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Abstract—This paper develops a model-based framework
for the quantification and propagation of multiple uncertainty
sources affecting the performance of a smart system. A smart
system, in general, performs sensing, control and actuation for
proper functioning of a physical subsystem (also referred to
as a plant). With strong feedback coupling between several
subsystems, the uncertainty in the quantities of interest (QoI)
amplifies over time. The coupling in a generic smart system
occurs at two levels: (1) coupling between individual subsystems
(plant, cyber, actuation, sensors), and (2) coupling between
nodes in a distributed computational subsystem. In this paper,
a coupled smart system is decoupled and considered as a
feed-forward system over time and modeled using a two-level
Dynamic Bayesian Network (DBN), one at each level of coupling
(between subsystems and between nodes). A DBN can aggregate
uncertainty from multiple sources within a time step and across
time steps. The DBN associated with a smart system can be
learned using available system models, physics models and data.
The proposed methodology is demonstrated for the design of
a smart indoor heating system (identification of sensors and a
wireless network) within cost constraints that enables room-by-
room temperature control. We observe that sensor uncertainty
has a higher impact on the performance of the heating system
compared to the uncertainty in the wireless network.

Index Terms—Smart System; Performance; Uncertainty;
Bayesian; Dynamic;Reliability; Thermostat

I. INTRODUCTION

Emerging Trends: Recent developments in sensing, com-
putational and communication technologies are enabling the
development and use of smart systems to handle critical tasks
in several domains of engineering, medicine, manufacturing
and transportation. Dependability evaluation of smart system
becomes essential as any failures in handling the critical
tasks can result in serious financial and safety consequences.
Dependability, which corresponds to the likelihood in per-
forming the intended tasks is affected by different uncertainty
sources arising from various aspects of a smart system. Thus,
a thorough identification and quantification of uncertainty
sources along with their impact on pre-defined performance
measures becomes essential for the design of smart systems.

Model Integrated Computing (MIC) [1] presents a powerful
framework for the design and analysis of complex systems
that can be developed using the system architecture and
component-behavior models. The first step before developing
design options for a system is the creation of a modeling lan-
guage (such as the Generic Modeling Environment (GME)[2]),
which encodes all the semantic and syntactic information
regarding several objects, their properties and relationships.

Using the custom modeling language, several design alter-
natives can be developed as shown in [3]; these alternatives
are evaluated against several design criteria such as cost and
performance, to obtain the best design alternative. This works
assumes the availability of such a modeling language along
with several design alternatives. The primary objective of
this paper is the development of a performance evaluation
methodology under uncertainty of a smart system, which
allows the system designers to explore several design options
during design-time decision-making.

Challenges: The problem of performance evaluation under
uncertainty can be considered as a generalization of reliability
evaluation, which computes the probability that a pre-defined
performance function crosses a design threshold. Smart sys-
tems can be viewed as Cyber-Physical Systems (CPS) as
they comprise the actions of sensing, actuation and control.
Current literature on CPS reliability have primarily consid-
ered data-driven approaches [4], [5], [6], [7] where failure
rates for individual components are assumed to be available.
Failure rates are generally obtained by repeated experimental
or simulation-based evaluation of components until failure.
As opposed to the existing approaches, this paper considers
a probabilistic model-based approach, which is particularly
useful when experimentation or simulation under uncertainty
becomes prohibitively expensive or not feasible.

Solution Approach: This paper uses a partitioned approach
[8] to analyze a coupled smart system, considering it as a feed-
forward system over time. In addition to coupling between
several subsystems (Fig. 1), there exists coupled interaction
between several computational nodes when a distributed com-
putational subsystem is used rather than a single node. We
model the smart system using a two-level Dynamic Bayesian
Network (DBN), a higher-level DBN to model the interactions
between the subsystems and a lower-level DBN to model the
interactions between the computational nodes.

