g., by keeping
the values of the nodes with the smaller unique identifiers)irLikewise, if there are less
than I’ values strictly smaller than its own value, then nademoves all values that are
strictly smaller than its own. Otherwise, it removes prelsighe smallest’ values.
3) Let R;[t] denote the set of nodes whose values were removed by normal nio step 2
at timet. Each normal nodé applies the update
Dzt = ) wyltlal], ®3)
JET\R[]

where the weightsu;;[t] satisfy the conditions stated above, but wifit| replaced by



Ji[t] \ Rs[t].6 Note that if all neighboring values are removed, thejx;[t]] = 0.

As a matter of terminology, we refer to the bound on the nunabdarger or smaller values
that could be thrown away as tlparameterof the algorithm. Above, the parameter of ARC-P
under theF-local and F’-total models isF'.

Observe that the set of nodes removed by normal node;[t], is possibly time-varying.
Hence, even though the underlying network topology may bedfiARC-P effectively induces
switching behavior, and can be viewed as the linear upda(8)a#ith a specific rule for state-

dependent switching (the rule given in step 2).

B. ARC-P in Continuous Time

The previous section outlined the steps taken in ARC-P t@mventhe influence of nodes with
extreme values. In order to analyze (1) for existence andquemess of solutions in continuous
time, it is useful to express ARC-P as a composition of flomgi For this, we require the
following definitions.

Definition 6: Let k € N and I’ € Z~,. Denote the elements of vectafsw, z € R* by &, w;,
and z;, respectively, foi = 1,2,..., k. Then:

(i) The (ascending¥orting function on k elementsp,: R — R, is defined byé = pi(2)

such that¢ is a permutation ot which satisfies
<< <G (4)

(i) The weighted zero-selective reduce function with respect toF’ andk, rf; - R¥ xRF — R,
is defined by (5), wheré-,(a) and 1-o(«) are indicator functions, and the weights are
uniformly bounded by < o < w; < 3, VI.

(i) The composition of the sorting and weighted zero-stle reduce functions with respect
to F andk is defined bygh.: R¥ x R¥ — R, which is defined for alk € R* andw € R*
such that) < o < w; < 8 by

(2, w) =15 p(pr(2), w).

®In this case, a simple choice for the weights in discrete it let w;;[t] = 1/(1 + d;[t] — |Rs[t]]) for 5 € Vi[t] and
wii[t] = (|Ralt]] — dilt]) /(1 + di[t] — |Ri[t]])- In continuous time, letv;; = 1 for j € Vi[t] andwy;[t] = |Ri[t]| — dilt].



S wilso(z)z + g Wiz + gy wil<o(z)z k> 2F;
rop(zw) = 9 S wlso(z)z + b wil<o(2)x F<k<2r; ()

0 k<%

Then, the update rule of ARC-P for each normal nedeN for ¢ € R, is given by

Frow (t o, wa) = S5 (L[t (@lt] — zilt]1a), wilt]) | (6)

in which z[t] = [z}/[t], 2 [t]]T € R™ and1, € R" is the vector of ones. The time-varying weight
vector

wilt] = [wis, (1[t], Wiy [t], - - -, Wiig (] ),

satisfies the bound < a < wy,y < B forall j =1,2,...,d[t], wherei,[t],ist], ... iqt] are
the node indices of the neighbors of nod& the order determined by the sorting function at
time t (i.e., according to (4) such that the weights match the spording neighbor). Finally,
Ji[t] € RU@l)=m js a sparse matrix with each row corresponding to a distjinet V;[t] such
that each row has a singlein the j-th column. Thus, there is a one-to-one correspondence
betweenj € V;[t] and rows inJ;[t]. These terms are defined so that (6) is equivalent to (3) for
all t € Rs.

1) Existence and Uniqueness of Solutioss a first step toward showing existence and
uniqueness of solutions, we show that (6) satisfies a Lipsdaindition for alli € V.

Definition 7: Let || - || denote any norm defined on a Euclidean space, and(tet;, u),
g: RxR™x RP — R?, be a piecewise continuous functiontimnd . Theng satisfies gglobal
Lipschitz conditiorwith Lipschitz constant. if the following condition holds for alk, y € R",
teR:

Theorem 1:The functionf, ) (t, zar, z.4) = fo@) (t, z) that defines the dynamics of the normal
nodes, withf; ,;(-) defined in (6), satisfies a global Lipschitz conditionzig and x.
Proof: Because the weights are piecewise continuous and the swgtstgnal is piecewise

constant, it follows thatf, (¢, z) is piecewise continuous ih We first show thatf, (¢, z)



satisfies a Lipschitz condition im by showing that the component functiofis, (¢, z) do. For
this, fixt € R, F' € Z>, d;[t] = k, andw;[t] = w. The argument t@%.(-, w) is linear and the
sorting function is Lipschitz, as shown in [16]. Hence, alite is to show is that the weighted
zero-selective reduce function with respectKoand & is Lipschitz. Fix z,y € R*. The key

observation is that

Iso(z)z — 1so(y)u < |z — wil,

for eachl = 1,2, ..., k, which is trivial to show by checking the four cases depegdin the

signs ofz; andy;. Sincel < a < w; < g, it follows that

wilso(z)z —wilso(y)u < Bla — uil,

Likewise, the inequality holds when the indicator functien < (-) instead ofl>((-). Combining
this with the triangle inequality, it is straightforward &how using the Manhattan norm that
rg,F is Lipschitz with Lipschitz constant. Finally, we showf, (¢, zr, z.4) satisfies a Lipschitz
condition inz .. Fix y,z € RY and note that the malicious nodes’ trajectories are unifprm
continuous in time by assumption (and thereffiyg (¢, zr, 1) is piecewise continuous in time).

Since, there exists a global Lipschitz constant#pdenotedl, we know

||fcr(t) (tv Y, .Z’A) - fcr(t) <t7 z, .Z’_A)H

<cl|| 7| -]~ ‘ = Llly — ||
T A T A
[

Since we assume thaft) is piecewise constant,, is piecewise continuous (in fact we assume
it is uniformly continuous o0, c0)), and the weights are piecewise continuous, it follows that
fow (t,zar, x.4) defined by (1) with component functions given in (6) is pieisavcontinuous
in t. Theorem 1 shows that,; () is Lipschitz inz,. We show next in Lemma 1 that,(-)
is bounded by the current normal valueg|t] for ¢t € Rs,. From these facts, we conclude the
local existence and uniqueness of solutions of (6) fori @l N. Then, we show in Lemma 2
that any solution is confined to a compact set, from which weckame global existence and
uniqueness of solutions of (6) for alle .

