
Institute for Software Integrated Systems
Vanderbilt University

Nashville, Tennessee, 37235

Evolving Paradigms and Models

in Multi-Paradigm Modeling

Daniel Balasubramanian, Chris vanBuskirk, Gabor Karsai,

Anantha Narayanan, Sandeep Neema, Ben Ness, Feng Shi

TECHNICAL REPORT

ISIS-08-912



Evolving Paradigms and Models

in Multi-Paradigm Modeling

Daniel Balasubramanian Chris vanBuskirk Gabor Karsai

Anantha Narayanan Sandeep Neema Ben Ness Feng Shi

Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN, 37203

Abstract

The essence of model based software development for domain specific appli-
cations is in the definition of a meta-model that captures the key aspects of the
domain. However, the meta-model rarely defines the domain completely, and
must often be modified to reflect our improved understanding of the domain dur-
ing the course of development and subsequent use of domain specific software.
The modification of the meta-model creates a versioning problem, whereby ex-
isting models may no longer conform to the modified meta-model. This report
describes the Universal Model Migrator, a tool that allows domain designers to
declaratively specify incremental modifications to their meta-models, in order
to facilitate the automatic evolution of domain models to remain conformant to
the latest version of the meta-model.

1 Introduction

The use of model based software development techniques has expanded to a degree
where it may now be applied to the development large heterogeneous systems. Due to
their high complexity, it often becomes necessary to work with a number of different
modeling paradigms in conjunction. Model based development tools, to a large
extent, are living up to this challenge. However, short turnover times mean that only
a limited time may be spent in defining meta-models for these modeling paradigms
before users begin creating domain specific models. Deficiencies, inconsistencies and
errors are often identified in the meta-models after development is well underway, and
a large number of domain models have already been created. Changes may also result
from our improved understanding of the domain over time, and other modifications
in the domain itself. Newer versions of meta-models must therefore be created, which
may no longer be compatible with the large number of existing models. The existing
models must then be recreated or manually evolved using primitive methods, adding

2



a significant cost to the development process. The problem is especially acute in the
case of multi-paradigm approaches, where multiple modeling languages are used and
evolved, often concurrently.

Existing solutions to this problem are primitive, ad-hoc techniques, that often re-
sort to directly specifying the alterations in terms of the storage format of the models.
One such approach is the use of XSL transformations to evolve models stored in XML.
Database schema migration techniques have been applied to migrate models stored
as relational data. These approaches are often nothing more than pattern based
replacement of specific character strings, and do not capture the philosophy driving
a meta-model change. When dealing with complex meta-models covering multiple
paradigms, comprehension is quickly lost when capturing meta-model changes using
these methods.

Automatic evolution of domain models to conform to changes in meta-models is
clearly an important requirement. The responsibility to satisfy this requirement falls
on the tool vendors who enable model based development technology. However, it
is a challenge to provide a generic solution that may be applicable in the variety of
scenarios where domain specific modeling tools may be used. We need a machinery
that is generic in the sense that it may be applicable to any meta-model irrespective
of the domain, and also be comprehensible to the domain designers with relevance
to their specific domains. In this paper, we describe a highly generic approach to
migrating domain models based on changes in the meta-models. We present a suite
of tools, using which the migration can be specified by clearly capturing the change in
the meta-model, and the action necessary to migrate the domain models. We believe
that approaches like this are essential for the support of engineering processes that
use multiple modeling paradigms that need to evolve over the lifetime of the system.

2 Background and Rationale

In this paper we assume that modeling paradigms are defined using a metamodel.
A metamodel ML defines a modeling language L by defining its abstract syntax,
concrete syntax, well-formedness rules, and dynamic semantics (which is usually
defined by a mapping from the abstract syntax into a semantic domain) [7]. Here,
we are focusing on the abstract syntax of the modeling paradigm.