A DBN model is used here for performance evaluation as
opposed to performing Monte Carlo analysis on the system
model (such as a Simulink model) for the following reasons:
(1) In addition to prediction over time, a DBN naturally
allows for performing Bayesian inference when new sensor
data is available, and (2) Prediction from a smart system
model (simulink) is generally deterministic for a given input
whereas the prediction from a DBN is stochastic after aggre-
gating several uncertainty sources. DBNs have been previously
used for uncertainty modeling and performance evaluation of
mechanical [9], industrial [10] and aerospace systems [11]. In
this work, we use its capabilities to model a smart system.
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Research Contributions: The overall contributions made in
this paper are: (1) Identification and quantification of multiple
uncertainty sources through a probabilistic framework, (2)
Construction of a two-level DBN to model a smart system, and
(3) Performance analysis of a smart system using the DBN.

Paper Organization: Section II discusses the uncertainty
sources in a conceptual smart system and illustrates them
in the context of a smart indoor heating system. Section III
provides a background to a DBN. Section IV presents the
proposed methodology and Section V demonstrates the pro-
posed methods using a smart indoor heating system, followed
by a summary and future work in Section VI.

Fig. 1. Interactions between subsystems of a smart system

II. UNDERSTANDING THE PROBLEM

A. Uncertainty sources in a smart system

1) Computational subsystem: We assume that a software
application that runs on a computational subsystem is de-
signed, tested and validated to perform within a set of design
input ranges. We do not consider the random coding/latent
errors, which are traditionally used to assess software perfor-
mance [12]. Aside from software coding errors, we consider
the following three uncertainty sources.

Software inputs: The inputs for the software application are
obtained from the sensors collecting data about the physical
subsystem and may be from the environment. When the sensor
inputs are outside the design ranges (due to faulty sensors or
large environmental variability), the software application may
not provide correct outputs.

Hardware resources: A software application requires hard-
ware resources (such as memory) to perform computation. In
cases when hardware resources are unavailable, the computa-
tion cannot be completed resulting in faulty outputs.

Communication uncertainty: There are three types of com-
munication in a smart system: (i) sensors to a computa-
tional subsystem, (ii) between computational nodes, and (iii)
computational subsystem to an actuation subsystem. Faulty
computational outputs and faulty control actions may arise
due to unsuccessful communication. Robust communication
protocols can be implemented to avoid any communication
uncertainty but such robust protocols may not be always
feasible due to higher design costs.

2) Actuation and Physical subsystems: Uncertainty sources
during the modeling of these subsystems include the uncer-
tainty in model parameters or in models, not being able to
model the real-world phenomenon [13]. With time, an actua-
tion or a physical subsystem may degrade; this degradation
needs to be estimated and included in the models. If the
degradation cannot be observed directly, it needs to be inferred
through indirect methods, which may lead to uncertainty in

Fig. 2. Smart building with heat flow across rooms and outside environment

its estimation. We explain below these uncertainty sources in
context of a smart indoor heating system.

B. Case Study: Smart Indoor Heating System

Problem Description: We consider here a smart indoor
heating system in a commercial building that can control the
heating vents in different rooms independently, enabling room-
by-room temperature control similar to [14]. For illustration,
we consider a building with four rooms as shown in Fig. 2.

Every occupant in a room is assumed to have a temperature
comfort level, defined as the temperature range at which an
occupant is comfortable in. These comfort levels are quantified
using triangular distributions; their parameters are shown in
Table I. In Table I, CA, CB , CC and CD represent the occupant
comfort levels in each of the rooms. The table should be read
as follows. The occupants in room A are comfortable between
temperatures 67 F and 73 F while their maximum comfort
temperature is 70 F. Based on the current temperature, each
occupant accumulates “comfort credits” defined in Eq. 1.

TABLE I
COMFORT LEVELS OF OCCUPANTS

Parameter Lower
bound

Mode Upper
bound

CA 67 70 73
CB 65 68 70
CC 68 72 74
CD 69 73 75

Ccred =

∫ t2

t1

∫ T2

T1

β Pr(T, t) dTdt (1)

In Eq. 1, T1 and T2 represent the room temperatures when
time t = t1 and t = t2 respectively. β is a comfort credit
factor and Pr(T, t) represents the probability density function
of comfort level evaluated at the current room temperature at a
given time t. A comfort credit can be regarded as a numerical
measure that denotes the comfort level of an occupant.