Lemma 1:Consider the normal nodes N with continuous dynamics executing ARC-P with

parameterr’ € Z-, and assume there are at méstdversary nodes in its neighborhood at time



t. Then, for eacht € R
B(mt] — z[t]) < fiow (@, za) < B(M[t] — z;t]),

where B = f(n — F' — 1), m[t] = min;jea{x;[t]}, and M [t] = maxyepn{zs[t]}.

Proof: If d,[t] < F, or if F' < d,[t] < 2F and there are at mog$t neighbors with larger and
smaller values tham;[t], then f; ;i (¢, zar,2.4) = 0, and the result follows. Therefore, assume
d;[t] > F and at least one value not equal &gt is used in the update at timg say z;[t].
Supposer;[t] > M]t]. Then, by definitionj must be an adversary and|t] > z;[t|. Since: uses
x;[t] at timet, there must be at leagt more nodes in the neighborhood:ofvith values at least
as large ag;[t]. Hence, these nodes must also be adversaries, which cotdgrdte assumption
of at most/” adversary nodes in the neighborhood: @it timet. Thus,x;[t] < M[t]. Similarly,
we can show that;[t] > m]t]. By combining the fact that there are at mast 1 neighbors of
i, at leastF values will be removed (sincg[t] > F), andw;;[t] < /5 for all j € V;[t], it follows

that

B(mlt] — z;[t]) < > wi[t](a5[t] — wilt) < B(M[t] — ai[t]).
JEVi[t\R;[t]

[

Observe that Lemma 1 holds under both fii¢otal and/’-local models, and bound§, ;) (-)
as a function of the total number of nodesthe upper bound on the number of adversaries
in the neighborhood of any normal nodé and the current state of the normal node values
xxr[t]. The next result shows that for any solution of (1), the hgpbe?#,, which is given by
[m[0], M[0]]", is arobustly positively invariant sefdefined as follows).

Definition 8: The setS c RY is robustly positively invariant for the system given by (1)
if for all zx/[0] € S, z4[t] € R4, any solution satisfies,[t] € S for all t > 0.

Lemma 2:Suppose the normal nodes M have continuous dynamics and use ARC-P with
parameterF’ € Z-, under theF-local or F-total malicious model. Then, the hypercubg =
[m[0], M[0]] defined by

Ho={y € RV : m[0] <y; < M[0], i =1,2,...,N},

is robustly positively invariant for the system of normaldes.
Proof: SinceH, is compact and any solution of (1) using (6) is continuoushwit [0] €

Ho, we must show thaf, . (-) is not directed outside o¥,, wheneverz, [t] € 0H,, for all



D,y € I'y, and all allowable trajectories af4. The boundary oft, is given by
OHo ={y € Ho: Fi € {1,2,...,N} s.t.y; € {m]0], M[0]}}.

Now, fix zx € OH, for somet € R-,. Let e; denote thej-th canonical basis vector and

denoteZy min, Zy.max C {1,2,..., N} as the sets defined by
J € Inmin < z; =m[0] andk € Ly max < x, = M]0].
Then, from the geometry of the hypercube, we require

el foy(t, an, 4) =0 V) € Ty min,

e—klz—fo(t) (tu TN, xA) <0 Vke IN,max-

These conditions are true for @, € I';and x4 under theF-local or F'-total models by
Lemma 1, in which the lower bound is used fpre Zy min (Sincez; = m[0]), and the upper
bound is used fok € Zy max (Sincex;, = M|0]). [ |

The argument made in Lemma 1 implies that any time an adwersader the F'-total or
F-local model is outside of; = [m][t], M[t]], its influence is guaranteed to be removed by its
normal neighbors, and therefore has the same effect as gn¢ wn the boundary df;. Using
Lemma 2 we conclud&,; C 7Z,, ¥Vt > 0. Hence, each adversary is effectively restricted to the
compact sefl,, with respect to (1). This fact enables us to allow adverstajes inR“ rather
than explicitly restricting them to a compact set, whildl gnsuring existence and unigueness
of solutions.

Corollary 1: Given the choice of bounded, piecewise continuous, tintgivg weights, piece-
wise constant switching signal, and adversaries (i.e e@dvy value trajectories) that satisfy the
F-local or F'-total malicious model, the system of normal nodes define@Lpywvith component

functions given in (6) has a unique solution for al> 0 and for anyz[0] € RY.

[V. ROBUST NETWORK TOPOLOGIES
A. Network Robustness

In this section, we introduceobust network topologiethat satisfy certain graph theoretic
properties, which we refer to generically astwork robustnesdNetwork robustness formalizes

the notion of sufficient redundancy of information flow to sats of a network in a single



Fig. 1. Example of &-connected graph satisfying Prop. 1 wheneles 2.

hop. Therefore, this property holds promise to be effedtrethe study of resilient distributed
algorithms that use only local information. In contrastiwmk connectivity formalizes the
notion of sufficient redundancy of information flow acrose thetwork through independent
paths. Due to the fact that each independent path may includéple intermediate nodes,
network connectivity is well-suited for studying resiltetistributed algorithms that assume such
nonlocal information is available (for example, by exglicrelaying information across multiple
hops in the network [20], or by ‘inverting’ the dynamics orethetwork to recover the needed
information [23], [29]). However, network connectivity i longer an appropriate metric for
an algorithm that uses purely local information, such as ARThis is demonstrated by the
following proposition [34].

Proposition 1: There exists a graph with connectivity= |5 | 4+ F'—1 in which ARC-P does
not ensure asymptotic consensus.

