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Abstract

This paper addresses the problem of resilient consensus in the presence of misbehaving nodes.

Although it is typical to assume knowledge of at least some nonlocal information when studying secure

and fault-tolerant consensus algorithms, this assumptionis not suitable for large-scale dynamic networks.

To remedy this, we emphasize the use of local strategies to deal with resilience to security breaches.

We study a consensus protocol that uses only local information and we consider worst-case security

breaches, where the compromised nodes have full knowledge of the network and the intentions of the

other nodes. We provide necessary and sufficient conditionsfor the normal nodes to reach consensus

despite the influence of the malicious nodes under differentthreat assumptions. These conditions are

stated in terms of a novel graph-theoretic property referred to asnetwork robustness.

I. INTRODUCTION

The engineering community has experienced a paradigm shiftfrom centralized to distributed

system design, propelled by advances in networking and low-cost, high performance embedded

systems. In particular, this has led to significant interestin the design and analysis ofmulti-

agent networks. A multi-agent network consists of a set of individuals called agents, or nodes,
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equipped with some means of sensing or communicating along with computational resources

and possibly actuation. Through a medium, which is referredto as thenetwork, the agents share

information in order to achieve specificgroup objectives. Some examples of group objectives in-

clude consensus [22], [26], synchronization [6], [27], surveillance [5], and formation control [9].

In order for the group objectives to be achieved,distributed algorithmsare used to coordinate

the behavior of the agents.

There are several advantages to using multiple agents over asingle one. First, the objective

may be complex and challenging, or possibly even infeasiblefor a single agent to achieve.

Second, employing many agents can provide robustness in thecase of failures or faults. Third,

networked multi-agent systems are flexible and can support reconfigurability. Finally, there are

performance advantages that can be leveraged from multipleagents. For example, in surveillance

and monitoring applications, a multi-agent network provides redundancy and increased fidelity

of information [5], [14].

Along with the advantages come certain challenges. Perhapsthe most fundamental challenge in

the design of networked multi-agent systems is the restriction that the coordination algorithms

use only local information, i.e., information obtained by the individual agent through sensor

measurements, calculations, or communication with neighbors in the network. In this manner,

the feedback control laws must bedistributed.

A second challenge lies in the fact that not only is each agenttypically a dynamical system,

but the network itself is dynamic. This challenge arises because the agents may be mobile and

the environment may be changing, thus giving rise to dynamic(or switching) networks. Since

the distributed algorithms depend directly on the network,this additional source of dynamics

can affect the stability and performance of the networked system.

An especially important challenge is that multi-agent networks, like all large-scale distributed

systems, have many entry points for malicious attacks or intrusions. For the success of the group

objective, it is important that the cooperative control algorithms are designed in such a way that

they can withstand the compromise of a subset of the nodes andstill guarantee some notion of

correct behavior at a minimum level of performance. We refer to such a multi-agent network

as beingresilient to adversaries. Given the growing threat of malicious attacks in large-scale

cyber-physical systems, this is an important and challenging problem [4].

One of the most fundamental group objectives is to reach consensus on a quantity of interest.



This concept is deeply intuitive, yet imprecise. Hence, there are several variations on how

consensus problems are defined. At one extreme, consensus may be unconstrained, and there is

no restriction on the agreement quantity. In other cases, consensus may bepartially constrained

by some rule or prescribed to lie in a set of possible agreement values which are in some way

reasonable to the problem at hand. At the other extreme, consensus may befunction constrained,

or χ-constrained, in which case the consensus value must satisfy a particular function of the

initial values of the nodes [7], [28]. In all of these cases, it is important that consensus algorithms

be resilient to various forms of uncertainty, whether the source of uncertainty is caused by

implementation effects, faults, or security breaches.

The problem of reaching consensus resiliently in the presence of misbehaving nodes has

been studied in distributed computing [15], [20], communication networks [11], and mobile

robotics [1], [3], [8]. Among other things, it has been shownthat givenF Byzantine or malicious

nodes, there exists a strategy for the misbehaving nodes to disrupt consensus if the network

connectivity1 is 2F or less. Conversely, if the network connectivity is at least2F +1, then there

exists strategies for thenormal nodes to use that ensure consensus is reached [20], [23], [29].

However, these methods either require that normal nodes have at least some nonlocal information

or assume that the network iscomplete, i.e., all-to-all communication or sensing [1], [3], [8],

[15], [16]. Moreover, these algorithms tend to be computationally expensive. Therefore, there is

a need for resilient consensus algorithms that arelow complexityand operate using only local

information.

Typically, an upper bound on the number of faults or threats in the network is assumed, i.e.,

at mostF out of n nodes fail or are compromised. We refer to thisthreat assumption, or scope

of threat, as theF -total model. In cases where it is preferable to makeno global assumptions,

we are interested in other threat assumptions that are strictly local. For example, whenever each

node only assumes that at mostF nodes in itsneighborhoodare compromised (but there is no

other bound on the total number of compromised nodes), the scope of threat isF -local.

In addition to thenumber of misbehaving nodes, one can consider variousthreat models

for the misbehaving nodes; examples includenon-colluding[23], malicious[16], [23], [29], or

1The network connectivity is defined as the smaller of the two following values: (i) the size of a minimal vertex cut and (ii)

n− 1, wheren is the number of nodes in the network.



Byzantine[1], [15], [18], [32] nodes. Non-colluding nodes are unaware of the network topology,

which other nodes are misbehaving, or the states of non-neighboring nodes. On the other hand,

malicious nodes have full knowledge of the networked systemand therefore, worst case behavior

must be assumed. The only difference between malicious and Byzantine nodes lies in their

capacity for deceit. Malicious nodes are unable to convey different information to different

neighbors in the network, whereas Byzantine nodes can.

Recently, we have studied resilient algorithms in the presence of misbehaving nodes. In [16],

we introduce the Adversarial Robust Consensus Protocol (ARC-P) for consensus in the presence

of malicious agents under theF -total model in continuous-time complete networks, with the

agents also modeled in continuous time. The results of [16] are extended to both malicious and

Byzantine threat models in networks with constrained information flow and dynamic network

topology in [18]. In [34], we study general distributed algorithms withF -local malicious adver-

saries, encompassing ARC-P. In [18], [34], we show that traditional graph theoretic properties

such as connectivity and degree, which have played a vital role in characterizing the resilience

of distributed algorithms (see [20], [29]), are no longer adequate when the agents make purely

local decisions (i.e., without knowing nonlocal aspects ofthe network topology). Instead, in [34]

we introduce a novel topological property, referred to asnetwork robustness, and show that this

concept is highly effective at characterizing the ability of purely local algorithms to succeed.

Separate sufficient and necessary conditions are provided in [34] for ARC-P to achieve resilient

consensus in discrete time, and it is shown that the preferential attachment mechanism for

generating complex networks produces robust graphs.

In this paper, we continue our study of resilient consensus in the presence of malicious

nodes while using only local information. We are interestedin partially constrained, asymptotic

consensus in dynamic networks. To allow for multiple interpretations of the results, we formulate

the problem in a setting common to discrete and continuous time for node dynamics and time-

invariant or time-varying network topologies. We extend the Adversarial Robust Consensus

Protocol (ARC-P) introduced in [16] to weighted networks. We then describe robust network

topologies that are rich enough to enable resilience to malicious nodes, but are not too restrictive

in terms of communication cost (i.e., number of communication links); in particular, we gener-

alize the robustness property of [34]. Given these topological properties, we fully characterize

the consensus behavior of the normal nodes using ARC-P undertheF -total model of malicious



nodes, and provide, for the first time, a necessary and sufficient condition for the algorithm to

succeed. Additionally, for theF -local threat model, we provide improved separate necessary and

sufficient conditions for asymptotic agreement of the normal nodes in the presence of malicious

nodes.

The rest of the paper is organized as follows. Section II introduces the problem in a framework

common to discrete and continuous time. Section III presents ARC-P in the unified framework.

Section IV motivates the need for robust network topologiesand introduces the formal definitions.

The main results are given in Section V. A simulation exampleis presented in Section VI. Finally,

some discussion is given in Section VII.

II. PROBLEM FORMULATION

Consider a time-varying network modeled by the (finite, simple) directed graph, or digraph,

D[t] = {V, E [t]}, whereV = {1, ..., n} is thenode setandE [t] ⊂ V×V is thedirected edge setat

time t. The nodes are assumed to have unique identifiers that form a totally ordered setI. Without

loss of generality2, the node set is partitioned into a set ofN normal nodesN = {1, 2, . . . , N}

and a set ofA adversary nodesA = {N + 1, N + 2, . . . , n}, with A = n − N . Let Γn denote

the set of all digraphs onn nodes, which is of course a finite set. Note thatD[t] ∈ Γn for all

t, wheret ∈ R≥0 for continuous time andt ∈ Z≥0 for discrete time. When we wish to refer to

both discrete and continuous time, we generically sayat time t.

The time-varying topology of the network is governed by a piecewise constant switching

signalσ(·), which is defined onZ≥0 for discrete time andR≥0 for continuous time, and takes

values inΓn. In order to emphasize the role of the switching signal, we denoteDσ(t) = D[t].

Let {τk}, k ∈ Z≥0 denote the set of switching instances. For continuous time,we assume that

there exists some constantτ ∈ R>0 such thatτk+1 − τk ≥ τ for all k ≥ 0. In other words,σ(·)

is subject to thedwell timeτ .

Each directed edge(j, i) ∈ E [t] models information flowand indicates that nodei can be

influenced by (or receive information from) nodej at time t. The set ofin-neighbors, or just

neighbors, of nodei at timet is defined asVi[t] = {j ∈ V : (j, i) ∈ E [t]} and the (in-)degree of

i is denoteddi[t] =|Vi[t]|. Likewise, the set ofout-neighborsof nodei at time t is defined as

2There exists a bijection fromI to V = N ∪ A.