Maintaining the rooms at the occupant comfort levels re-
quires energy. To achieve energy conservation, a sustainability
baseline temperature is set. If a room temperature is greater
than a set baseline temperature, the occupant is penalized with
negative “energy credits” and if the temperature is less than the
baseline temperature, the occupant is awarded positive “energy
credits”. The energy credits are defined as

Ecred =

∫ t2

t1

∫ TB−T

0

α dTdt (2)

In Eq. 2, TB , T and α represent the baseline temperature,
current room temperature and energy credit factor respectively.
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The goal of this problem is to design a controller that
maximizes the combination of comfort and energy credits such
that a minimum comfort level is attained for all the occupants
simultaneously. Due to the presence of uncertainty sources,
the computed energy and comfort credits are not deterministic
but stochastic. Therefore, we maximize the expected value of
the sum of energy and comfort credits, formulated as

Maximize
HA,HB ,HC ,HD

∑
i=A,B,C,D

E
[
Ei

cred + Ci
cred

]
subject to

Pr(CA
cred > 0 ∩ CB

cred > 0 ∩ CC
cred > 0 ∩ CD

cred > 0) > γ

In the above formulation, HA, HB , HC and HD are boolean
variables representing if the heating system in a room is
turned on or off. γ represents a probability threshold that
all room temperatures are in their occupant comfort ranges.
E[.] represents the expectation operator. Ei

cred and Ci
cred,

i = A,B,C,D represent the energy and comfort credits
accumulated by the occupants in each of the rooms.

TABLE II
COMPONENTS WITH THEIR COSTS AND UNCERTAINTIES

Component Performance Cost
Type 1 sensor 0.1 40
Type 2 sensor 0.15 25
Type 3 sensor 0.2 15
Type 1 network 0.95 200
Type 2 network 0.97 300
Type 3 network 0.99 400

Let three types of temperature sensors and three types of
wireless network systems such as Bluetooth, 2.4 GHz Wi-Fi
and 5 GHz Wi-Fi networks be available for design purposes.
The uncertainty in a component performance and its costs
are given in Table II. These values are chosen arbitrarily for
illustration purposes and can be replaced with actual values
from a manufacturer. The affordable budget to this design is
assumed to be 450 units. In Table II, performance for a sensor
refers to the standard deviation of the measurement error in
Fahrenheit while that for a network refers to its reliability, i.e.,
probability that a data packet is successfully transmitted.

Uncertainty sources in the case study: The uncertainty
sources with respect to the computational subsystem include:
(1) Sensor uncertainty in the room temperature measurements,
(2) Environmental variability in outside temperature, (3) Com-
munication uncertainty between the temperature sensors, com-
putational subsystem and the heating system, and (4) Resource
availability as the computational subsystem is assumed to per-
form other operations such as lightening control and security
systems. Uncertainty in the physical subsystem include the
uncertainty in the estimation of thermal conductivity, which is
used for calculating a suitable control action.

Problem Statement: The goal is to find the best design
combination of sensors and a network that satisfies the budget
constraints and maximizes a performance evaluation metric,
defined as the probability that the controller cannot find a
control action to maintain the occupant comfort requirements.

Fig. 3. A two-level DBN model of a conceptual smart system showing the
dependence between several systems

III. BACKGROUND: DYNAMIC BAYESIAN NETWORKS

Dynamic Bayesian Networks belong to a class of state-space
models used to model the time-dependent behavior of dynamic
systems. A DBN can be regarded as a composition of two BNs.
(1) a BN connecting the variables in a single time instant, and
(2) a BN connecting variables across time instants.We consider
DBNs with the Markov assumption,i.e., the state variables in
the current time step are only dependent on the state variables
in the previous time step, resulting in a 2-slice DBN [15].

P t+1 = G(P t, vt+1) (3)

Qt = H(P t) (4)

In the above equations, P t and P t+1 represent the state
variables in two time steps. Similarly, Qt and Qt+1 represent
observation variables at two time steps. The evolution to P t+1

from P t can be represented in Eq. 3. vt and vt+1 refer to
system inputs at time t and t+1 respectively. Eq. 4 represents
the relationship connecting observation variables Qt and state
variables P t. Probabilistic modeling of systems where Markov
assumption does not hold good is not considered in this paper.