Figure 1 illustrates an example of this kind of graph with= 9, F' = 2, andx = 5. In
this graph, there are two cliques (complete subgrapks}: K, andY = K5, where K, is
the complete graph on nodes. Each node iX has exactly/' = 2 neighbors inY’, and all
but two nodes inY” have F' = 2 neighbors inX (nodes 5 and 9 have only one neighbor in
X, because otherwise a node ¥ would have more that” = 2 neighbors inY). One can
see that if the initial values of nodes Ik andY area € R andb € R, respectively, with
a # b, then asymptotic consensus is not achieved whenever ARQCJBed with parametdr —
even in the absence of misbehaving nodes. This is becausenede views the values of it8

neighbors from the opposing set as extreme, and remove$ tese values from its list. The



only remaining values for each node are from its own set, &nd ho node ever changes its
value.

The situation can be even worse in the more general case i@ptig. Examples of digraphs
are illustrated in [18] that ar¢n — 1)-connected and have minimum out-degree- 2, yet
ARC-P still cannot guarantee asymptotic consensus. Tives, @igraphs with a relatively large
connectivity (or minimum out-degree) are not sufficient teagantee consensus of the normal
nodes, indicating the inadequacy of these traditionalicteto analyze the convergence properties
of ARC-P. Taking a closer look at the graph in Fig. 1, we see tha reason for the failure
of consensus is that no node has enough neighbors in theitgpes this causes every node
to throw away all useful information from outside of its sehd prevents consensus. Based on
this intuition, the following properties, i.er-reachable sets androbustness, were introduced
in [34].

Definition 9 (-reachable set):Given a digraphD and a nonempty subsét of nodes ofD,
we says is anr-reachable set if 3i € S such that|V; \ S| > r, wherer € Zx,.

A set S is r-reachable if it contains a node that has at leaseighbors outside of. The
parameterr quantifies the redundancy of information flow from nodes idetf S to some
node insideS. Intuitively, the r-reachability property captures the idea that some noddens
the set is influenced by a sufficiently large number of nodemfoutside the set. The above
reachability property pertains to a given g&tin order to generalize this notion of redundancy
to the entire network, we introduce the following definitiohr-robustness.

Definition 10 ¢-robustness):A nonempty, nontrivial digrap® = {V,£} onn nodes { > 2)
is r-robust, with r € Z, if for every pair of nonempty, disjoint subsets Bf at least one of
the subsets is-reachable. By convention, ¥ is empty or trivial (¢ < 1), thenD is 0-robust.
The trivial graph is also 1-robust.

The reason that pairs of nonempty, disjoint subsets of nadesonsidered in the definition
of r-robustness can be seen in the example of Fig. 1. If eithar Y were 3-reachable { =
F+1 = 3), then at least one node would be sufficiently influenced bgderoutside of its set in
order to drive it away from the values of its group, and thgrelad its group to the values of the
other set. However, if there are misbehaving nodes in thearkt then the situation becomes
more complex. For example, consider tRetotal model of malicious nodes, and consider two

setsX andY in the graph. Lets be the total number of nodes in these two sets that each have



at leastF' + 1 neighbors outside their own set. 4f< F', then simply by choosing these nodes
to be malicious, the set¥ andY contain no normal nodes that bring in enough information
from outside, and thus the system can be prevented from irgpclonsensus. This reasoning
suggests a need to specify a minimum number of nodes thatuffieiently influenced from
outside of their set (in this example, at led@st- 1 nodes). This intuition leads to the following
generalizations of-reachability and--robustness.

Definition 11 (¢, s)-reachable set):Given a digraphD and a nonempty subset of nod&s
we say thatS is an(r, s)-reachable set if there are at least nodes inS with at least- neighbors
outside ofS, wherer, s € Z~o; i.e., givenXs = {i € S: |[V;\ S| > r}, then|Xs| > s.

Observe that-reachability is equivalent tor, 1)-reachability; hence(r, s)-reachability is a
strict generalization of-reachability. If a setS is (r, s)-reachable, we know there are at least
nodes inS with at leastr neighbors outside of. Thus, ifS is (r, s)-reachable, then it i§, 5')-
reachable, fors’ < s. Also, it is clear thats < |S| and all subsets of nodes of any digraph are
(r,0)-reachable. The additional specificity on the number of sodith redundant information
flow from outside of their set is useful for defining a more geh@otion of robustness.

Definition 12 (¢, s)-robustness):A nonempty, nontrivial digraplo = {V,£} on n nodes
(n > 2) is (r,s)-robust, for nonnegative integers € Z-,, 1 < s < n, if for every pair of
nonempty, disjoint subset$; andS, of V such thatS, is (r, s,.1)-reachable and, is (r, s,.2)-
reachable withs,; ands, » maximal (i.e.,s, , = |Xs,| whereXs, = {i € S;: [V, \ Sx| > r} for
k € {1,2}), then at least one of the following hold:

(i) se1 = |Sil;

(i) Sr2 = |32
(il)) 571 + 502 > 5.

By convention, ifD is empty or trivial ¢ < 1), thenD is (0,1)-robust. IfD is trivial, D is also
(1,1)-robust.

A few remarks are in order with respect to this definition. Tedinition of (-, s)-robustness
aims to capture the idea that enough nodes in every pair agmpty, disjoint setsS;, S, C V
have at least neighbors outside of their respective sets. To quantifytudheneant by “enough”
nodes, it is necessary to take the maximal for which S;, is (r, s, ;)-reachable fork € {1, 2}
(since Sy, is (r, s, ,)-reachable fors, , < s,). Sinces, = |Xs,|, condition (i) or (ii) means

thatall nodes inS, have at least neighbors outside af;,. Given a pairS;, S, C V such that



Fig. 2. A 3-robust graph that isot (3,2)-robust.

0 < |S1] <randS; =V \ S, there can be no more thaf; | nodes with at least neighbors
outside of their set. Hence, conditioii§ and (i7) quantify the maximum number of nodes
with at leastr neighbors outside of their set for such pairs, and must therebe “enough”.
Alternatively, if there are at leastnodes with at least neighbors outside of their respective sets
in the unionS; U S,, then condition(iii) is satisfied. For such pait$;, S, C V, the parametér

1 < s < n quantifies what is meant by “enough” nodes.