The abstract syntax essentially defines the data model for the constructs of the
modeling language, i.e. the data structures that could hold the models, as physical
data, in a form independent of the concrete syntax (which could be textual or graph-
ical). There are various techniques for specifying the abstract syntax for modeling
languages, the most widely used is the Meta-object Facility (MOF) [11], but for clar-
ity here we will use UML class diagrams that are visual and often more flexible than
MOF. Hence, we assume that the metamodel of the modeling language is defined
by and is expressed as a UML class diagram. The examples in this paper use UML
class diagrams with stereotypes indicative of the role of the element, such as Model

3



Figure 1: Example meta-model

or Connection - but they may be understood as simple UML classes. Note that the
actual models are object diagrams that are compliant with the UML class diagram
of the metamodel.

2.1 Rationale

It has been our experience that when a modeling language evolves over time, most
evolution steps are incremental changes that affect small portions of the language
locally. For instance, consider a meta-model for the domain of Dataflow diagrams.
Figure 1 shows a meta-model for this domain. According to this meta-model, a
Dataflow “System” is a model that contains one or more “Components”. Compo-
nents may contain other Components. Components may be connected to each other
via “DataFlow” connections.

A possible and likely evolution of this language is that the domain designer may
want the DataFlow connections to be routed through Ports within the Components.
This change is effected in the meta-model by defining new types called “inPort”
and “outPort” to be contained within Components, as shown in Figure 2. The
DataFlow connection is modified to connect Ports instead of Components. The
models conforming to the first version of the meta-model, with DataFlow connections
between Components, will no longer be valid in the new version of the meta-model.
For this domain, the steps necessary to migrate these old models to conform to the
new meta-model can be stated as: for every Dataflow connection, create a Port
within the Component at each end, and connect the Dataflow connection between
these Ports.

Another possible change in the language could be that the domain designer no
longer wants Components to be composed hierarchically. She may therefore remove
the containment relation between Components. In this case, to make the old models
conformant to the new meta-model, Component hierarchies must be “unwound”
throughout the model, requiring a deep traversal with recursive treatment.

In our experience, the latter kind of evolution is rare in DSMLs, while evolutions
of the former category are more frequent. Our MCL has been designed to easily
specify changes of the former nature, by addressing changes to specific model elements

4



Figure 2: Evolved example meta-model

locally.

2.2 Hypothesis

Our essential hypothesis is that evolutionary changes on the modeling language will
be reflected as changes on the metamodel, i.e. the UML class diagram. When the
modeling language is evolved the language designer has to modify the metamodel,
and the new version of the language will be compliant with the new metamodel.
The key observation here is that metamodel changes are explicit, and these changes
could be used to automatically derive the algorithm to migrate the models of the
old modeling paradigm to the models compatible with the new paradigm. Here, we
make an essential assumption: changes performed on the metamodel are known and
well-defined, and all these changes could be expressed in an appropriate language.
We call this language the Model-Change Language (or ‘MCL’).

A key design decision for MCL is that it is used to represent only the changes
performed on the metamodel. During modeling language evolution, changes are
incremental, and most of the metamodel elements are unaffected. Representing only
the incremental changes the complexity of specifications in MCL is much reduced.
We assume that whatever is not represented in MCL remained the same from one
metamodel version to the next.

The need for a new language to describe changes is not immediately obvious
when the ‘old’ and ‘new’ metamodels are already available. The answer is that
computing the changes from the existing metamodels could be exceedingly difficult
and it is unclear if the problem is solvable in a fully automatic, algorithmic way.
An algorithm would have to perform a sophisticated differencing between the two
metamodels and find out exactly where the differences are, and then infer how ’old’
modeling concepts (classes, associations, attributes, etc.) map into ’new’ modeling
concepts, i.e. the intent of the metamodel designer would have to be recovered.
While this is a challenging research problem, it is unclear whether such inference

5



could be made fully automatic. For instance, much semantic information is carried
in the names of classes, and an automated tool would have a problem with figuring
out that ’Failure Mode’-s in an ’old’ metamodel are to be mapped into ’Fault Mode’-s
in the ’new’ metamodel. Here, we took the less sophisticated yet pragmatic method
of asking the designer to provide a specification of the changes in MCL.