IV. PROPOSED METHODOLOGY

A. Constructing the DBN model for a Smart System

Fig. 3 shows a representative DBN model; the description of
variables is presented in Table III. In Fig. 3, the rectangle with
rounded corners named ‘Computational’ does not represent a
DBN node, but represents a lower-level DBN depending on
the interaction pattern as detailed below.

B. Modeling the computation system

Distributed computing systems are often arranged into a
sequence of components communicating over well-defined
interaction protocols [16]. Such rigid interaction semantics
help analyze the behavior of distributed system [13] and
also enables developing online fault detection and diagnosis
mechanisms [17]. In this paper, we assume that the smart
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TABLE III
PARAMETERS IN THE DBN MODEL (FIG. 3)

Parameter Description
P t, P t+1 State variables at time t = t, t+ 1
Qt, Qt+1 Observation variables at time t = t, t+ 1

Qt
s, Q

t+1
s Sensor measurements of observation variables at

time t = t, t+ 1

EIt+1
s Sensor measurements of environmental inputs at

time t = t+ 1
RAt+1 Resource availability
SOt+1 computational output at time t = t+ 1
CAt+1 Control action at time t = t+ 1

Fig. 4. 2-node asynchronous interaction pattern

system is using this distributed computing pattern. We focus
on developing conditional relationships for a distributed com-
puting subsystem as the conditional relationships for physical
and actuation subsystems can be derived from physics models
or data [18], [19]. The conditional relationships for complex
computational subsystems are studied by breaking them down
into two basic interaction patterns: (1) 2-node asynchronous,
and (2) 2-node synchronous [16], discussed below.

2-node asynchronous interaction pattern: We first con-
sider a 2-node asynchronous interaction pattern with two com-
putational nodes C1 and C2 as shown in Fig. 4, where inputs to
the computational system are input to C1. C1 performs some
computation, communicates the results to C2, which performs
further computation and outputs the results. Let E1 and E2

denote the events that the C1 and C2 successfully perform
their analysis. And let E12 correspond to the event that the
data from C1 is successfully transmitted to C2. In general,
data is transmitted across a network in packets. Let E12 = 0, 1
correspond to the two states that a given packet reaches and
does not reach the destination (here C2). We define a smaller
time-scale where a time step (n) corresponds to the time it
takes to send a packet of data. Let En

12 corresponds to the
event that a packet reaches the destination at time step n. We
make a Markov assumption that the state of the event En

12

depends on the state of the event at the previous time step,
En−1

12 . In other words, if a packet cannot be transmitted at
time n− 1 due to network interruptions, then it is assumed to
affect the probability packet transmission at time n. Therefore,
the DBN corresponding to a 2-node asynchronous interaction
pattern can be represented as shown in Fig. 5.

2-node synchronous interaction pattern: A synchronous
interaction pattern (Fig. 6) is characterized by a sequence of
request and reply messages as shown in Fig. 7, where C2

requests for data and C1 replies accordingly. Similar to the
previous asynchronous case, we define a smaller time-scale

Fig. 5. DBN for 2-node asynchronous interaction pattern

Fig. 6. 2-node synchronous (request-reply) interaction pattern

Fig. 7. Decoupling request and reply messaging

where a time step contains a set of request and reply messages
(represented using a rectangle in Fig. 7). We decompose the
coupled request-reply communication into a series of request
and reply messages similar to the partitioned approach used
for decoupling the interactions between the computational and
physical subsystems. In addition to E1, E2 and E12 defined
above, we further define E21 as the event representing the
successful transmission of data packet from C2 to C1. Thus, at
every time step n one event each of E21 and E12 occur. Since
both these events happen at the same time step, their states are
assumed to be dependent one each other. If E21 = 1 (failure),
then the probability of E12 = 1 will be higher when compared
to when E21 = 0. In addition to the dependence at the same
time step, there exists a dependence between the states of E21

events at successive time steps, as mentioned in the case of
asynchronous case. The DBN for this 2-node synchronous case
is provided in Fig. 8. When En

21 is successful, then En+1
21 is

dependent on En
12 and if En

21 is not successful (failed request
message and this implies no reply message), then En+1