An important observation is thdt, 1)-robustness is equivalent terobustness. This holds
because condition§) — (iii) for (r, 1)-robustness collapse to the condition that at least one of
S, and S, is r-reachable. In general, a digraph(is s’)-robust if it is (r, s)-robust fors’ < s;
therefore, a digraph is-robust whenever it i$r, s)-robust. The converse, however, is not true.
Consider the graph in Fig. 2. This graph3sobust, but is not3, 2)-robust. For example, let
S ={1,3,5,6,7} and S, = {2,4}. Thus, only node 2 has at least 3 nodes outside of its set,
so all of the conditiongi) — (éi7) fail. Therefore,(r, s)-robustness is a strict generalization of
r-robustness.

Next, consider again the example of Fig. 1. It can be shownttiia graph is(2, s)-robust,
for all 1 < s <n = 8. This follows becauseall nodes in at least one of the s&ls and S, has
at least 2 neighbors outside of their set, for any nonemptly disjoint S;, S C V. Therefore,

condition (iz7) in Definition 12 isneverneeded, and the definition is satisfied with- 2 for all

"Note thats = 0 is not allowed in (r, s)-robustness because in that case any digraph on2 nodes satisfies the definition
for any r € Z>o, which subverts the interpretation of the parameteAt the other extreme, the maximal meaningful value of

s is s = n since condition(i7) canneverbe satisfied withs > n.



valid values ofs.

On the other hand, the graph in Fig. Inist 3-robust. This can be shown by selectifig= X
and S, = Y. Note that an(r, s)-robust digraph igr’, s)-robust for’ < r. The question then
arises, how does one compare relative robustness betwgeaphis? Clearly, if digrap®; is
(r1, s1)-robust and digraptD; is (rs, so)-robust with maximal, and s, for k € {1,2}, where
ry > ry ands; > sy, then one can conclude th@; is more robust tharD,. However, in
cases where; > r, but s; < s, which digraph is more robust? For example, the graph of
Fig. 1 is @, s)-robust for all1 < s < n = 8§, but is not 3-robust, whereas the graph in Fig. 2
is 3-robust, but is not (2,5)-robust (e.g., I8t = {1,5,6} andS, = {2, 3,4}). In general, the
r-robustness property takes precedence in the partial dhdérdetermines relative robustness,
and the maximak in (r, s)-robustness is used for finer grain partial ordering (oedering the
robustness of two-robust digraphs with the same value 19f Therefore, the graph in Fig. 2
is more robust than the graph of Fig. 1. Yet, the graph of Fig &nly 3-connected, whereas
the graph of Fig. 1 is 5-connected. Hence, it is possible ahdigraph withlessconnectivity is
more robust.

We demonstrate in Section V that theobustness property is useful for analyzing ARC-P
with parameterF’ under theF-local model, and show thdt, s)-robustness is the key property
for analyzing ARC-P with parametdr under theF’-total model. More specifically, we show
that (F'+ 1, F' + 1)-robustness of the network is both necessary and suffiamdrmal nodes
using ARC-P with parameteF' to achieve resilient asymptotic consensus whenever thgesco
of threat isF’-total, the threat model is malicious, and the network isetimvariant. Likewise,
we show that2F + 1)-robustness of the network is sufficient for ARC-P with pagsenF' to

achieve resilient asymptotic consensus whenever the suiofeeat isF'-local.

B. Construction of Robust Digraphs

Note that robustness requires checking every possiblenmatyedisjoint pair of subsets of
nodes in the digraph for certain conditions. Currently, wendt have a computationally efficient
method to check whether these properties hold in arbitregnapghs. However, in [34] it is shown
that the commomreferential-attachmeninodel for complex networks (e.g., [2]) produces
robust graphs, provided that a sufficient number of linksaalged to the network as new nodes

are attached. In this subsection, we extend this construtd show that preferential-attachment



also leads tdr, s)-robust graphs.
Theorem 2:Let D = {V, £} be a nonempty, nontriviak(s)-robust digraph. Then the digraph
D ={VU{vew},EUEnew}, Wherev,,,, is a new vertex added t® and &, is the directed

>r+s—1.

Vnew —

edge set related to,.,, is (r, s)-robust if d
Proof: For any pair of nonempty, disjoint sef§ and S,, there are three cases to check:
Unew € Si s {tnew} = S; @andunew € S, @ € {1,2}. In the first case, sinc® is (r, s)-robust, the
conditions in Definition 12 must hold. In the second ca’¥g, = S;, and we are done. In the
third case, suppose, without loss of generalfty= S, U {vnew}. SinceD is (r, s)-robust, at least

one of the following conditions holdk, ; + 5., > s, 5,1 = |51

, Or 5,5 = |Sy|. If either of the
first two hold, then the corresponding conditions hold far gairS;, S, in D’. So assume only
8.5 = |Sy| holds. Then, the negation of the first conditign + s;., > s implies s, , = [Sy| < s.

Hence,

Vinew \ S2| > 1, @nds, o = |S,|, completing the proof. [

The above result indicates that to construct ars)frobust digraph withn nodes (where
n > r), we can start with anr(s)-robust digraph with relatively smaller order (such as a
complete graph), and continually add new nodes with incgneidges from at least+ s — 1
nodes in the existing digraph. Note that this method doesspetify which existing nodes
should be chosen. The preferential-attachment model sworels to the case when the nodes
are selected with a probability proportional to the numbfeedges that they already have. This
leads to the formation of so-callestale-freenetworks [2], and is cited as a plausible mechanism
for the formation of many real-world complex networks. Ttezu 2 indicates that a large class of
scale-free networks are resilient to the threat modelsediud this paper (provided the number
of edges added in each round is sufficiently large when thearktis forming).

For example, Fig. 3 illustrates &,Q)-robust graph constructed using the preferential attach-
ment model starting with the complete graph on 5 nodés(which is also (3,3)-robust and is
the only (3,2)-robust digraph on 5 nodes), and with 4 new s@gkeled to each new node. Note
that this graph is also 4-robust, which couldt be predicted from Theorem 2 sinéé; is not
4-robust. Therefore, it is actually possible (but not gotgad) to end up with anore robust

digraph than the initial one using the preferential-attaeht growth model.



Fig. 3. A (3,2)-robust graph constructed frofs using preferential attachment.

V. RESILIENT CONSENSUS RESULTS

In this section, we provide the key results showing that cieffitly robust digraphs guarantee
resilient consensus. We begin with the following resultvging that ARC-P always satisfies the
safety condition for resilient asymptotic consensus. Relat M [t] andm[t] are the maximum
and minimum values of theormal nodes at time, respectively.

