Vulnerability Analysis of Power Systems Based on Cyber-Attack and Defense Models

Saqib Hasan, Amin Ghafouri, Abhishek Dubey, Gabor Karsai, Xenofon Koutsoukos

Vanderbilt University

Power & Energy Soc

VANDERBILT UNIVERSITY

Outline

- Overview
- Challenges
- Contributions
- Power System model
- Attack Model and Algorithm
- Defense Model and Algorithm
- Contingency Simulator and Cascade Simulation Model
- Example System and Evaluation
- Conclusions and Future Work

Overview

- Smart grids are needed with the increasing demand for reliable energy.
- The technological advancements such as substation automation, PMUs, AMIs, etc., are deployed to improve the traditional power grid capabilities and improve reliability.
- They increases the attack surface due to the increase in cyber components.
- At present cyber-attacks are one of the major obstacles towards reliable system operations and give rise to new system vulnerabilities.

Overview

- Attackers take advantage of such vulnerabilities to cause severe system damage.
 - Example: Recent blackout of Dec 2015 Ukraine.
- Power systems consists of several substations.
- Substations have RTUs to control and monitor the field devices.
- They become the primary target for the attackers.
- Adversary can gain complete control of the RTUs and perform various types of attacks.

Challenges

- Time and effort to compromise an RTU limits the attacker.
- Attacker can access only a few RTUs before they get detected.

Challenges?

- 1. To identify critical substations and protection assemblies to compromise in order to maximize system damage.
- 2. To identify critical substations to protect in order to minimize system damage.

Contributions

- A game-theoretic approach to design an attacker/defender model is provided.
 - A formal attacker model is described.
 - An efficient polynomial-time algorithm for finding worst-case attack is developed.
 - A formal defender model is presented.
 - An efficient polynomial-time algorithm for identifying critical substations to protect is developed.
 - Evaluation results using standard IEEE-14, 39, and 57 bus systems are demonstrated to support the developed models.

Power System Model

• System:

G_P: power system, U: set of buses, G: set of generators, T: set of transformers, L: set of loads, R: set of transmission lines, P: set of protection assemblies (distance relays, over-current relays and circuit breakers).

Modeling substations

- Let $S = \{S^1, \ldots, S^m\}$ be the substations.
- $S^i \subseteq P, \forall i \in \{1, \dots, m\}.$
- $F(S^i)$ returns the set of protection assemblies in S^i .
- $\bigcup_{i=1}^m F(S^i) = P$

Load loss function

- Loads are defined by L_j , where j = 1 to $n, n \in \mathbb{N}$
- Current flowing through each load is defined by:

$$I_j$$
, where $j = 1$ to $n, n \in \mathbb{N}$

Load loss is calculated as:

$$J(A_{P'}) = \sum_{j=1}^{n} L_j$$
 , $\forall I_j = 0$

Attacker Model

- Attack Model:
 - First, attacker identifies substations $S' \subseteq S$ to attack.
 - Attacker has budget B_S where $|S'| \leq B_S$.
 - Then, the attacker identifies protection assemblies $P' \subseteq F(S')$ to manipulate.
 - Attacker has budget B_P where $|P'| \leq B_P$.
 - Finally, attacker launches a cyber-attack $A_{P'}$ on protection assemblies $P' \subseteq F(S')$.
 - Uniform, unit cost for attacking a substation.
- Attacker's Goal:
 - Goal of the attacker is to maximize the load loss

$$\max_{S'} \max_{P' \subseteq F(S')} J(A_{P'})$$

s.t. $|S'| \leq B_S, \quad |P'| \leq B_P$

Attack Algorithm

- Consider a set of substations $S = \{S_1, S_2, S_3, S_4, S_5\}$.
- Consider a set of protection assemblies $P = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8\}$.
- Attack budget is restricted to 2.

Defender Model

• Defense Model:

- Defender can protect the substations D_S from cyber-attacks.
- Defender has a budget B_D , where $|D_S| \leq B_D$.
- Defender's Goal:
 - Goal of the defender is to minimize the load loss

$$\min_{D_S} \max_{S' \subseteq S - D_S} \max_{P' \subseteq F(S')} J(A_{P'})$$

s.t. $|D_S| \leq B_D, \quad |S'| \leq B_S, \quad |P'| \leq B_P$

Defender Algorithm

- Consider a set of substations $S = \{S_1, S_2, S_3, S_4, S_5\}$.
- Consider a set of protection assemblies $P = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8\}$.
- Defense budget is restricted to 2.

Run Attack	Select a substation to	Identify and record Losses	Select next
Sequence based on	protect and remove it from		Substation
the attack budget	rest of the attack set.		

Contingency Simulator

Contingency simulator Framework

Cascade Simulation Model

EE

Example System

• Blue colored dotted boxes represent the substations.

IEEE-14 Bus System

Evaluation

- Attack-Defense Scenario
- With only half the number of substation protection budget the load loss is minimized by 57.31%.

Attack Budget (B _S)	B_P	Defense Budget (B _D)	Pre-Defense Load Loss	Post-Defense Load Loss	Substations Attacked	Substations Defended	Improvement (%)
2	2	3	51.17	48.30	S7	S4, S3, S2	5.61
2	2	4	51.17	43.46	S1, S6	S4, S3, S2, S7	15.07
2	2	5	51.17	29.55	S8, S9	S4, S3, S2, S7, S6	42.25
2	2	6	51.17	21.84	S5, S10	S4, S3, S2, S7, S6, S9	57.31

TABLE I: IEEE-14 Bus System Attack-Defense Scenario

Evaluation

IEEE-39 Bus System

Evaluation: Attack Execution Time

17

Ε

Attack Execution Time

Evaluation: Defense Execution Time

Defense Execution Time

Conclusion and Future Work

- A game theoretic approach for attacker/defender modeling is proposed.
- The models are formally described and developed.
- The algorithms presented are able to identify critical substations to attack and protect given the budget constraints in order to improve power system resilience.
- The algorithms presented perform significantly better than the exhaustive search.
- As part of the future work, we will look at the dynamic attacker/defender modeling in power systems.

Static Attack Scenario

http://icseg.iti.illinois.edu/ieee-39-bus-system/

Dynamic Attack Scenario

http://icseg.iti.illinois.edu/ieee-39-bus-system/

Acknowledgements

- National Science Foundation (NSF), CNS-1329803.
- Foundations of Resilient Cyber-Physical Systems (FORCES), CNS-1238959.

THANK YOU!