Vout
i [t] = {j ∈ V : (i, j) ∈ E [t]}. Because each node has access to its own state at timet, we also

consider theinclusive neighborsof nodei, denotedJi[t] = Vi[t] ∪ {i}. Note that time-invariant

networks are represented simply by dropping the dependenceon time t.

A. Update Model

Suppose that each nodei ∈ V begins with some private valuexi[0] ∈ R (representing a

measurement, opinion, vote, etc.), which evolves over time. Let xN [t] = [x1[t], x2[t], . . . , xN [t]]
T

andxA[t] = [xN+1[t], xN+2[t], . . . , xn[t]]
T denote collectively the value (or state3) trajectories of

the normal and adversary nodes, respectively, and letx[t] = [xT

N [t], xT

A[t]]
T. The nodes interact

synchronously by conveying their value to (out-)neighborsin the network. Each normal node

updates its value over time according to a prescribed rule, which is modeled as

D [xi[t]] = fi,σ(t)(t, xN , xA), i ∈ N ,Dσ(t) ∈ Γn,

whereD [xi[t]] = ẋi[t] is thederivative operatorfor continuous time andD [xi[t]] = xi[t+1]−

xi[t] is the forward difference operatorfor discrete time. Collectively, we define the system of

normal nodes by

D [xN [t]] = fσ(t)(t, xN , xA), xN [0] ∈ R
N ,Dσ(t) ∈ Γn, (1)

where fσ(t)(·) = [f1,σ(t)(·), . . . , fN,σ(t)(·)]
T. Each of the functionsfi,σ(t)(·) can be arbitrary,4

and may be different for each node, depending on its role in the network. These functions are

designeda priori so that the normal nodes reach consensus. However, some of the nodes may

not follow the prescribed strategy if they are compromised by an adversary. Such misbehaving

nodes threaten the group objective, and it is important to design thefi,σ(t)(·)’s in such a way

that the influence of such nodes can be eliminated or reduced without prior knowledge about

their identities.

B. Threat Model

Definition 1: A nodek ∈ A is said to bemalicious if

3Throughout this paper we refer to a node’s value and state interchangeably.

4In continuous time,fσ(t)(·) must satisfy appropriate assumptions to ensure existence of solutions.



• it is not normal (i.e., it does not follow the prescribed update model either for at least

one time-step in discrete time, or for some time interval of nonzero Lebesgue measure in

continuous time);

• it conveys the same value,xk[t], to each out-neighbor;

• (for continuous-time systems) its value trajectory,xk[t] ∀t, is a uniformly continuous func-

tion of time on[0,∞).

A few remarks are in order concerning malicious nodes. First, each malicious node is allowed

to be omniscient (i.e., it knows all other values and the fullnetwork topology; it is aware of the

update rulesfi,σ(t)(·), ∀i ∈ N ; it knows which other nodes are adversaries; and it knows the

plans of the other adversaries). The statement in the definition that the malicious nodes are not

normal is intended to capture the idea that they do not apply the prescribed update rule for all

time. The second assumption is intended as an assertion on the network realization. That is, if

the network is realized through sensing or broadcast communication, it is assumed that the out-

neighbors receive the same information. The third point is atechnical assumption that applies

only to malicious nodes modeled in continuous time. Limitedonly by these assumptions, the

malicious nodes are otherwise allowed to operate in an arbitrary (potentially worst case) manner.

C. Scope of Threats

While there are various stochastic models that could be usedto formalize the threat as-

sumptions, here we use a deterministic approach and consider upper bounds on the number of

compromised nodes either in the network (F -total) or in each node’s neighborhood (F -local).

Definition 2 (F -total set): A set S ⊂ V is F -total if it contains at mostF nodes in the

network, i.e.,|S| ≤ F , F ∈ Z≥0.

Definition 3 (F -local set): A set S ⊂ V is F -local if it contains at mostF nodes in the

neighborhood of the other nodes for allt, i.e., |Vi[t]
⋂

S| ≤ F , ∀i ∈ V \ S, F ∈ Z≥0.

It should be noted that because the network topology may be time-varying, the local properties

defining anF -local set must hold at all time instances. These definitionsfacilitate the definitions

of the scope of threat models.

Definition 4: A set of adversary nodes isF -totally bounded or F -locally bounded if it is

an F -total set orF -local set, respectively. We refer to these threat scopes asthe F -total and

F -local models, respectively.



Note that whenever the set ofA adversary nodesA is F -totally bounded, we knowA ≤ F .

On the other hand ifA is F -locally bounded, it is possible thatA > F . Indeed, there is no upper

bound forF -locally boundedA since it is feasible that many adversaries may not be neighbors

with any of the normal nodes over time. As a matter of terminology, we will refer to the threat

model consisting ofF -totally (or F -locally) bounded malicious nodes as theF -total malicious

model (orF -local malicious model). TheF -total fault model has been studied in distributed

computing [15], [20], [32] and mobile robotics [1], [3], [8]for both stopping (or crash) failures

and Byzantine failures. TheF -local fault model has been studied in the context of Byzantine

fault-tolerant broadcasting [12], [24].

D. Resilient Asymptotic Consensus

Given the threat model and scope of threats, we formally define resilient asymptotic consensus.

Let M [t] and m[t] be the maximumand minimum values of the normal nodes at timet,

respectively.

Definition 5 (Resilient Asymptotic Consensus):The normal nodes are said to achieveresilient

asymptotic consensus in the presence of(a) F -totally bounded, or(b) F -locally bounded

misbehaving nodes if

• ∃L ∈ R such thatlimt→∞ xi[t] = L for all i ∈ N , and

• [m[0],M [0]] is an invariant set (i.e., the normal values remain in the interval for all t),

for any choice of initial values. Whenever the scope of threat is understood, we simply say that

the normal nodes reachasymptotic consensus.

The resilient asymptotic consensus problem has three important conditions. First, the normal

nodes must reach asymptotic consensus in the presence of misbehaving nodes given a particular

threat model (e.g., malicious) and scope of threat (e.g.,F -total). This is a condition onagreement.

Additionally, it is required that the interval containing the initial values of the normal nodes is an

invariant set for the normal nodes; this is asafetycondition. This safety condition is important

when the current estimate of the consensus value is used in a safety critical process and the

interval [m[0],M [0]] is known to be safe. The agreement and safety conditions, when combined,

imply a third condition onvalidity: the consensus quantity that the values of the normal nodes

converge to must lie within the range of initial values of thenormal nodes.



The validity condition is reasonable in applications whereany value in the range of initial

values of normal nodes is acceptable to select as the consensus value. For instance, consider a

large sensor network where every sensor takes a measurementof its environment, captured as a

real number. Suppose that at the time of measurement, all values taken by correct sensors fall

within a range[a, b], and that all sensors are required to come to an agreement on acommon

measurement value. If the range of measurements taken by thenormal sensors is relatively

small, it will likely be the case that reaching agreement on avalue within that range will

form a reasonable estimate of the measurements taken by all sensors. However, if a set of

malicious nodes is capable of biasing the consensus value outside of this range, the error in the

measurements could be arbitrarily large.

More generally, suppose the nodes are trying to distributively minimize
∑

hi(θ), where each

of the hi’s is a local convex function andθ is the optimization variable. If the initial value of

each nodei represents the value ofθ that minimizeshi, a convex combination of these initial

values will represent an estimate of the optimalθ, within some bounded error. On the other

hand, if an adversary is capable of biasing the consensus value arbitrarily, the resulting value

of the objective function will also be arbitrarily far away from its minimum value. One can

formulate similar motivating examples for the validity condition in other applications as well;

for instance, a swarm of robots that are trying to flock shouldnot be pulled in arbitrary directions

by a malicious agent in the network.

III. CONSENSUS ALGORITHM

Linear consensus algorithms have attracted significant interest in recent years [22], [26], due

to their applicability in a variety of contexts. In such strategies, at timet, each node senses or

receives information from its neighbors, and changes its value according to

D[xi[t]] =
∑

j∈Ji[t]

wij [t]xj [t], (2)

wherewij [t] is the weight assigned to nodej’s value by nodei at time t.

Different conditions have been reported in the literature to ensure asymptotic consensus is

reached [13], [21], [25], [31], [33]. In discrete time, it iscommon to assume that there exists a



constantα ∈ R, 0 < α < 1 such that all of the following conditions hold:5

• wij[t] = 0 wheneverj 6∈ Ji[t], i ∈ N , t ∈ Z≥0;

• wij[t] ≥ α, ∀j ∈ Vi[t], i ∈ N , t ∈ Z≥0;

• wii[t] ≥ α− 1, ∀i ∈ N , t ∈ Z≥0;

•
∑n

j=1wij[t] = 0, ∀i ∈ N , t ∈ Z≥0.

In continuous time there are similar conditions, except in this case the self-weights are given

by

wii[t] = −
∑

j∈Vi[t]

wij[t], ∀i ∈ N , ∀t ∈ R≥0.

In this case, the weights must be piecewise continuous and uniformly bounded. That is, there

existsβ ∈ R>0, β ≥ α, such thatwij [t] ≤ β, for all i, j ∈ N andt ∈ R≥0. Similar to the discrete

time case, the weightswij [t] are zero precisely wheneverj 6∈ Ji[t], and bounded below byα

otherwise. Together, these conditions imply the analogue of the fourth condition above.