Lemma 3:Suppose each normal node updates its value according toFARGER parameter
F under theF-total or F-local malicious model. Then, for each normal nade N, x;[t] €
[m[0], M[0]] for all ¢, regardless of the network topology.

Proof: The proof for discrete time is straightforward and follownedtly from the definitions
and the fact that the values {%[t] \ R;[t] used in the ARC-P update rule lie in the interval
[mlt], M[t]] and the update rule in (3) is a convex combination of theseegalFor continuous
time, we have proved this in Lemma 2. [ ]
An immediate consequence of Lemma 3 is théf] is nonincreasing with time, ang[] is
nondecreasing with time. From this, it follows that the Lyapv candidatel[t] = M[t] — m]t]
is nonincreasing with time. In the following sections, weowhthat this Lyapunov function
decreases over sufficiently large time intervals whenevernormal nodes update their values

according to ARC-P, provided the network is sufficiently usb

A. F-Total Model

Theorem 3:Consider a time-invariant network modeled by a directechlgrd = {V, £}

where each normal node updates its value according to AR@HPparameterr'. Then, resilient



asymptotic consensus is achieved under Ahtotal malicious model if and only if the network
topology is(F + 1, F' + 1)-robust.

Proof: (Necessity)lf D is not (F + 1, FF 4+ 1)-robust, then there are nonempty, disjoint
81,8, C V such that none of the conditioni$) — (ziz) hold. Suppose the initial value of each
node inS; is a and each node i, is b, with a < b. Let all other nodes have initial values
taken from the intervala, b). Sincesp.1 ;1 + sp+12 < F, suppose all nodes iAs, and Xs, are
malicious and keep their values constant. With this assegrirof adversaries, there is still at

least one normal node in bothy and S, sincespy1; < |Si| and spi12 < |So

, respectively.
Since these normal nodes remove ther less values of in-neighbors outside of their respective
sets, no consensus among normal nodes is reached.

(Sufficiency)[Continuous Time] We know from Lemma 3 that botd/[-] and m[-] are
monotone and bounded functions gf and therefore each of them has a limit, denoted by
Ay and A, respectively. Note that ifl,, = A,,, then the normal nodes will achieve resilient
asymptotic consensus. We will prove by contradiction thas must be the case. The main
idea behind the proof is to use the gap betwegn and A,, and combine this with both the
uniform continuity assumption on the malicious nodes’ ealtajectories and a careful selection
of subsets of nodes to show théft| will shrink to be smaller than the gag,, — A,, in
finite time (a contradiction). To this end, suppose tha; # A,, (note thatA,, > A,, by
definition). SinceM[t] — Aj,; monotonically, we havel/[t] > A, for all ¢ > 0. Similarly,
mlt] < A, for all t > 0. Moreover, for each > 0 there existg, > 0 such thatM/[t] < Ay +¢
andm[t] > A,, — ¢, ¥Vt > t.. Next, define constardy = (A, — A4,,)/4 > 0, which satisfies
M]t] — eg > m[t] + €o + (A — Ayn)/2. This inequality informs the choice of subsets of nodes
to be defined shortly in order to limit the influence of the mialus nodes. Indeed, since the
adversary trajectory;, is uniformly continuous ori0, o) for k& € A, it follows that for each
v > 0, there exists); () > 0 such that|z,[t1] — xx[t2]| < v whenever|t; — t5] < 0,(v). Define
6(v) = mingea{dx(v)}.

Next, we define the sets of nodes that are vital to the proafaRgt, > 0, t > ¢y, A > 0,
andn > 0, define

Xus(tto, Ag)={i € V: 3t € [t.t + A] staift] > Mlto] — n}



and
Xt to, A,m)={i € V: 3t' € [t,t + A] s.t.z;[t'] < mlto] +n}.

Observe that if we choose < ¢y = (Ay — An)/4, v < (A — An)/2, and A < 6(v), then
we are guaranteed that for any > 0 and¢ > tq, X (¢, to, A,n) N X (t, te, Ayn) N A = (.
That is, with these choices of v, andA, no malicious node can be in bo#,(¢, ¢y, A,n) and
X (t, to, A, n). This follows because otherwise there exists, € [t,t + A] andk € A such
that xy[t1] > M[to] —n andxy[t] < m[te] + 7, from which we reach the contradiction

Ay — A
wilth] — wylta] > Mto] — mto] — 21 > MT >

We proceed by showing that if we chooser, and A small enough, then no normal node
can be in bothXy,(¢,ty, A, n) and X, (¢, ty, A, n) for anyt, > 0 andt > t,. First, we require
some generic bounds on the normal node trajectories: EalV" with z;[t'] < M[t'], we know
from Lemmas 1 and 3 that far> ¢/,

wlt] = Y wylt] ([t — @lt]) < BM[E] - ait]),
JEVI\Rit]
whenever the derivative exi§tsvhereB = (n—F —1)4 is the product of the upper bound on the
weights s and the maximum number of neighboring values used that halve W/ [t] < M]|to],
n — 1 — F (since there is a maximum of — 1 neighbors,F' of which would be thrown away).

Using the integrating factor®*~*), and integrating in the sense of Lebesgue, we have

2;[t] < a;[t]e P £ M[#](1 — e BE) vt > ¢ (7)

By interchanging the roles afandt’, we have
zi[t] > x[t]ePED 4 Mt)(1 — eBEY), vt <t (8)
Similarly, we can show that fof € N with z;[t'] > m|[t'],
z,[t] > 2;[t)e B fm[t](1 — e B v > 1, (9)

and
z;[t] < a;[t)ePY0 m[t)(1 — P v <t (10)

8The solutions of the normal nodes’ trajectories are undedsin the sense of Carathéodory. Hence, it is possiblethieat

derivative of the solution does not exist on a set of pointsirite of Lebesgue measure zero.