21 is
assumed to be dependent on En

21.
Extending to complex interaction patterns: Consider a

4-node interaction pattern shown in Fig 9. The interactions
between C1 and C2, and C2 and C3 are synchronous whereas
interaction between C3 and C4 is asynchronous in nature.
Therefore, the DBN in Fig. 8 can be used to model the
synchronous interactions between C1 and C2, and C2 and C3,
and the DBN in Fig. 5 to model the interaction between C3

and C4. It should be noted that the communication between the
nodes are sequential in nature, i.e., communication between C2

and C3 occurs after the communication between C1 and C2.
Therefore, their DBNs can also be represented sequentially. In

Fig. 8. DBN for a 2-node synchronous interaction pattern

Fig. 9. 4-node complex interaction pattern
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some cases, it might be possible that the outcome of one inter-
action (if data is transmitted) may influence the outcome of the
following interaction; this influence may be quantified through
a conditional dependence relationship across the DBNs.

C. Performance evaluation

For design-time decision-making, we simulate the possible
design options using the DBN models constructed in Section
IV-A to evaluate their performance under uncertainty.

Modeling sensor uncertainty: The sensor uncertainty εs
is typically modeled using a Gaussian distribution with zero
mean; since positive and negative errors occur with equal
probability [20]. The relationship of the measurement variable
(Qt

s) conditioned on the unknown value of the observation
variable(Qt) can be represented as

Qt
s|Qt = Qt + εs (5)

The sensor then reads a value from the probability distribu-
tion of Qt

S and sends the data to the computational subsystem.
Simulating asynchronous interaction pattern: Consider

the 2-node interaction pattern as shown in Fig. 4, where C1

receives the input, processes the information and outputs to
C2. Let p data packets be transferred from C1 to C2 and if r
packets get successfully transmitted, then it is assumed that all
the information can be reconstructed at C2. In the lower-level
DBN, one data packet is assumed to be transmitted in each
time step. Since there are p packets, n, which represents time
in the lower-level DBN goes from n = 1 to n = p. The events
corresponding to each data packet transmission are represented
as En

12. The joint probability of all the events corresponding to
transmission of p data packets is equal to P (E1

12, E
2
12...E

p
12).

This joint probability can then be decomposed into a product
of marginal and conditional probabilities defined as

P (E1
12, E

2
12...E

p
12) = P (E1

12)× P (E2
12|E1

12)

× P (E3
12|E2

12, E
2
12)× ...P (E

p
12|E1

12, ...E
p−1
12 )

(6)

Using the Markov assumption as mentioned in Section
IV-A, Eq. 6 can be simplified as

P (E1
12, E

2
12...E

p
12) = P (E1

12)× P (E2
12|E1

12)

× P (E3
12|E2

12)× ...P (E
p
12|E

p−1
12 )

(7)

Let R1 represent the probability of a successful data packet
transfer at a lower time-scale time step n = 1. The conditional
dependence relationship for successful data transmission are
represented as shown in Table IV. In Table IV, Rij represents
the probability of data transmission event in the current time
step j conditioned on the data transmission event in the
previous time step i (i, j = {0, 1}). 0 and 1 represent success
and failure of an event respectively. The parameters in Table
IV can be estimated through an aggregation of historical data,
simulations and expert knowledge regarding the system.

For illustration, consider a case when r = 2 and p = 3.
Across three time steps, there exist 8 combinations with
two outcomes in each time step (data packet delivered or
not delivered). If two successful transmissions are required,

TABLE IV
CONDITIONAL PROBABILITIES OF SUCCESSFUL DATA TRANSMISSION

BETWEEN TWO CONSECUTIVE TIME STEPS

Successful at time
step n+ 1

Unsuccessful at
time step n+ 1

Successful at time
step n

R00 R01

Unsuccessful at
time step n

R10 R11

then there exist four combinations that result in successful
data transmission. The set of successful combinations and
their probabilities are given in Table V. Since p = 3, there
are three elements in each combination. The overall success
probability can be calculated as the sum of all the individual
probabilities. Using the overall probability, a binary random
sample can be drawn to simulate the data transmission in a
2-node asynchronous interaction pattern.