Given these conditions, a necessary and sufficient condition for reaching asymptotic consensus

in time-invariant networks is that the digraph has arooted out-branching, also called arooted

directed spanning tree[26]. The case of dynamic networks is not quite as straightforward. In this

case, under the conditions stated above, a sufficient condition for reaching asymptotic consensus

is that there exists a uniformly bounded sequence of contiguous time intervals such that the

union of digraphs across each interval has a rooted out-branching [25]. Recently, a more general

condition referred to as theinfinite flow propertyhas been shown to be both necessary and

sufficient for asymptotic consensus for a class of discrete-time stochastic models [30]. Finally,

the lower bound on the weights is needed because there are examples of asymptotically vanishing

weights in which consensus is not reached [19].

In general, the problem of selecting the best weights in the linear update rule (2) is nontrivial,

and the choice affects the rate of consensus. The problem of selecting the optimal weights

(with respect to the speed of the consensus process) in time-invariant, discrete-time, bidirectional

networks is addressed in [33] by formulating a semidefinite program (SDP). However, this SDP is

solved at design time with global knowledge of the network topology. A simple choice of weights

5The conditions on the weights are modified from what is reported in the literature to account for the forward difference

operator. Accounting for this, the updated value of each node is formed as a convex combination of the neighboring valuesand

its own value.



for discrete-time systems that requires only local information is to letwij [t] = 1/(1 + di[t]) for

j ∈ Vi[t] andwii[t] = −di[t]/(1 + di[t]). In continuous time, a simple choice is to letwij ≡ 1

for j ∈ Vi[t] andwii[t] = −di[t].

One problem with the linear update given in (2) is that it is not resilient to misbehaving

nodes. In fact, it was shown in [10], [13] that a single ‘leader’ node can cause all agents

to reach consensus on an arbitrary value of its choosing (potentially resulting in a dangerous

situation in physical systems).

The Adversarial Robust Consensus Protocol (ARC-P) addresses this vulnerability of the linear

update of (2) by a simple modification. Instead of trusting every neighbor by using every value

in the update, the normal node first removes the extreme values from consideration in the update

by effectively setting their weights (temporarily) to zero. It is be shown in subsequent sections

that this simple strategy provides resilience against malicious nodes in robust networks.

A. Description of ARC-P

At time t, each normal nodei obtains the values of other nodes in its neighborhood. At most

F of nodei’s neighbors may be malicious; however, nodei is unsure of which neighbors may be

compromised. To ensure that nodei updates its value in a safe manner, it removes the extreme

values with respect to its own value according to the following protocol.

1) At time t, each normal nodei obtains the values of its neighbors, and forms a sorted list.

2) If there are less thanF values strictly larger than its own value,xi[t], then normal nodei

removes all values that are strictly larger than its own. Otherwise, it removes precisely the

largestF values in the sorted list (breaking ties in a deterministic manner; e.g., by keeping

the values of the nodes with the smaller unique identifiers inI). Likewise, if there are less

thanF values strictly smaller than its own value, then nodei removes all values that are

strictly smaller than its own. Otherwise, it removes precisely the smallestF values.

3) Let Ri[t] denote the set of nodes whose values were removed by normal node i in step 2

at time t. Each normal nodei applies the update

D[xi[t]] =
∑

j∈Ji[t]\Ri[t]

wij [t]xj [t], (3)

where the weightswij[t] satisfy the conditions stated above, but withJi[t] replaced by



Ji[t] \ Ri[t].6 Note that if all neighboring values are removed, thenD[xi[t]] = 0.

As a matter of terminology, we refer to the bound on the numberof larger or smaller values

that could be thrown away as theparameterof the algorithm. Above, the parameter of ARC-P

under theF -local andF -total models isF .

Observe that the set of nodes removed by normal nodei, Ri[t], is possibly time-varying.

Hence, even though the underlying network topology may be fixed, ARC-P effectively induces

switching behavior, and can be viewed as the linear update of(2) with a specific rule for state-

dependent switching (the rule given in step 2).

B. ARC-P in Continuous Time

The previous section outlined the steps taken in ARC-P to remove the influence of nodes with

extreme values. In order to analyze (1) for existence and uniqueness of solutions in continuous

time, it is useful to express ARC-P as a composition of functions. For this, we require the

following definitions.

Definition 6: Let k ∈ N andF ∈ Z≥0. Denote the elements of vectorsξ, w, z ∈ R
k by ξl, wl,

andzl, respectively, forl = 1, 2, . . . , k. Then:

(i) The (ascending)sorting function on k elements,ρk : Rk → R
k, is defined byξ = ρk(z)

such thatξ is a permutation ofz which satisfies

ξ1 ≤ ξ2 ≤ · · · ≤ ξk; (4)

(ii) The weighted zero-selective reduce function with respect toF andk, rk0,F : R
k×R

k → R,

is defined by (5), where1≥0(α) and 1≤0(α) are indicator functions, and the weights are

uniformly bounded by0 < α ≤ wl ≤ β, ∀l.

(iii) The composition of the sorting and weighted zero-selective reduce functions with respect

to F andk is defined byφk
F : R

k × R
k → R, which is defined for allz ∈ R

k andw ∈ R
k

such that0 < α ≤ wl ≤ β by

φk
F (z, w) = rk0,F (ρk(z), w).

6In this case, a simple choice for the weights in discrete timeis to let wij [t] = 1/(1 + di[t] − |Ri[t]|) for j ∈ Vi[t] and

wii[t] = (|Ri[t]| − di[t])/(1 + di[t]− |Ri[t]|). In continuous time, letwij ≡ 1 for j ∈ Vi[t] andwii[t] = |Ri[t]| − di[t].



rk0,F (z, w) =























∑F

l=1wl1≥0(zl)zl +
∑k−F

l=F+1wlzl +
∑k

l=k−F+1wl1≤0(zl)zl k > 2F ;
∑k−F

l=1 wl1≥0(zl)zl +
∑k

l=F+1wl1≤0(zl)zl F < k ≤ 2F ;

0 k ≤ F ;

(5)

Then, the update rule of ARC-P for each normal nodei ∈ N for t ∈ R≥0 is given by

fi,σ(t)(t, xN , xA) = φ
di[t]
F (Ji[t](x[t] − xi[t]1n), wi[t]) , (6)

in which x[t] = [xT

N [t], xT

A[t]]
T ∈ R

n and1n ∈ R
n is the vector of ones. The time-varying weight

vector

wi[t] = [wii1[t][t], wii2[t][t], . . . , wiidi[t][t]
[t]]T,

satisfies the bound0 < α ≤ wiij [t] ≤ β for all j = 1, 2, . . . , di[t], wherei1[t], i2[t], . . . , idi[t][t] are

the node indices of the neighbors of nodei in the order determined by the sorting function at

time t (i.e., according to (4) such that the weights match the corresponding neighbor). Finally,

Ji[t] ∈ R
(di[t])×n is a sparse matrix with each row corresponding to a distinctj ∈ Vi[t] such

that each row has a single1 in the j-th column. Thus, there is a one-to-one correspondence

betweenj ∈ Vi[t] and rows inJi[t]. These terms are defined so that (6) is equivalent to (3) for

all t ∈ R≥0.

1) Existence and Uniqueness of Solutions:As a first step toward showing existence and

uniqueness of solutions, we show that (6) satisfies a Lipschitz condition for alli ∈ N .

Definition 7: Let || · || denote any norm defined on a Euclidean space, and letg(t, x, u),

g : R×R
n ×R

p → R
q, be a piecewise continuous function int andu. Theng satisfies aglobal

Lipschitz conditionwith Lipschitz constantL if the following condition holds for allz, y ∈ R
n,

t ∈ R:

||g(t, z, u)− g(t, y, u)|| ≤ L||z − y||.

Theorem 1:The functionfσ(t)(t, xN , xA) = fσ(t)(t, x) that defines the dynamics of the normal

nodes, withfi,σ(t)(·) defined in (6), satisfies a global Lipschitz condition inxN andx.

Proof: Because the weights are piecewise continuous and the switching signal is piecewise

constant, it follows thatfσ(t)(t, x) is piecewise continuous int. We first show thatfσ(t)(t, x)



satisfies a Lipschitz condition inx by showing that the component functionsfi,σ(t)(t, x) do. For

this, fix t ∈ R≥0, F ∈ Z≥0, di[t] = k, andwi[t] = w. The argument toφk
F (·, w) is linear and the

sorting function is Lipschitz, as shown in [16]. Hence, all there is to show is that the weighted

zero-selective reduce function with respect toF and k is Lipschitz. Fix z, y ∈ R
k. The key

observation is that

1≥0(zl)zl − 1≥0(yl)yl ≤ |zl − yl|,

for eachl = 1, 2, . . . , k, which is trivial to show by checking the four cases depending on the

signs ofzl andyl. Since0 < α ≤ wl ≤ β, it follows that

wl1≥0(zl)zl − wl1≥0(yl)yl ≤ β|zl − yl|,

Likewise, the inequality holds when the indicator functionis 1≤0(·) instead of1≥0(·). Combining

this with the triangle inequality, it is straightforward toshow using the Manhattan norm that

rk0,F is Lipschitz with Lipschitz constantβ. Finally, we showfσ(t)(t, xN , xA) satisfies a Lipschitz

condition in xN . Fix y, z ∈ R
N and note that the malicious nodes’ trajectories are uniformly

continuous in time by assumption (and thereforefσ(t)(t, xN , xA) is piecewise continuous in time).

Since, there exists a global Lipschitz constant forx, denotedL, we know

||fσ(t)(t, y, xA)− fσ(t)(t, z, xA)||

≤ L
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= L||y − z||.

Since we assume thatσ(t) is piecewise constant,xA is piecewise continuous (in fact we assume

it is uniformly continuous on[0,∞)), and the weights are piecewise continuous, it follows that

fσ(t)(t, xN , xA) defined by (1) with component functions given in (6) is piecewise continuous

in t. Theorem 1 shows thatfσ(t)(·) is Lipschitz inxN . We show next in Lemma 1 thatfσ(t)(·)

is bounded by the current normal valuesxN [t] for t ∈ R≥0. From these facts, we conclude the

local existence and uniqueness of solutions of (6) for alli ∈ N . Then, we show in Lemma 2

that any solution is confined to a compact set, from which we conclude global existence and

uniqueness of solutions of (6) for alli ∈ N .