Now fix n < ¢ = (A — An)/4, v < (Ay — A)/2, and A < min{d(v),log(3)/B}, and
suppose € N N Xy (t, to, A, n). Then3t' € [t,t + A] such thate;[t'] > M]ty] —n. Combining
this with (9), it follows that fors € [t',¢ + A],
i[s] > @i[t]e BE Lm[t](1 — e Bt
> (M[to] = m)e” "¢~ 1 mltg) (1 — e~ P71))
> (Ay —n)e BE fomitg] — A e P61

W A — A ,
mito] + (Ap — Ay )e Bt — M2 = B(s—t)

4
> mfto] + Z(AM ~ A,)e-BA
Ay — A,

> mlto] + > mlto] + 1,

4
where we have used the fact that< log(3)/B in deriving the last line. Similarly, using (8), it
follows that fors € [t, '],
i8] > x[t'1ePC Y + Ms](1 — B9y

> (M[to] = n)eP ) + M[s](1 — "))

> M[s] —ne” )

> Mls] =

> Ay — Ay — An

_AM+Am+AM—Am
a 2 4

Therefore,i ¢ X, (t,to, A, 7).



Similarly, with the given choices fon, v, and A, if j € N N X, (¢, t, A, n), then it follows
from (7) that fors € [t',t + A],

;(s) < a[t']e P ¢ MH)(1 — e BE)
< (m[to] + n)e_B(S—t’) _I_ M[to](l _ 6_B(S_t/))
S M[t(]] - (M[t(]] - m[to])e—B(S—t’) + ne—B(s—t’)

! Am — Am /
< Mto] — (Ayr — A )e BE1) M#e—B(s—t)

3
S M[to] — E(A]\/[ — Am)e_BA

Ay — A

< M[to] — = < Mlto] —n,

where we have used the fact that< log(3)/B in deriving the last line. Finally, using (10), it
follows that fors € [t,#],

zjls] < ;[P ) + ms)(1 — eP¢)
< (m[to] + n)eB(t’—S) +m[s](1 - eB(t’—s))

< m[s] + nelPt=*)

<m[s]+n
sAm+7AM4_A’”
CAut+ A, Ay - A,
a 2 4

Thus,j ¢ Xy (t,to, A,n). This shows that¥y, (¢, ty, A, n) and X, (t, to, A,n) are disjoint for
appropriate choices of the parameters.

Next, we show that by choosingsmall enough, we can define a sequence of §ets;(¢. +
At A e) ezl and { X, (t + kA te, A, ex) YeZlY, where N = [N
that by theNth step, at least one of the sets contains no normal nodeswilhbe used to show
that U has shrunk belowd,, — A,,. Toward this end, lety = (Ay — An) /4, v < (Ay — A) /2,
and A < min{é(v),log(3)/B}. Then fix

, SO that we are guaranteed

1 2N
€<y [%(1 — e PR e BA L ¢,



Fork =0,1,2,..., N, definee, = [%(1 — e 52)eP2]%*¢,, which results inep > ¢, > -+ >
en > 2¢ > 0. For brevity, defineX}, = Xy (t. + kA, to, A, e) and XX = X, (t. + kA t, A, &)
for k = 0,1,..., N. Observe that by definition, there is at least one normal ntike ones
with extremal values) int?, and X%, and we have shown above that all of thg, and X"
are disjoint. It follows from the fact that there are at mésimalicious nodes in the network
(F-total model) andD is (F + 1, F + 1)-robust, that eithedi € XY, NN or 3i € X° NN (or
both) such that has at least'+ 1 neighbors outside of its set. That is, eitlhidras at least'+ 1
neighborsiy, iy, ..., iy such thate; [t] < M|t] — ¢ for all ¢t € [t t. + A] (if i € X NN),
or z;, [t] > mlt] + ¢ for all t € [t.,t. + A] (if i € X2 N AN). Note that it can be shown that
the minimum in-degree of af/" + 1, F' + 1)-robust digraph is at leagtF" + 1. It follows from
this that; will always use at least one neighbor’s value in its updatesuie; € X, N N and
suppose that none of th8 + 1 (or more) neighbors outside of}, are used in its update at
some timet’ € [t.,t. + A] at which the derivative exists. Them;[t'| < M|ty] — ¢ (otherwise,

it would use at least one of it8 + 1 neighbors’ values outside c€,. It follows from (7) that
zifte + A] < M[t.] — ege™ B2,
Using this with (7) to upper bound;[t] for ¢ € [t. + A, t. + 2A], we see that
z[t] < M[t] — ege B2 < M[t] — €.

Therefore, in this case¢ X};. Alternatively, assume at least one of the values from itghieors

outside of XY, is used for almost alt € [t.,t. + A]. Then,

IN

Tift] < a(Mte] —eo — x;[t]) + (B — a) (M[t] — x4[t])
< —Bux;[t] + BM[t.] — aeo,
for almost allt € [t,t. + A]. Using this, we can show

zilte + A < aftJe P4 + (M[t] — 22)(1 — e 54)

< Mt] — 2(1—e P%)e.



Using this with (7) to upper bound;[t] for ¢ € [t + A,t. + 2A], we see that for alk €
[te + At + 24],

zilt] < Mt — &(1 — e7BA)e~Bli—t=a)g,

< Mt ] — %(1—e P2)e PRe

Thus, in either casé¢ X),. The final step is to show that¢ X! whenever; is a normal node
with j ¢ X°. Sincej ¢ X2, it means that:;[t. + A] > mlt.] + €. Using this with (9) to lower
boundz;[t] for t € [t. + A, t. + 2A], we see that

z;[t] > mlt] + e B > mit] + €.

Hence,; is also not inX!, as claimed. Therefore, ife XY, NN has at leas¥ + 1 neighbors
outside of its set, we are guaranteed thet, N N| < |X), NN| and |[XL NN < |[X° NN
Using a similar argument, we can show that & X° N\ has at leasf’ + 1 neighbors outside
of its set, we are guaranteed tHat! N N| < |X° NN and |X}, NN < | X, NN

Now, if both X}, "\ A" and X! N A/ are nonempty, we can repeat the above argument to show
that either|l X2 N N| < | XL NN| or |[XZ NN| < |X,; NN
that as long as both’;, N A and X7, N A are nonempty, then eithé&7' N N| < |X7 NN
or |[X N N| < |&L, NN (or both), forj = 1,2,.... Since|X° NN| + |X) NN| < N,
there existsI" < N such that at least one o, "N and X1 N N is empty. If X7, NN = 0,
then M[t. + TA] < M[t] — er < M|[t] — 2¢. Similarly, if X NN = 0, thenm|t, + TA] >
mlt:] + er > mlt] + 2¢e. In either case¥[t. + TA] < Ay — A, and we reach the desired

, or both. It follows by induction

contradiction.