TABLE V
2-NODE ASYNCHRONOUS INTERACTION PATTERN: SUCCESSFUL

COMBINATIONS AND THEIR PROBABILITIES

Combination Probability
[0,0,0] R1 ×R00 ×R00

[0,0,1] R1 ×R00 ×R01

[0,1,0] R1 ×R01 ×R10

[1,0,0] (1−R1)×R10 ×R00

Simulating synchronous interaction pattern: As opposed
to the asynchronous system, we assume we require r suc-
cessful request-reply pairs in a synchronous system since a
reply does not occur unless there is a request and reply does
not always occur for every request. The joint probability of
p request− reply pairs, assuming one occurs at each lower-
scale time step can be computed using Eqs. 6 and 7.

Let R2 represent the probability of successful request mes-
sage at lower time-scale time step n = 1. Let R12 represent
the probability of successful reply message when the request
message is successful. Therefore, R2 × R12 refers to the
reliability of a request-reply pair at any time step n = 1. For
illustration, assume the same conditional relationships between
two requests across two successive time steps as provided
in Table IV. Given the dependence relationships across time
steps, the probability of r successful pairs out of p can be
computed using Eq. 7. For p = 3 and r = 2, the set of
successful combinations and their probabilities are provided
in Table VI. Therefore, the overall success probability can be
calculated as the the sum of all the individual probabilities.

TABLE VI
2-NODE SYNCHRONOUS INTERACTION PATTERN: SUCCESSFUL

COMBINATIONS AND THEIR PROBABILITIES

Combination Probability
[0,0,0] (R2 ×R12)× (R00 ×R12)× (R00 ×R12)
[0,0,1] (R2×R12)×(R00×R12)×(1−R00×R12)
[0,1,0] (R2 ×R12)× (R01 × (R10 ×R12)+ (R00 ×

(1−R12))× (R10 ×R12)
[1,0,0] (R2× (1−R12)× (R10×R12)+(1−R2)×

(R10 ×R12))× (R00 ×R12)
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As mentioned in Section IV-A, a failure in a message
transmission can be due to a failure in either request or reply
message transmission. Therefore, the last two combinations in
Table VI, have two terms representing the cases of failures in
request and reply message transmissions. After the completion
of computational analysis, the computational output is com-
municated to the actuation system; this communication can
be simulated using an asynchronous or a synchronous system
as described above. If the actuation system cannot receive the
data, an assumption that the control action in the previous time
step is continued in the current time step is made.

Simulating resource availability: In the DBN model for a
generic smart system shown in Fig. 3, if the data is success-
fully transmitted from sensors, the computational subsystem
estimates the state variables P t through Bayesian Inference
(typically using particle filtering [21]) and calculates the
necessary control action for the next time step. To perform the
analyses, the computational nodes should have the necessary
resources. Let there be N computational nodes and Ei,k,
i = 1, 2, 3...N represent the events corresponding to their
resource availability. The joint probability can be defined as

P (E1,k, E2,k..EN,k) = P (E1,k)× P (E2,k|E1,k)

× ..P (EN,k|E1,k, E2,k...EN−1,k)
(8)

In this discussion, we consider two hardware resources:
power and memory. We assume that the power is supplied
through a battery and each node is assumed to have an associ-
ated battery. Under this assumption, the resource availability of
one node is independent of the resource availability of another
node. Thus, Eq. 8 can be simplified as

P (E1,k, E2,k..EN,k) = P (E1,k)×P (E2,k)× ..P (EN,k) (9)

Let Sr refers to the probability of having necessary re-
sources at each computational node. Therefore, the probability
that all the events , Ei,k, i = 1, 2...N , are successful (assuming
the same resource probability) is equal to SN

r . A binomial
random sample with a success probability of SN

r is drawn
to simulate the resource availability. It may be possible that
different nodes might have different resource probabilities and
dependent on each other. An example of such a case is when a
group of nodes have a common power supply unit. In cases of
dependent resource availability, Eq. 8 cannot be simplified to
obtain Eq. 9, and the dependence needs to be modeled using
either expert knowledge or simulations. Simulation of resource
availability and data transmission in the computational subsys-
tem provides the posterior distributions of P t and the control
action at time t+1, which are then used to estimate the prior
distributions of P t+1. Sensor measurements at time t+ 1 are
used to estimate the posterior distributions of P t+1 and control
action at time t+2. This process is repeated until a pre-defined
analysis time for performance evaluation.