Lemma 1:Consider the normal nodei ∈ N with continuous dynamics executing ARC-P with

parameterF ∈ Z≥0 and assume there are at mostF adversary nodes in its neighborhood at time



t. Then, for eacht ∈ R≥0

B(m[t]− xi[t]) ≤ fi,σ(t)(xN , xA) ≤ B(M [t] − xi[t]),

whereB = β(n− F − 1), m[t] = minj∈N{xj [t]}, andM [t] = maxk∈N{xk[t]}.

Proof: If di[t] ≤ F , or if F < di[t] ≤ 2F and there are at mostF neighbors with larger and

smaller values thanxi[t], thenfi,σ(t)(t, xN , xA) = 0, and the result follows. Therefore, assume

di[t] > F and at least one value not equal toxi[t] is used in the update at timet, say xj [t].

Supposexj [t] > M [t]. Then, by definitionj must be an adversary andxj [t] > xi[t]. Sincei uses

xj [t] at timet, there must be at leastF more nodes in the neighborhood ofi with values at least

as large asxj [t]. Hence, these nodes must also be adversaries, which contradicts the assumption

of at mostF adversary nodes in the neighborhood ofi at timet. Thus,xj [t] ≤ M [t]. Similarly,

we can show thatxj [t] ≥ m[t]. By combining the fact that there are at mostn− 1 neighbors of

i, at leastF values will be removed (sincedi[t] > F ), andwij[t] ≤ β for all j ∈ Vi[t], it follows

that

B(m[t]− xi[t]) ≤
∑

j∈Vi[t]\Ri[t]

wij[t](xj [t]− xi[t]) ≤ B(M [t] − xi[t]).

Observe that Lemma 1 holds under both theF -total andF -local models, and boundsfσ(t)(·)

as a function of the total number of nodesn, the upper bound on the number of adversaries

in the neighborhood of any normal nodeF , and the current state of the normal node values

xN [t]. The next result shows that for any solution of (1), the hypercubeH0, which is given by

[m[0],M [0]]N , is a robustly positively invariant set(defined as follows).

Definition 8: The setS ⊂ R
N is robustly positively invariant for the system given by (1)

if for all xN [0] ∈ S, xA[t] ∈ R
A, any solution satisfiesxN [t] ∈ S for all t ≥ 0.

Lemma 2:Suppose the normal nodes inN have continuous dynamics and use ARC-P with

parameterF ∈ Z≥0 under theF -local or F -total malicious model. Then, the hypercubeH0 =

[m[0],M [0]]N defined by

H0 = {y ∈ R
N : m[0] ≤ yi ≤ M [0], i = 1, 2, . . . , N},

is robustly positively invariant for the system of normal nodes.

Proof: SinceH0 is compact and any solution of (1) using (6) is continuous with xN [0] ∈

H0, we must show thatfσ(t)(·) is not directed outside ofH0, wheneverxN [t] ∈ ∂H0, for all



Dσ(t) ∈ Γn and all allowable trajectories ofxA. The boundary ofH0 is given by

∂H0 = {y ∈ H0 : ∃i ∈ {1, 2, . . . , N} s.t. yi ∈ {m[0],M [0]}}.

Now, fix xN ∈ ∂H0 for somet ∈ R≥0. Let ej denote thej-th canonical basis vector and

denoteIN ,min, IN ,max ⊆ {1, 2, . . . , N} as the sets defined by

j ∈ IN ,min ⇔ xj = m[0] andk ∈ IN ,max ⇔ xk = M [0].

Then, from the geometry of the hypercube, we require

eTj fσ(t)(t, xN , xA) ≥ 0 ∀j ∈ IN ,min,

eTk fσ(t)(t, xN , xA) ≤ 0 ∀k ∈ IN ,max.

These conditions are true for allDσ(t) ∈ Γnand xA under theF -local or F -total models by

Lemma 1, in which the lower bound is used forj ∈ IN ,min (sincexj = m[0]), and the upper

bound is used fork ∈ IN ,max (sincexk = M [0]).

The argument made in Lemma 1 implies that any time an adversary under theF -total or

F -local model is outside ofIt = [m[t],M [t]], its influence is guaranteed to be removed by its

normal neighbors, and therefore has the same effect as if it were on the boundary ofIt. Using

Lemma 2 we concludeIt ⊆ I0, ∀t ≥ 0. Hence, each adversary is effectively restricted to the

compact setI0, with respect to (1). This fact enables us to allow adversarystates inRA rather

than explicitly restricting them to a compact set, while still ensuring existence and uniqueness

of solutions.

Corollary 1: Given the choice of bounded, piecewise continuous, time-varying weights, piece-

wise constant switching signal, and adversaries (i.e., adversary value trajectories) that satisfy the

F -local orF -total malicious model, the system of normal nodes defined by(1) with component

functions given in (6) has a unique solution for allt ≥ 0 and for anyxN [0] ∈ R
N .

IV. ROBUST NETWORK TOPOLOGIES

A. Network Robustness

In this section, we introducerobust network topologiesthat satisfy certain graph theoretic

properties, which we refer to generically asnetwork robustness. Network robustness formalizes

the notion of sufficient redundancy of information flow to subsets of a network in a single



Fig. 1. Example of a5-connected graph satisfying Prop. 1 wheneverF = 2.

hop. Therefore, this property holds promise to be effectivefor the study of resilient distributed

algorithms that use only local information. In contrast, network connectivity formalizes the

notion of sufficient redundancy of information flow across the network through independent

paths. Due to the fact that each independent path may includemultiple intermediate nodes,

network connectivity is well-suited for studying resilient distributed algorithms that assume such

nonlocal information is available (for example, by explicitly relaying information across multiple

hops in the network [20], or by ‘inverting’ the dynamics on the network to recover the needed

information [23], [29]). However, network connectivity isno longer an appropriate metric for

an algorithm that uses purely local information, such as ARC-P. This is demonstrated by the

following proposition [34].

Proposition 1: There exists a graph with connectivityκ = ⌊n
2
⌋+F −1 in which ARC-P does

not ensure asymptotic consensus.

Figure 1 illustrates an example of this kind of graph withn = 9, F = 2, and κ = 5. In

this graph, there are two cliques (complete subgraphs),X = K4 and Y = K5, whereKn is

the complete graph onn nodes. Each node inX has exactlyF = 2 neighbors inY , and all

but two nodes inY haveF = 2 neighbors inX (nodes 5 and 9 have only one neighbor in

X, because otherwise a node inX would have more thanF = 2 neighbors inY ). One can

see that if the initial values of nodes inX and Y are a ∈ R and b ∈ R, respectively, with

a 6= b, then asymptotic consensus is not achieved whenever ARC-P is used with parameterF –

even in the absence of misbehaving nodes. This is because each node views the values of itsF

neighbors from the opposing set as extreme, and removes all of these values from its list. The



only remaining values for each node are from its own set, and thus no node ever changes its

value.

The situation can be even worse in the more general case of digraphs. Examples of digraphs

are illustrated in [18] that are(n − 1)-connected and have minimum out-degreen − 2, yet

ARC-P still cannot guarantee asymptotic consensus. Thus, even digraphs with a relatively large

connectivity (or minimum out-degree) are not sufficient to guarantee consensus of the normal

nodes, indicating the inadequacy of these traditional metrics to analyze the convergence properties

of ARC-P. Taking a closer look at the graph in Fig. 1, we see that the reason for the failure

of consensus is that no node has enough neighbors in the opposite set; this causes every node

to throw away all useful information from outside of its set,and prevents consensus. Based on

this intuition, the following properties, i.e.,r-reachable sets andr-robustness, were introduced

in [34].

Definition 9 (r-reachable set):Given a digraphD and a nonempty subsetS of nodes ofD,

we sayS is anr-reachable set if ∃i ∈ S such that|Vi \ S| ≥ r, wherer ∈ Z≥0.

A set S is r-reachable if it contains a node that has at leastr neighbors outside ofS. The

parameterr quantifies the redundancy of information flow from nodes outside of S to some

node insideS. Intuitively, the r-reachability property captures the idea that some node inside

the set is influenced by a sufficiently large number of nodes from outside the set. The above

reachability property pertains to a given setS; in order to generalize this notion of redundancy

to the entire network, we introduce the following definitionof r-robustness.

Definition 10 (r-robustness):A nonempty, nontrivial digraphD = {V, E} onn nodes (n ≥ 2)

is r-robust, with r ∈ Z≥0, if for every pair of nonempty, disjoint subsets ofV, at least one of

the subsets isr-reachable. By convention, ifD is empty or trivial (n ≤ 1), thenD is 0-robust.

The trivial graph is also 1-robust.

The reason that pairs of nonempty, disjoint subsets of nodesare considered in the definition

of r-robustness can be seen in the example of Fig. 1. If eitherX or Y were3-reachable (r =

F +1 = 3), then at least one node would be sufficiently influenced by a node outside of its set in

order to drive it away from the values of its group, and thereby lead its group to the values of the

other set. However, if there are misbehaving nodes in the network, then the situation becomes

more complex. For example, consider theF -total model of malicious nodes, and consider two

setsX andY in the graph. Lets be the total number of nodes in these two sets that each have



at leastF + 1 neighbors outside their own set. Ifs ≤ F , then simply by choosing these nodes

to be malicious, the setsX andY contain no normal nodes that bring in enough information

from outside, and thus the system can be prevented from reaching consensus. This reasoning

suggests a need to specify a minimum number of nodes that are sufficiently influenced from

outside of their set (in this example, at leastF + 1 nodes). This intuition leads to the following

generalizations ofr-reachability andr-robustness.