(Sufficiency]Discrete Time] BecauseV is a nhonincreasing function of whenever the normal
nodes are in agreement at timg then consensus is maintained faor ¢,. Therefore, fixt, > 0
and assuméd[tg] > 0. Fort > t, andn > 0, define Xy (t,to,n) = {j € V: x;[t] > Mlto] — n}
and X,,,(t,to,nm) = {j € V: xj[t] < m[to] + n}. Defineey = V[to]/2 and definee; = ae;_y
forj =1,2,...,N — 1, whereN = N. It follows thate; = a’¢y > 0. By definition, the sets
X (to, to, €0) and X, (o, to, €0) are nonempty and disjoint. BecauBeis (F' + 1, F' + 1)-robust
and there are at mogt malicious nodes in the networl¢'(total model), it follows that either



there exists € Xy, (to, to, €o) NN or there exists € X, (to, to, €0) NN, or there exists suchin
both, such that has at least’+ 1 neighbors outside of its set. Therefore; & Xy (to, to, €0) "N
(with at leastF’ + 1 neighbors outside its set), then
milto + 1] = mifto] + D wylto]z; [to]
JET\Ri[to]
< a(MTto] — €0) + (1 — ) M [to]
< Mto] — aveg = Mto] — €.

Note that for any normal node not i, (o, to, €y), the above inequality holds because any
normal node always uses its own value in the update. Fromwiei€onclude X, (to+1, to, €1) N
N| < | X (to, to, €0) N N|. Similarly, if i € X,,(to, to, €0) NN (with at leastF + 1 neighbors
outside its set), then
milto+ 1] = ziltol + > wylto]z;lto]
JETi\Ri[to]
> a(mlto] + €0) + (1 — a)mlto]

> m[to] + ey = m[to] + €.

Similarly as above, this inequality holds for any normal @awbt in X, (o, to, €). From this,
we conclude
‘Xm(to -+ 1,t0, 61) ﬂ]\/| < ‘Xm(to,to, 60) ﬂ./\f\

By repeating this analysis, we can show by induction thabag ks both), (t+ ., to, ¢;) NN
and X,,(to + J,to,e;) N N are both nonempty, then eithéy(to + 7 + 1,0, €541) NN| <
| X0 (to + g, to,€5) NN, or [ X (to + j + 1, to,€541) NN| < | Xn(to + . to, €;) NN, or both.
Since| Xy (to, to, €0) N N| + | X (to, to, €0) NN| < |N| = N, there existsl’ < N such that one
of the setsYy,(to + T, to, er) NN, X, (to + T, to, er) NN, or both, is empty. It follows that in
the former case)M[to + 1| < M|ty] — er, and in the latter casen|t, + 1] > mlto] + er. Since

€ >€ > >ep > ey >0, we have

Ultg+ N — 1] — W[to] < Ulto + T] — Ufto]

IN

(M[to +T] — Mlto]) + (m[to] — m[to + T7])

< —ér < —€n-1-



Therefore, U[ty + N — 1] < U[te](1 — o™V ~1/2). Definec = (1 — a™¥7!/2). Sincec is not a

function oft, andt, was chosen arbitrarily, it follows that
Ulty + k(N —1)] < FU[ty],

for all k& € Z,. Because: < 1, it follows thatV[t] — 0 ast — oc. u
When the network is time-varying, one can state the follgngaorollary of the above theorem.
Corollary 2: Consider a time-varying network modeled by a directed greph= {V, £[t]}

where each normal node updates its value according to AR@HPparameterr'. Then, resilient

asymptotic consensus is achieved under fhtal malicious model if there existg > 0 such

thatD[t] is (F' + 1, F' + 1)-robust,Vt > t,.

Proof: [Continuous Time] The proof follows the contradiction argument of the proof of

Theorem 3, but here we use the dwell time assumption. In tse,det
A <min{o(v),log(3)/B, +}-

Fix
1 2N
€<y [%(1 — e B™)eTBA L ¢,

and lett, > 0 be the time such thad/[t] < Ay + ¢ andmlt] > A,, —e for all t > ¢!
and definet’ = max{to,t.}. Then, associated to the switching signd@t), we definet. as the
next switching instance aftef, or ¢’ itself if there are no switching instances aftér Since
A < 7/N, the same sequence of calculations can be used (as in thEgrdbeorem 3) to
show that¥[t, + TA] < Ay — A,,.

[Discrete Time] The argument in the proof of Theorem 3 holds for t,. Hence,

Ulty + k(N —1)] < MWt

for all k € Z,. Because: < 1, it follows that W[t] — 0 ast — oc. u

To illustrate these results on the examples of Section I'¥, gdhaphs in Figs. 1, 2, and 3
can withstand the compromise of at most 1 malicious node ennetwork using ARC-P with
parameterF’ = 1 (each graph is (2,2)-robust but not (3,3)-robust). Thisasto say that it is
impossible for the normal nodes to reach consensus if threxefa example, two nodes that
are compromised. Instead, these results say that it is redilge thatany two nodes can be
compromised and still guarantee resilient asymptotic ensgs using ARC-P with parameter
F=2.



B. F'-Local Model

Theorem 4:Consider a time-invariant network modeled by a directechlgrd = {V,&}
where each normal node updates its value according to AR@HPparameterr'. Then, resilient
asymptotic consensus is achieved underAhe@cal malicious model if the network topology is
(2F + 1)-robust. Furthermore, a necessary condition is for theltmyoof the network to be
(F + 1)-robust.

Proof: The necessity proof is given in [34]. The sufficiency prodfdas the same line as
that of Theorem 3. In continuous time, the main differencih& the sets of node¥,; and X,

include only normal nodes. That is, for any> 0, t > t,, A > 0, andn > 0, define
X (t,to, A,n)={i € N': 3t" € [t,t + A] s.t.x;[t'] > M[to] — n}

and
Xt to, A,m)={i e N': 3t' € [t,t + A] s.t. x;[t'] < mlto] + n}-.