V. CASE STUDY: IMPLEMENTATION AND RESULTS

In this section, we demonstrate the proposed methodologies
for the case study in Section II-B. For each design, five
temperature sensors are used (one for each room and one
for outside temperature) and the overall cost for each design

is given in Table VII. Due to budget constraints, only 5
out of 9 configurations from Table VII are feasible; these
configurations are indicated in bold. For each sensor type,
the most reliable of all possible network types is identified
and considered for analysis. This corresponds to the first two
design options along the diagonal in Table VII.

TABLE VII
DESIGN CONFIGURATIONS AND THEIR COSTS

Type 1
network

Type 2
network

Type 3
network

Type 1 sensor 400 500 600
Type 2 sensor 325 425 525
Type 3 sensor 275 375 475

The conditional dependence relationships for communica-
tions across two lower time-scale time steps (as discussed in
Section IV-A) are provided in Table VIII.In Table VIII, X
equals 0.95, 0.97 and 0.99 when networks of Types 1,2 and 3
are used respectively (Table II).

TABLE VIII
COMMUNICATION PROBABILITY

Successful at time
step n+ 1

Unsuccessful at
time step n+ 1

Successful at time
step n

X 1-X

Unsuccessful at
time step n

0.9 0.1

Problem Parameters: Each room has dimensions 9m ×
9m × 5m and one window with dimensions 1m × 1m. The
thermal conductivity of the window is assumed to be 0.3
W/F.m while that of the wall is not known precisely and need
to be calibrated from data. The thickness of wall and window
insulations are assumed to be 0.8 m and 0.04 m respectively.
The density and heat capacity of air are assumed to be equal
to 1.225 kg/m3 and 558.55 J/kg.F . The temperature and the
amount of hot air blown from the heater are 110 F and 106
kg/hr respectively. The values of TB , α and β are assumed
as 70 F , 50 and 100 respectively. The outside temperature
data are obtained from SML2010 Data Set [22], which can be
downloaded from the UCI Machine Learning Repository [23].
We used the weather temperature data from this dataset as the
outside temperature data for our analysis.

Computational system: The computational subsystem is
assumed to consist of two nodes, C1 and C2. C1 receives
the sensor data and estimates the indoor temperatures through
Bayesian Inference; these estimates are then transmitted to
C2 which calculates the control action for the next time
step. The probability of resource availability for both nodes
is assumed as 0.9. Two-node asynchronous interactions are
assumed between the temperature sensors and computational
subsystem, and between computational subsystem and ac-
tuation subsystem, and a two-node synchronous interaction
between the computational nodes.

DBN model: Fig. 10 presents the DBN for the smart
heating system. It should be noted that there exists no state
variable Pt but only an observation variable Qt, which are the
actual temperatures in each room and the outside temperature
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Fig. 10. DBN model for the smart indoor heating systems

Fig. 11. Calibration results with sensor uncertainty = 0.1F

(TA, TB , TC , TD and Tout). The corresponding measurements
of these variables are represented as TA,s, TB,s, TC,s, TD,s and
Tout,s respectively. k refers to the thermal conductivity coef-
ficient of the wall.R1 and R2 refer to the resource availability
variables corresponding to computational nodes C1 and C2

respectively. HA, HB , HC and HD refer to the control actions
in each of the rooms. The thermal conductivity and outside
temperature affect the temperatures in all rooms, which needs
to be represented by arrows from k and Tout to every room
temperature. For better visualization, all room temperatures
are grouped in a ’dotted’ rectangle. An arrow to the ’dotted’
rectangle should be interpreted as a arrow going to every room
temperature. Fig. 10 shows a higher-level DBN; the lower-
level DBNs can be constructed as detailed in Section IV-A.

Model Calibration: Each design results in a different
calibration of thermal conductivity due to the difference in
sensor uncertainty. The prior and posterior distributions for
both the design options are presented in Figs. 11 and 12
respectively. From the plots, it can be seen that the posterior
variance in Fig. 12 is higher due to higher sensor uncertainty.