Definition 11 ((r, s)-reachable set):Given a digraphD and a nonempty subset of nodesS,

we say thatS is an(r, s)-reachable set if there are at leasts nodes inS with at leastr neighbors

outside ofS, wherer, s ∈ Z≥0; i.e., givenXS = {i ∈ S : |Vi \ S| ≥ r}, then |XS | ≥ s.

Observe thatr-reachability is equivalent to(r, 1)-reachability; hence,(r, s)-reachability is a

strict generalization ofr-reachability. If a setS is (r, s)-reachable, we know there are at leasts

nodes inS with at leastr neighbors outside ofS. Thus, ifS is (r, s)-reachable, then it is(r, s′)-

reachable, fors′ ≤ s. Also, it is clear thats ≤ |S| and all subsets of nodes of any digraph are

(r, 0)-reachable. The additional specificity on the number of nodes with redundant information

flow from outside of their set is useful for defining a more general notion of robustness.

Definition 12 ((r, s)-robustness):A nonempty, nontrivial digraphD = {V, E} on n nodes

(n ≥ 2) is (r, s)-robust, for nonnegative integersr ∈ Z≥0, 1 ≤ s ≤ n, if for every pair of

nonempty, disjoint subsetsS1 andS2 of V such thatS1 is (r, sr,1)-reachable andS2 is (r, sr,2)-

reachable withsr,1 andsr,2 maximal (i.e.,sr,k = |XSk
| whereXSk

= {i ∈ Sk : |Vi \ Sk| ≥ r} for

k ∈ {1, 2}), then at least one of the following hold:

(i) sr,1 = |S1|;

(ii) sr,2 = |S2|;

(iii) sr,1 + sr,2 ≥ s.

By convention, ifD is empty or trivial (n ≤ 1), thenD is (0,1)-robust. IfD is trivial, D is also

(1,1)-robust.

A few remarks are in order with respect to this definition. Thedefinition of (r, s)-robustness

aims to capture the idea that enough nodes in every pair of nonempty, disjoint setsS1,S2 ⊂ V

have at leastr neighbors outside of their respective sets. To quantify what is meant by “enough”

nodes, it is necessary to take the maximalsr,k for which Sk is (r, sr,k)-reachable fork ∈ {1, 2}

(sinceSk is (r, s′r,k)-reachable fors′r,k ≤ sr,k). Sincesr,k = |XSk
|, condition (i) or (ii) means

that all nodes inSk have at leastr neighbors outside ofSk. Given a pairS1,S2 ⊂ V such that



Fig. 2. A 3-robust graph that isnot (3,2)-robust.

0 < |S1| < r andS2 = V \ S1, there can be no more than|S1| nodes with at leastr neighbors

outside of their set. Hence, conditions(i) and (ii) quantify the maximum number of nodes

with at leastr neighbors outside of their set for such pairs, and must therefore be “enough”.

Alternatively, if there are at leasts nodes with at leastr neighbors outside of their respective sets

in the unionS1 ∪S2, then condition(iii) is satisfied. For such pairsS1,S2 ⊂ V, the parameter7

1 ≤ s ≤ n quantifies what is meant by “enough” nodes.

An important observation is that(r, 1)-robustness is equivalent tor-robustness. This holds

because conditions(i)− (iii) for (r, 1)-robustness collapse to the condition that at least one of

S1 andS2 is r-reachable. In general, a digraph is(r, s′)-robust if it is (r, s)-robust fors′ ≤ s;

therefore, a digraph isr-robust whenever it is(r, s)-robust. The converse, however, is not true.

Consider the graph in Fig. 2. This graph is3-robust, but is not(3, 2)-robust. For example, let

S1 = {1, 3, 5, 6, 7} andS2 = {2, 4}. Thus, only node 2 has at least 3 nodes outside of its set,

so all of the conditions(i) − (iii) fail. Therefore,(r, s)-robustness is a strict generalization of

r-robustness.

Next, consider again the example of Fig. 1. It can be shown that this graph is(2, s)-robust,

for all 1 ≤ s ≤ n = 8. This follows becauseall nodes in at least one of the setsS1 andS2 has

at least 2 neighbors outside of their set, for any nonempty and disjoint S1,S2 ⊂ V. Therefore,

condition(iii) in Definition 12 isneverneeded, and the definition is satisfied withr = 2 for all

7Note thats = 0 is not allowed in(r, s)-robustness because in that case any digraph onn ≥ 2 nodes satisfies the definition

for any r ∈ Z≥0, which subverts the interpretation of the parameterr. At the other extreme, the maximal meaningful value of

s is s = n since condition(iii) canneverbe satisfied withs > n.



valid values ofs.

On the other hand, the graph in Fig. 1 isnot 3-robust. This can be shown by selectingS1 = X

andS2 = Y . Note that an(r, s)-robust digraph is(r′, s)-robust forr′ ≤ r. The question then

arises, how does one compare relative robustness between digraphs? Clearly, if digraphD1 is

(r1, s1)-robust and digraphD2 is (r2, s2)-robust with maximalrk and sk for k ∈ {1, 2}, where

r1 > r2 and s1 > s2, then one can conclude thatD1 is more robust thanD2. However, in

cases wherer1 > r2 but s1 < s2, which digraph is more robust? For example, the graph of

Fig. 1 is (2, s)-robust for all1 ≤ s ≤ n = 8, but is not 3-robust, whereas the graph in Fig. 2

is 3-robust, but is not (2,5)-robust (e.g., letS1 = {1, 5, 6} andS2 = {2, 3, 4}). In general, the

r-robustness property takes precedence in the partial orderthat determines relative robustness,

and the maximals in (r, s)-robustness is used for finer grain partial ordering (i.e.,ordering the

robustness of twor-robust digraphs with the same value ofr). Therefore, the graph in Fig. 2

is more robust than the graph of Fig. 1. Yet, the graph of Fig. 2is only 3-connected, whereas

the graph of Fig. 1 is 5-connected. Hence, it is possible thata digraph withlessconnectivity is

more robust.

We demonstrate in Section V that ther-robustness property is useful for analyzing ARC-P

with parameterF under theF -local model, and show that(r, s)-robustness is the key property

for analyzing ARC-P with parameterF under theF -total model. More specifically, we show

that (F + 1, F +1)-robustness of the network is both necessary and sufficient for normal nodes

using ARC-P with parameterF to achieve resilient asymptotic consensus whenever the scope

of threat isF -total, the threat model is malicious, and the network is time-invariant. Likewise,

we show that(2F + 1)-robustness of the network is sufficient for ARC-P with parameterF to

achieve resilient asymptotic consensus whenever the scopeof threat isF -local.

B. Construction of Robust Digraphs

Note that robustness requires checking every possible nonempty disjoint pair of subsets of

nodes in the digraph for certain conditions. Currently, we do not have a computationally efficient

method to check whether these properties hold in arbitrary digraphs. However, in [34] it is shown

that the commonpreferential-attachmentmodel for complex networks (e.g., [2]) producesr-

robust graphs, provided that a sufficient number of links areadded to the network as new nodes

are attached. In this subsection, we extend this construction to show that preferential-attachment



also leads to(r, s)-robust graphs.

Theorem 2:Let D = {V, E} be a nonempty, nontrivial (r, s)-robust digraph. Then the digraph

D′ = {V ∪ {vnew}, E ∪ Enew}, wherevnew is a new vertex added toD andEnew is the directed

edge set related tovnew, is (r, s)-robust if dvnew
≥ r + s− 1.

Proof: For any pair of nonempty, disjoint setsS1 andS2, there are three cases to check:

vnew 6∈ Si , {vnew} = Si andvnew ∈ Si, i ∈ {1, 2}. In the first case, sinceD is (r, s)-robust, the

conditions in Definition 12 must hold. In the second case,XSi
= Si, and we are done. In the

third case, suppose, without loss of generality,S2 = S ′
2∪{vnew}. SinceD is (r, s)-robust, at least

one of the following conditions hold:sr,1 + s′r,2 ≥ s, sr,1 = |S1|, or s′r,2 = |S ′
2|. If either of the

first two hold, then the corresponding conditions hold for the pairS1,S2 in D′. So assume only

s′r,2 = |S ′
2| holds. Then, the negation of the first conditionsr,1+ s′r,2 ≥ s impliess′r,2 = |S ′

2| < s.

Hence,|Vvnew \ S2| ≥ r, andsr,2 = |S2|, completing the proof.

The above result indicates that to construct an (r, s)-robust digraph withn nodes (where

n > r), we can start with an (r, s)-robust digraph with relatively smaller order (such as a

complete graph), and continually add new nodes with incoming edges from at leastr + s − 1

nodes in the existing digraph. Note that this method does notspecify which existing nodes

should be chosen. The preferential-attachment model corresponds to the case when the nodes

are selected with a probability proportional to the number of edges that they already have. This

leads to the formation of so-calledscale-freenetworks [2], and is cited as a plausible mechanism

for the formation of many real-world complex networks. Theorem 2 indicates that a large class of

scale-free networks are resilient to the threat models studied in this paper (provided the number

of edges added in each round is sufficiently large when the network is forming).

For example, Fig. 3 illustrates a (3, 2)-robust graph constructed using the preferential attach-

ment model starting with the complete graph on 5 nodes,K5 (which is also (3,3)-robust and is

the only (3,2)-robust digraph on 5 nodes), and with 4 new edges added to each new node. Note

that this graph is also 4-robust, which couldnot be predicted from Theorem 2 sinceK5 is not

4-robust. Therefore, it is actually possible (but not guaranteed) to end up with amore robust

digraph than the initial one using the preferential-attachment growth model.