Likewise, fork = 1,2,..., N, the definitions oft, and X* are modified to include only normal
nodes. The analysis showing thdf, and X’* are disjoint still holds. By definition, it follows that
XY, and X° are nonempty. Since the network (&F + 1)-robust, eithei € X, or Ji € X?,

or both, such that has at leasRF + 1 neighbors outside of its set. If suchis in X};, then

at mostF’ of the neighbors are malicioug'flocal model) and the others are normal with value
x[t] < M|t — € for t € [t., t. + A]. The remaining argument follows the same line as that of
Theorem 3. (Notice in this case that the uniform continugguamption on the malicious nodes
is not needed).

In discrete time, the set&),, and X, are defined to include only normal nodes. Then, the
(2F + 1)-robust assumption under thfélocal model ensures at least one normal value outside
of either X, or X, will be used in the update. The rest of the analysis is idahti the proof
of Theorem 3. ]

As with the F-total model, we have the following corollary (whose proofléws the same
line as that of Corollary 2).

Corollary 3: Consider a time-varying network modeled by a directed greph= {V, £[t]}
where each normal node updates its value according to AR@HPparameterr'. Then, resilient
asymptotic consensus is achieved under/fhcal malicious model if there exists > 0 such
that D[t] is (2F + 1)-robust,Vt > t,.



To illustrate these results, consider the 3-robust grapkignf2. Recall that this graph cannot
generally sustain 2 malicious nodes as specified by theak-tobdel; it is not (3,3)-robust.
However, under the 1-local model, it can sustain two malisimodes if theight nodes are
compromised. For example, nodes 1 and 4 may be compromigést timee 1-local model and
the normal nodes will still reach consensus. This examplstiates the advantage of tlelocal
model, where there is no concern about global assumptibadigraph is(2#'+ 1)-robust, then
up to F' nodes may be compromised in any node’s neighborhood, ppssisulting in more

than F' malicious nodes in the network (as in the previous example).

V1. SIMULATIONS

This section presents a numerical example to illustrateesults. In this example, the network
is given by the (2,2)-robust graph shown in Fig. 4. Since thawork is (2,2)-robust, it can
sustain a single malicious node in the network under thetdl-tnodel. Suppose that the node
with the largest degree, node 14, is compromised and turfisiows. The nodes have continuous
dynamics and the normal nodes use either the Linear Corsdtratiocol (LCP) given in (2)
or ARC-P for their control input. In either case, the weighte selected to be unity for all
neighboring nodes that are kept, with the self-weightscseteas—d, for LCP and|R;[t]| — d;
for ARC-P for each normal nodec N. The initial values of the nodes are shown in Fig. 4
beneath the label of the node’s value. The goal of the maiscegent is to drive the values of

the normal nodes to a value of 2.

Fig. 4. (2,2)-Robust Network topology.

The results for this example are shown in Fig. 5. It is cledfig 5(a) that the malicious node

is able to drive the values of the normal nodes to its value wh2never LCP is used. On the



other hand, the malicious node is unable to achieve its gbahever ARC-P is used. Note that
due to the large degree of the malicious node, it has the paltén drive the consensus process
to any value in the intervdD, 1] by choosing the desired value as its initial value and reingin
constant. However, this is allowed with resilient asymigtabnsensus (because the consensus
value is within the range of the initial values held by normades). Another observation is that
the consensus process in the case of ARC-P is slower than thi3As to be expected, due to

the fact that ARC-P effectively removes certain edges frbmnetwork at each time instance.

values

= = = Malicious node
Normal nodes
n

i n i
15 20 25 30

t(s)

(a) LCP.

22

1.8
16
14

12

values

0.2 . : : = = = Malicious node

Normal nodes
T ]

i i i T
0 5 10 15 20 25 30

t(s)
(b) ARC-P.

Fig. 5. Malicious node attempts to drive the values of them@modes to a value of 2. The malicious node succeeds wheneve

LCP is used, but fails whenever ARC-P is used.



VIl. DISCUSSION

The notion of graph connectivity has long been the backbdnen@stigations into fault
tolerant and secure distributed algorithms. Indeed, utiterassumption of full knowledge of
the network topology, connectivity e keymetric in determining whether a fixed number of
malicious adversaries can be overcome. However, in largle systems and complex networks,
it is not practical for the various nodes to obtain knowleddgdahe global network topology.
This necessitates the development of algorithms that alt@wnodes to operate on purely local
information. This paper continues and extends the workestan [16], [18], [34], and represents
a step in this direction for the particular application oftdbuted consensus. Using the ARC-P
algorithm developed in [16], the notion of robust graphsdduced in [34], and the extensions
of each presented here, we characterize necessary/suffmaditions for the normal nodes
in large-scale networks to mitigate the influence of adwersaWe show that the notions of
robust digraphs are the appropriate analogues to graphectivity when considering purely
local filtering rules at each node in the network. Just as thteon of connectivity has played
a central role in the existing analysis of reliable disttdzlialgorithms with global topological
knowledge, we believe that robust digraphs (and its vas)antll play an important role in the
investigation of purely local algorithms.

In a recent paper, developed independently of our work, \aé&t al. have characterized the
tight conditions for resilient consensus using only locdbrmation whenever the threat model
is Byzantine and the scope of threatAstotal [32]. The network constructions used in [32] are
very similar to the robust digraphs presented here. Inq@adi, the networks in [32] also require
redundancy of information flow between subsets of nhodesemgtwork in a single hop.

Finally we summarize the main works related to resilientsemsus using only local informa-
tion in Table I. In this table, we include only works on resilt consensus (also referred to as
Byzantine approximate consensus, or just approximatest@os in the literature) in synchronous
networks that use only local information, with no relayinfyimformation across the network
and with networks that araot complete (since complete networks provide global inforamat
and have high communication cost). Further discussion tath@urelationship of the results in

this paper (and in [16], [18], [32], [34]) to approximate semsus can be found in [34] and [32].



TABLE |
RELATED WORK FOR RESILIENT CONSENSUS IN SYNCHRONOUS NETWORKUSING ONLY LOCAL INFORMATION (NO

NONLOCAL INFORMATION, NO RELAYS, AND THE NETWORK ISNOt COMPLETE).

Threat Model . o
Byzantine Malicious

Scope

F-total [18], [32] | [18], this paper

F-local - [34], this paper
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