Performance analysis: We ran the smart indoor heating
system for one day (with time steps of 15 min). We used
the outside temperature corresponding to March 25 in the
SML2010 Dataset. The reason for choosing this date is ex-
plained later in this section. We start with available sensor
measurements at 12 am and the analysis continues until 12 am

Fig. 12. Calibration results with sensor uncertainty = 0.15F

to next day. For each type of communication, two messages
are transmitted and even if one reaches successfully, the data
is assumed to be successfully transmitted. For simplicity,
the conditional relationships for communication uncertainty
within and across two lower time-scale time steps in the
synchronous interaction pattern between the computational
nodes are assumed to be the same as given in Table VIII. Eqs.
1 and 2 are evaluated between every two successive sensor
measurements (15 min); therefore, t2 = t1 + 15 and t1 = 0.

Using the sensor measurements, Bayesian inference is per-
formed using particle filtering to estimate the outside tem-
perature and room temperatures. For predicting the outside
temperature in the next time step, we used the weather data
from the previous 10 days to construct a Gaussian distribution
to represent the change of temperature between the current
time step and next time step; this Gaussian distribution is used
for temperature forecasting in the next time step. We used data
from March 15 to March 24 for temperature forecasting on
March 25, 2012. Using the forecast outside temperature, the
control action that optimizes the sum of energy and comfort
credits is identified, and using this, the prior distributions of
the room temperatures in the next time step are obtained.

The same process is repeated 250 times to obtain the failure
probability. The practical reasoning for this is as follows. If
a particular design alternative is installed at 250 homes, what
is the probability that the occupants be uncomfortable at any
time during the analysis? The analysis is carried out using
both the design alternatives and the success probabilities are
0.99 and 0.93 respectively. Therefore, the better design option
is the one with the sensor uncertainty of 0.1 Fahrenheit (Type
1 sensor) and 0.95 network reliability (Type 1 network).

This preliminary case study is used to discuss the model-
based performance evaluation methodology for smart systems.
Comparison with other solutions will be considered in the
near future work. The case study with the current problem
formulation does not adapt over time to new conditions.
Thermal conductivity is a model parameter that varies with
time due to the wear of insulation. Therefore, the system
needs to re-calibrate the thermal conductivity on the go with
the temperature sensor data for further decision-making. This
learning process is not considered in this paper as the time of
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analysis (1 day) is small compared to the time scale of the
wear of insulation (typically in the order of several months).

Application to complex smart systems: The proposed
methods are generic and can be applied to more complex
interaction patterns between several nodes. An example with
such properties of complex computational interaction pattern is
a smart grid, which has a collection of sensors (smart meters),
computational, actuation (electricity transfer mechanism such
as lines) and physical subsystems (houses). The inputs (power
generation sources such as fossil fuels, wind and solar) are
associated with variability due to environmental conditions.
In the case of a smart grid, the user requirements change
with time everyday; these user requirements can be consid-
ered similar to occupant comfort levels in the smart indoor
heating system. A smart grid consists of several utility units
or substations, and each utility unit can be modeled as a
computational node. These units collects sensor data from a
region and communicate with each other to find an optimum
way to meet the electricity demands.

VI. SUMMARY AND FUTURE WORK

This paper developed a model-based framework for uncer-
tainty quantification and aggregation in a smart system for
its performance assessment to enable design-time decision-
making. Uncertainty in the physical system may be due to
uncertain model parameters and model inadequacy. Uncer-
tainty in the computational subsystem is due to the uncer-
tainty in the availability of hardware resources and in the
network communication. A coupled smart system containing
physical, sensing, computational and actuation subsystems is
analyzed as a feed-forward system in time and modeled using
a Dynamic Bayesian network. The computational subsystem
has communication between several nodes; this interaction is
also modeled using a DBN, resulting in a two-level DBN for
modeling a smart system. Physics models and/or data are used
to establish the conditional dependence relationships for the
physical and actuation subsystems. DBNs corresponding to
basic interaction patterns such as 2-node asynchronous and
synchronous are detailed. Complex interaction patterns can
be broken down into these basic patterns for performance
evaluation. The proposed methods for performance evaluation
are demonstrated for the design of a smart indoor heating
system that enables room-by-room temperature control.

Future work should investigate the proposed methodology
for large-scale systems such as smart grids. In addition, meth-
ods for performance evaluation of Human-in-the-loop CPS (H-
CPS) need to be investigated. Also, procedures for automated
extraction of a DBN from system models, physics models and
available data regarding a smart system for its performance
assessment need to be investigated.
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