Fig. 3. A (3, 2)-robust graph constructed fromK5 using preferential attachment.

V. RESILIENT CONSENSUS RESULTS

In this section, we provide the key results showing that sufficiently robust digraphs guarantee

resilient consensus. We begin with the following result showing that ARC-P always satisfies the

safety condition for resilient asymptotic consensus. Recall that M [t] andm[t] are the maximum

and minimum values of thenormal nodes at timet, respectively.

Lemma 3:Suppose each normal node updates its value according to ARC-P with parameter

F under theF -total or F -local malicious model. Then, for each normal nodei ∈ N , xi[t] ∈

[m[0],M [0]] for all t, regardless of the network topology.

Proof: The proof for discrete time is straightforward and follows directly from the definitions

and the fact that the values inJi[t] \ Ri[t] used in the ARC-P update rule lie in the interval

[m[t],M [t]] and the update rule in (3) is a convex combination of these values. For continuous

time, we have proved this in Lemma 2.

An immediate consequence of Lemma 3 is thatM [·] is nonincreasing with time, andm[·] is

nondecreasing with time. From this, it follows that the Lyapunov candidateΨ[t] = M [t]−m[t]

is nonincreasing with time. In the following sections, we show that this Lyapunov function

decreases over sufficiently large time intervals whenever the normal nodes update their values

according to ARC-P, provided the network is sufficiently robust.

A. F -Total Model

Theorem 3:Consider a time-invariant network modeled by a directed graph D = {V, E}

where each normal node updates its value according to ARC-P with parameterF . Then, resilient



asymptotic consensus is achieved under theF -total malicious model if and only if the network

topology is(F + 1, F + 1)-robust.

Proof: (Necessity)If D is not (F + 1, F + 1)-robust, then there are nonempty, disjoint

S1,S2 ⊂ V such that none of the conditions(i) − (iii) hold. Suppose the initial value of each

node inS1 is a and each node inS2 is b, with a < b. Let all other nodes have initial values

taken from the interval(a, b). SincesF+1,1 + sF+1,2 ≤ F , suppose all nodes inXS1 andXS2 are

malicious and keep their values constant. With this assignment of adversaries, there is still at

least one normal node in bothS1 andS2 sincesF+1,1 < |S1| and sF+1,2 < |S2|, respectively.

Since these normal nodes remove theF or less values of in-neighbors outside of their respective

sets, no consensus among normal nodes is reached.

(Sufficiency)[Continuous Time] We know from Lemma 3 that bothM [·] and m[·] are

monotone and bounded functions oft, and therefore each of them has a limit, denoted by

AM andAm, respectively. Note that ifAM = Am, then the normal nodes will achieve resilient

asymptotic consensus. We will prove by contradiction that this must be the case. The main

idea behind the proof is to use the gap betweenAM andAm and combine this with both the

uniform continuity assumption on the malicious nodes’ value trajectories and a careful selection

of subsets of nodes to show thatΨ[t] will shrink to be smaller than the gapAM − Am in

finite time (a contradiction). To this end, suppose thatAM 6= Am (note thatAM > Am by

definition). SinceM [t] → AM monotonically, we haveM [t] ≥ AM for all t ≥ 0. Similarly,

m[t] ≤ Am for all t ≥ 0. Moreover, for eachǫ > 0 there existstǫ > 0 such thatM [t] < AM + ǫ

and m[t] > Am − ǫ, ∀t ≥ tǫ. Next, define constantǫ0 = (AM − Am)/4 > 0, which satisfies

M [t]− ǫ0 ≥ m[t] + ǫ0 + (AM − Am)/2. This inequality informs the choice of subsets of nodes

to be defined shortly in order to limit the influence of the malicious nodes. Indeed, since the

adversary trajectoryxk is uniformly continuous on[0,∞) for k ∈ A, it follows that for each

ν > 0, there existsδk(ν) > 0 such that|xk[t1]− xk[t2]| < ν whenever|t1 − t2| < δk(ν). Define

δ(ν) = mink∈A{δk(ν)}.

Next, we define the sets of nodes that are vital to the proof. For any t0 ≥ 0, t ≥ t0, ∆ > 0,

andη > 0, define

XM(t, t0,∆, η)={i ∈ V : ∃t′ ∈ [t, t +∆] s.t. xi[t
′] > M [t0]− η}



and

Xm(t, t0,∆, η)={i ∈ V : ∃t′ ∈ [t, t +∆] s.t. xi[t
′] < m[t0] + η}.

Observe that if we chooseη ≤ ǫ0 = (AM − Am)/4, ν < (AM − Am)/2, and∆ < δ(ν), then

we are guaranteed that for anyt0 ≥ 0 and t ≥ t0, XM(t, t0,∆, η) ∩ Xm(t, t0,∆, η) ∩ A = ∅.

That is, with these choices ofη, ν, and∆, no malicious node can be in bothXM(t, t0,∆, η) and

Xm(t, t0,∆, η). This follows because otherwise there existst1, t2 ∈ [t, t + ∆] and k ∈ A such

that xk[t1] > M [t0]− η andxk[t2] < m[t0] + η, from which we reach the contradiction

xk[t1]− xk[t2] > M [t0]−m[t0]− 2η ≥
AM −Am

2
> ν.

We proceed by showing that if we chooseη, ν, and∆ small enough, then no normal node

can be in bothXM(t, t0,∆, η) andXm(t, t0,∆, η) for any t0 ≥ 0 and t ≥ t0. First, we require

some generic bounds on the normal node trajectories. Fori ∈ N with xi[t
′] < M [t′], we know

from Lemmas 1 and 3 that fort ≥ t′,

ẋi[t] =
∑

j∈Vi\Ri[t]

wij[t] (xj [t]− xi[t]) ≤ B(M [t′]− xi[t]),

whenever the derivative exists8, whereB = (n−F−1)β is the product of the upper bound on the

weightsβ and the maximum number of neighboring values used that have valueM [t] ≤ M [t0],

n− 1− F (since there is a maximum ofn− 1 neighbors,F of which would be thrown away).

Using the integrating factoreB(t−t′), and integrating in the sense of Lebesgue, we have

xi[t] ≤ xi[t
′]e−B(t−t′) +M [t′](1− e−B(t−t′)), ∀t ≥ t′. (7)

By interchanging the roles oft and t′, we have

xi[t] ≥ xi[t
′]eB(t′−t) +M [t](1 − eB(t′−t)), ∀t ≤ t′. (8)

Similarly, we can show that forj ∈ N with xj [t
′] > m[t′],

xj [t] ≥ xj [t
′]e−B(t−t′) +m[t′](1− e−B(t−t′)), ∀t ≥ t′, (9)

and

xj [t] ≤ xj [t
′]eB(t′−t) +m[t](1 − eB(t′−t)), ∀t ≤ t′, (10)

8The solutions of the normal nodes’ trajectories are understood in the sense of Carathéodory. Hence, it is possible thatthe

derivative of the solution does not exist on a set of points intime of Lebesgue measure zero.



Now fix η ≤ ǫ0 = (AM − Am)/4, ν < (AM − Am)/2, and∆ < min{δ(ν), log(3)/B}, and

supposei ∈ N ∩ XM (t, t0,∆, η). Then∃t′ ∈ [t, t+∆] such thatxi[t
′] > M [t0]− η. Combining

this with (9), it follows that fors ∈ [t′, t+∆],

xi[s] ≥ xi[t
′]e−B(s−t′) +m[t′](1− e−B(s−t′))

> (M [t0]− η)e−B(s−t′) +m[t0](1− e−B(s−t′))

≥ (AM − η)e−B(s−t′) +m[t0]−Ame
−B(s−t′)

≥ m[t0] + (AM − Am)e
−B(s−t′) −

AM −Am

4
e−B(s−t′)

≥ m[t0] +
3

4
(AM − Am)e

−B∆

> m[t0] +
AM −Am

4
≥ m[t0] + η,

where we have used the fact that∆ < log(3)/B in deriving the last line. Similarly, using (8), it

follows that fors ∈ [t, t′],

xi[s] ≥ xi[t
′]eB(t′−s) +M [s](1 − eB(t′−s))

> (M [t0]− η)eB(t′−s) +M [s](1 − eB(t′−s))

≥ M [s]− ηeB(t′−s)

≥ M [s]− η

≥ AM −
AM −Am

4

=
AM + Am

2
+

AM − Am

4

≥ m[t0] + η.

Therefore,i /∈ Xm(t, t0,∆, η).



Similarly, with the given choices forη, ν, and∆, if j ∈ N ∩ Xm(t, t0,∆, η), then it follows

from (7) that fors ∈ [t′, t+∆],

xj [s] ≤ xj [t
′]e−B(s−t′) +M [t′](1− e−B(s−t′))

< (m[t0] + η)e−B(s−t′) +M [t0](1− e−B(s−t′))

≤ M [t0]− (M [t0]−m[t0])e
−B(s−t′) + ηe−B(s−t′)

≤ M [t0]− (AM −Am)e
−B(s−t′) +

AM − Am

4
e−B(s−t′)

≤ M [t0]−
3

4
(AM − Am)e

−B∆

< M [t0]−
AM − Am

4
≤ M [t0]− η,

where we have used the fact that∆ < log(3)/B in deriving the last line. Finally, using (10), it

follows that fors ∈ [t, t′],

xj [s] ≤ xj [t
′]eB(t′−s) +m[s](1− eB(t′−s))

< (m[t0] + η)eB(t′−s) +m[s](1− eB(t′−s))

≤ m[s] + ηeB(t′−s)

≤ m[s] + η

≤ Am +
AM − Am

4

=
AM + Am

2
−

AM − Am

4

≤ M [t0]− η.

Thus, j /∈ XM(t, t0,∆, η). This shows thatXM(t, t0,∆, η) and Xm(t, t0,∆, η) are disjoint for

appropriate choices of the parameters.

Next, we show that by choosingǫ small enough, we can define a sequence of sets,{XM(tǫ +

k∆, tǫ,∆, ǫk)}k=N
k=0 and{Xm(tǫ+ k∆, tǫ,∆, ǫk)}k=N

k=0 , whereN = |N |, so that we are guaranteed

that by theN th step, at least one of the sets contains no normal nodes. This will be used to show

thatΨ has shrunk belowAM −Am. Toward this end, letǫ0 = (AM −Am)/4, ν < (AM −Am)/2,

and∆ < min{δ(ν), log(3)/B}. Then fix

ǫ <
1

2

[α

B
(1− e−B∆)e−B∆

]2N

ǫ0.



For k = 0, 1, 2, . . . , N , defineǫk = [ α
B
(1 − e−B∆)e−B∆]2kǫ0, which results inǫ0 > ǫ1 > · · · >

ǫN > 2ǫ > 0. For brevity, defineX k
M = XM(tǫ + k∆, tǫ,∆, ǫk) andX k

m = Xm(tǫ + k∆, tǫ,∆, ǫk)

for k = 0, 1, . . . , N . Observe that by definition, there is at least one normal node(the ones

with extremal values) inX 0
M andX 0

m, and we have shown above that all of theX k
M andX k

m

are disjoint. It follows from the fact that there are at mostF malicious nodes in the network

(F -total model) andD is (F + 1, F + 1)-robust, that either∃i ∈ X 0
M ∩ N or ∃i ∈ X 0

m ∩ N (or

both) such thati has at leastF +1 neighbors outside of its set. That is, eitheri has at leastF +1

neighborsi1, i2, . . . , iF+1 such thatxik [t] ≤ M [tǫ]− ǫ0 for all t ∈ [tǫ, tǫ +∆] (if i ∈ X 0
M ∩ N ),

or xik [t] ≥ m[tǫ] + ǫ0 for all t ∈ [tǫ, tǫ + ∆] (if i ∈ X 0
m ∩ N ). Note that it can be shown that

the minimum in-degree of an(F + 1, F + 1)-robust digraph is at least2F + 1. It follows from

this thati will always use at least one neighbor’s value in its update. Assumei ∈ X 0
M ∩N and

suppose that none of theF + 1 (or more) neighbors outside ofX 0
M are used in its update at

some timet′ ∈ [tǫ, tǫ +∆] at which the derivative exists. Then,xi[t
′] ≤ M [t0]− ǫ0 (otherwise,

it would use at least one of itsF + 1 neighbors’ values outside ofX 0
M . It follows from (7) that

xi[tǫ +∆] ≤ M [tǫ]− ǫ0e
−B∆.

Using this with (7) to upper boundxi[t] for t ∈ [tǫ +∆, tǫ + 2∆], we see that

xi[t] ≤ M [tǫ]− ǫ0e
−2B∆ ≤ M [tǫ]− ǫ1.

Therefore, in this casei /∈ X 1
M . Alternatively, assume at least one of the values from its neighbors

outside ofX 0
M is used for almost allt ∈ [tǫ, tǫ +∆]. Then,

ẋi[t] ≤ α(M [tǫ]− ǫ0 − xi[t]) + (B − α)(M [tǫ]− xi[t])

≤ −Bxi[t] +BM [tǫ]− αǫ0,

for almost allt ∈ [tǫ, tǫ +∆]. Using this, we can show

xi[tǫ +∆] ≤ xi[tǫ]e
−B∆ + (M [tǫ]−

αǫ0
B
)(1− e−B∆)

≤ M [tǫ]−
α
B
(1− e−B∆)ǫ0.



Using this with (7) to upper boundxi[t] for t ∈ [tǫ + ∆, tǫ + 2∆], we see that for allt ∈

[tǫ +∆, tǫ + 2∆],

xi[t] ≤ M [tǫ]−
α
B
(1− e−B∆)e−B(t−tǫ−∆)ǫ0

≤ M [tǫ]−
α
B
(1− e−B∆)e−B∆ǫ0

≤ M [tǫ]− ǫ1.

Thus, in either casei /∈ X 1
M . The final step is to show thatj /∈ X 1

m wheneverj is a normal node

with j /∈ X 0
m. Sincej /∈ X 0

m, it means thatxj [tǫ +∆] ≥ m[tǫ] + ǫ0. Using this with (9) to lower

boundxj [t] for t ∈ [tǫ +∆, tǫ + 2∆], we see that

xj [t] ≥ m[tǫ] + ǫ0e
−B∆ ≥ m[tǫ] + ǫ1.

Hence,j is also not inX 1
m, as claimed. Therefore, ifi ∈ X 0

M ∩N has at leastF + 1 neighbors

outside of its set, we are guaranteed that|X 1
M ∩ N | < |X 0

M ∩ N | and |X 1
m ∩ N | ≤ |X 0

m ∩ N |.

Using a similar argument, we can show that ifi ∈ X 0
m ∩N has at leastF +1 neighbors outside

of its set, we are guaranteed that|X 1
m ∩N | < |X 0

m ∩N | and |X 1
M ∩ N | ≤ |X 0

M ∩ N |.

Now, if bothX 1
M ∩N andX 1

m ∩N are nonempty, we can repeat the above argument to show

that either|X 2
m ∩ N | < |X 1

m ∩ N | or |X 2
M ∩ N | < |X 1

M ∩ N |, or both. It follows by induction

that as long as bothX j
M ∩ N andX j

m ∩ N are nonempty, then either|X j+1
m ∩ N | < |X j

m ∩ N |

or |X j+1
M ∩ N | < |X j

M ∩ N | (or both), for j = 1, 2, . . . . Since |X 0
m ∩ N | + |X 0

M ∩ N | ≤ N ,

there existsT < N such that at least one ofX T
M ∩ N andX T

m ∩ N is empty. IfX T
M ∩ N = ∅,

thenM [tǫ + T∆] ≤ M [tǫ] − ǫT < M [tǫ] − 2ǫ. Similarly, if X T
m ∩ N = ∅, thenm[tǫ + T∆] ≥

m[tǫ] + ǫT > m[tǫ] + 2ǫ. In either case,Ψ[tǫ + T∆] < AM − Am and we reach the desired

contradiction.

(Sufficiency)[Discrete Time] BecauseΨ is a nonincreasing function oft, whenever the normal

nodes are in agreement at timet0, then consensus is maintained fort ≥ t0. Therefore, fixt0 ≥ 0

and assumeΨ[t0] > 0. For t ≥ t0 andη > 0, defineXM(t, t0, η) = {j ∈ V : xj [t] > M [t0]− η}

and Xm(t, t0, η) = {j ∈ V : xj [t] < m[t0] + η}. Define ǫ0 = Ψ[t0]/2 and defineǫj = αǫj−1

for j = 1, 2, . . . , N − 1, whereN = N . It follows that ǫj = αjǫ0 > 0. By definition, the sets

Xm(t0, t0, ǫ0) andXm(t0, t0, ǫ0) are nonempty and disjoint. BecauseD is (F + 1, F + 1)-robust

and there are at mostF malicious nodes in the network (F -total model), it follows that either



there existsi ∈ XM(t0, t0, ǫ0)∩N or there existsi ∈ Xm(t0, t0, ǫ0)∩N , or there exists suchi in

both, such thati has at leastF+1 neighbors outside of its set. Therefore, ifi ∈ XM(t0, t0, ǫ0)∩N

(with at leastF + 1 neighbors outside its set), then

xi[t0 + 1] = xi[t0] +
∑

j∈Ji\Ri[t0]

wij[t0]xj [t0]

≤ α(M [t0]− ǫ0) + (1− α)M [t0]

≤ M [t0]− αǫ0 = M [t0]− ǫ1.

Note that for any normal node not inXM(t0, t0, ǫ0), the above inequality holds because any

normal node always uses its own value in the update. From this, we conclude|XM(t0+1, t0, ǫ1)∩

N | < |XM(t0, t0, ǫ0) ∩ N |. Similarly, if i ∈ Xm(t0, t0, ǫ0) ∩ N (with at leastF + 1 neighbors

outside its set), then

xi[t0 + 1] = xi[t0] +
∑

j∈Ji\Ri[t0]

wij [t0]xj [t0]

≥ α(m[t0] + ǫ0) + (1− α)m[t0]

≥ m[t0] + αǫ0 = m[t0] + ǫ1.

Similarly as above, this inequality holds for any normal node not inXm(t0, t0, ǫ0). From this,

we conclude

|Xm(t0 + 1, t0, ǫ1) ∩N | < |Xm(t0, t0, ǫ0) ∩ N |.

By repeating this analysis, we can show by induction that as long as bothXM(t0+j, t0, ǫj)∩N

and Xm(t0 + j, t0, ǫj) ∩ N are both nonempty, then either|XM(t0 + j + 1, t0, ǫj+1) ∩ N | <

|XM(t0 + j, t0, ǫj) ∩ N |, or |Xm(t0 + j + 1, t0, ǫj+1) ∩ N | < |Xm(t0 + j, t0, ǫj) ∩ N |, or both.

Since|XM(t0, t0, ǫ0) ∩ N |+ |Xm(t0, t0, ǫ0) ∩ N | ≤ |N | = N , there existsT < N such that one

of the setsXM(t0 + T, t0, ǫT ) ∩N , Xm(t0 + T, t0, ǫT ) ∩N , or both, is empty. It follows that in

the former case,M [t0 + T ] ≤ M [t0]− ǫT , and in the latter case,m[t0 + T ] ≥ m[t0] + ǫT . Since

ǫ0 > ǫ1 > · · · > ǫT ≥ ǫN−1 > 0, we have

Ψ[t0+N − 1]−Ψ[t0] ≤ Ψ[t0 + T ]−Ψ[t0]

≤ (M [t0 + T ]−M [t0]) + (m[t0]−m[t0 + T ])

≤ −ǫT ≤ −ǫN−1.



Therefore,Ψ[t0 + N − 1] ≤ Ψ[t0](1 − αN−1/2). Define c = (1 − αN−1/2). Sincec is not a

function of t0 and t0 was chosen arbitrarily, it follows that

Ψ[t0 + k(N − 1)] ≤ ckΨ[t0],

for all k ∈ Z0. Becausec < 1, it follows thatΨ[t] → 0 as t → ∞.

When the network is time-varying, one can state the following corollary of the above theorem.

Corollary 2: Consider a time-varying network modeled by a directed graphD[t] = {V, E [t]}

where each normal node updates its value according to ARC-P with parameterF . Then, resilient

asymptotic consensus is achieved under theF -total malicious model if there existst0 ≥ 0 such

thatD[t] is (F + 1, F + 1)-robust,∀t ≥ t0.

Proof: [Continuous Time] The proof follows the contradiction argument of the proof of

Theorem 3, but here we use the dwell time assumption. In this case, let

∆ < min{δ(ν), log(3)/B, τ
N
}.

Fix

ǫ <
1

2

[α

B
(1− e−B∆)e−B∆

]2N

ǫ0,

and let t′ǫ ≥ 0 be the time such thatM [t] < AM + ǫ and m[t] > Am − ǫ for all t ≥ t′ǫ

and definet′ = max{t0, t′ǫ}. Then, associated to the switching signalσ(t), we definetǫ as the

next switching instance aftert′, or t′ itself if there are no switching instances aftert′. Since

∆ < τ/N , the same sequence of calculations can be used (as in the proof of Theorem 3) to

show thatΨ[tǫ + T∆] < AM −Am.

[Discrete Time] The argument in the proof of Theorem 3 holds fort ≥ t0. Hence,

Ψ[t0 + k(N − 1)] ≤ ckΨ[t0],

for all k ∈ Z0. Becausec < 1, it follows thatΨ[t] → 0 as t → ∞.

To illustrate these results on the examples of Section IV, the graphs in Figs. 1, 2, and 3

can withstand the compromise of at most 1 malicious node in the network using ARC-P with

parameterF = 1 (each graph is (2,2)-robust but not (3,3)-robust). This is not to say that it is

impossible for the normal nodes to reach consensus if there are, for example, two nodes that

are compromised. Instead, these results say that it is not possible thatany two nodes can be

compromised and still guarantee resilient asymptotic consensus using ARC-P with parameter

F = 2.



B. F -Local Model

Theorem 4:Consider a time-invariant network modeled by a directed graph D = {V, E}

where each normal node updates its value according to ARC-P with parameterF . Then, resilient

asymptotic consensus is achieved under theF -local malicious model if the network topology is

(2F + 1)-robust. Furthermore, a necessary condition is for the topology of the network to be

(F + 1)-robust.

Proof: The necessity proof is given in [34]. The sufficiency proof follows the same line as

that of Theorem 3. In continuous time, the main difference isthat the sets of nodesXM andXm

include only normal nodes. That is, for anyt0 ≥ 0, t ≥ t0, ∆ > 0, andη > 0, define

XM(t, t0,∆, η)={i ∈ N : ∃t′ ∈ [t, t+∆] s.t. xi[t
′] > M [t0]− η}

and

Xm(t, t0,∆, η)={i ∈ N : ∃t′ ∈ [t, t+∆] s.t. xi[t
′] < m[t0] + η}.

Likewise, fork = 1, 2, . . . , N , the definitions ofX k
M andX k

m are modified to include only normal

nodes. The analysis showing thatX k
M andX k

m are disjoint still holds. By definition, it follows that

X 0
M andX 0

m are nonempty. Since the network is(2F + 1)-robust, either∃i ∈ X 0
M or ∃i ∈ X 0

m,

or both, such thati has at least2F + 1 neighbors outside of its set. If suchi is in X 0
M , then

at mostF of the neighbors are malicious (F -local model) and the others are normal with value

xj [t] ≤ M [tǫ]− ǫ0 for t ∈ [tǫ, tǫ +∆]. The remaining argument follows the same line as that of

Theorem 3. (Notice in this case that the uniform continuity assumption on the malicious nodes

is not needed).

In discrete time, the setsXM andXm are defined to include only normal nodes. Then, the

(2F + 1)-robust assumption under theF -local model ensures at least one normal value outside

of eitherXM or Xm will be used in the update. The rest of the analysis is identical to the proof

of Theorem 3.

As with theF -total model, we have the following corollary (whose proof follows the same

line as that of Corollary 2).

Corollary 3: Consider a time-varying network modeled by a directed graphD[t] = {V, E [t]}

where each normal node updates its value according to ARC-P with parameterF . Then, resilient

asymptotic consensus is achieved under theF -local malicious model if there existst0 ≥ 0 such

thatD[t] is (2F + 1)-robust,∀t ≥ t0.



To illustrate these results, consider the 3-robust graph ofFig. 2. Recall that this graph cannot

generally sustain 2 malicious nodes as specified by the 2-total model; it is not (3,3)-robust.

However, under the 1-local model, it can sustain two malicious nodes if theright nodes are

compromised. For example, nodes 1 and 4 may be compromised under the 1-local model and

the normal nodes will still reach consensus. This example illustrates the advantage of theF -local

model, where there is no concern about global assumptions. If a digraph is(2F +1)-robust, then

up to F nodes may be compromised in any node’s neighborhood, possibly resulting in more

thanF malicious nodes in the network (as in the previous example).

VI. SIMULATIONS

This section presents a numerical example to illustrate ourresults. In this example, the network

is given by the (2,2)-robust graph shown in Fig. 4. Since the network is (2,2)-robust, it can

sustain a single malicious node in the network under the 1-total model. Suppose that the node

with the largest degree, node 14, is compromised and turns malicious. The nodes have continuous

dynamics and the normal nodes use either the Linear Consensus Protocol (LCP) given in (2)

or ARC-P for their control input. In either case, the weightsare selected to be unity for all

neighboring nodes that are kept, with the self-weights selected as−di for LCP and|Ri[t]| − di

for ARC-P for each normal nodei ∈ N . The initial values of the nodes are shown in Fig. 4

beneath the label of the node’s value. The goal of the malicious agent is to drive the values of

the normal nodes to a value of 2.

Fig. 4. (2,2)-Robust Network topology.

The results for this example are shown in Fig. 5. It is clear inFig. 5(a) that the malicious node

is able to drive the values of the normal nodes to its value of 2whenever LCP is used. On the



other hand, the malicious node is unable to achieve its goal whenever ARC-P is used. Note that

due to the large degree of the malicious node, it has the potential to drive the consensus process

to any value in the interval[0, 1] by choosing the desired value as its initial value and remaining

constant. However, this is allowed with resilient asymptotic consensus (because the consensus

value is within the range of the initial values held by normalnodes). Another observation is that

the consensus process in the case of ARC-P is slower than LCP;this is to be expected, due to

the fact that ARC-P effectively removes certain edges from the network at each time instance.
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(a) LCP.
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(b) ARC-P.

Fig. 5. Malicious node attempts to drive the values of the normal nodes to a value of 2. The malicious node succeeds whenever

LCP is used, but fails whenever ARC-P is used.



VII. DISCUSSION

The notion of graph connectivity has long been the backbone of investigations into fault

tolerant and secure distributed algorithms. Indeed, underthe assumption of full knowledge of

the network topology, connectivity isthe keymetric in determining whether a fixed number of

malicious adversaries can be overcome. However, in large scale systems and complex networks,

it is not practical for the various nodes to obtain knowledgeof the global network topology.

This necessitates the development of algorithms that allowthe nodes to operate on purely local

information. This paper continues and extends the work started in [16], [18], [34], and represents

a step in this direction for the particular application of distributed consensus. Using the ARC-P

algorithm developed in [16], the notion of robust graphs introduced in [34], and the extensions

of each presented here, we characterize necessary/sufficient conditions for the normal nodes

in large-scale networks to mitigate the influence of adversaries. We show that the notions of

robust digraphs are the appropriate analogues to graph connectivity when considering purely

local filtering rules at each node in the network. Just as the notion of connectivity has played

a central role in the existing analysis of reliable distributed algorithms with global topological

knowledge, we believe that robust digraphs (and its variants) will play an important role in the

investigation of purely local algorithms.

In a recent paper, developed independently of our work, Vaidya et al. have characterized the

tight conditions for resilient consensus using only local information whenever the threat model

is Byzantine and the scope of threat isF -total [32]. The network constructions used in [32] are

very similar to the robust digraphs presented here. In particular, the networks in [32] also require

redundancy of information flow between subsets of nodes in the network in a single hop.

Finally we summarize the main works related to resilient consensus using only local informa-

tion in Table I. In this table, we include only works on resilient consensus (also referred to as

Byzantine approximate consensus, or just approximate consensus in the literature) in synchronous

networks that use only local information, with no relaying of information across the network

and with networks that arenot complete (since complete networks provide global information

and have high communication cost). Further discussion about the relationship of the results in

this paper (and in [16], [18], [32], [34]) to approximate consensus can be found in [34] and [32].



TABLE I

RELATED WORK FOR RESILIENT CONSENSUS IN SYNCHRONOUS NETWORKS USING ONLY LOCAL INFORMATION (NO

NONLOCAL INFORMATION, NO RELAYS, AND THE NETWORK IS not COMPLETE).

X
X
X
X
X
X
X
X
X
X
X
X
X

Scope

Threat Model
Byzantine Malicious

F -total [18], [32] [18], this paper

F -local – [34], this paper
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