Finding the right level of abstraction for MCL was a challenge. MCL could have
been very low-level, and describe changes using simple editing operations (delete/add
classes, associations, attributes) but specifying such level of details would have been
cumbersome. Finally, we opted for an idiomatic approach, where specific, well-
understood metamodel changes were identified as idioms (i.e. reusable patterns of
change operations), for which we developed a graphical notation. The important
feature of the idioms is their compositionality: more complex metamodel changes
could be compiled by combining idioms. This principle is similar to the approach
used for metamodeling in the metaprogrammable GME tool [9].

In the subsequent sections we first introduce MCL, then describe the implemen-
tation of the language, compare it to other, similar efforts, and then summarize the
results and discuss future research topics.

3 The Model Change Language

The basic pattern that describes a meta-model change, and the required model evo-
lution, consists of an LHS element from the old meta-model, an RHS element from
the new meta-model, and a “MapsTo” relation between them, as shown in Figure 3.
For the sake of flexibility, it is possible to specify additional mapping conditions or
imperative commands along with the mapping. This basic pattern is extended based
on various evolution criteria, as explained below.

Figure 3: MapsTo relation to specify mapping of classes

The changes made to a meta-model will largely fall under one of the following
categories described below.

3.1 Adding elements

A meta-model may be extended by adding a new concept into the language, such
as a new Class, a new Association, or a new Attribute. In most cases, old models

6



Figure 4: MCL rule for adding a new element

are not affected by the new addition, and will continue to be conformant to the new
language, except in certain cases.

If the newly added element represents some model information within a different
element in the old version of the meta-model, the information must be appropriately
preserved in the instance models. In fact, this falls under the category of “modifica-
tion” of representation, and is described further below.

If the newly added element plays a role in the well-formedness requirements, then
the old models will no longer be well formed. The migration language must allow
the migration of such models to make them well formed in the new meta-model.
For instance, suppose that the domain designer adds a new element called “Thread”
within a Component - and adds a constraint that every Component must contain at
least one Thread. The old models can then be migrated by creating a new Thread
within each Component, as shown in Figure 4.

3.2 Deleting elements

Another change to a meta-model may be the removal of an element. If a type is
removed, and replaced by a different type, it implies a modification in the represen-
tation of existing information, and is handled further below. On certain occasions,
elements may be removed completely, if that information is no longer relevant in the
domain. In this case, their representations in the instance models must be removed.
The removal of an element is specified by using a “NULL-Class” symbol in MCL, as
shown in Figure 5.

Figure 5: MCL rule for deleting an element

This implies that all instances of ClassA in the model are to be removed. Re-
moval of an object may result in the loss of some other associations or contained

7



objects. MCL follows the policy that in such cases, the loss of information is an
error, unless these associations and classes were also explicitly marked to be deleted.
If an unmarked object is lost, the user is notified of the error.

3.3 Modifying elements

The most common change to a meta-model is the modification of certain entities,
such as the names of classes or their attributes. The basic “MapsTo” relation shown
in Figure 3 suffices to specify this change. The mapping of related objects is not
affect by this rule. If other related items have also changed in the meta-model, their
migration must be specified using additional rules.

Figure 6: MCL rule for subclasses

Another type of modification in the meta-model is adding new sub-types to a
class. In this case, we may want to migrate the class’ instances to an instance of
one of its sub-types. Figure 6 shows an MCL rule that specifies this migration. The
subtype to be instantiated may depend on certain conditions, such as the value of
certain attributes in the instance (this is encoded within the migration rule using a
boolean condition for each possible mapping). The rule in Figure 6 states that an
instance of srcClass in the original model is replaced by an instance of dstSubclass1
or dstSubclass2 in the migrated model, or deleted altogether.

As in the earlier case, other related objects are unaffected by this rule. If a related
object violates a condition in the new meta-model, or is lost due to deletion, other
MCL rules must handle these entities appropriately. Otherwise, the user is notified
of the error.

3.4 Local structural modifications

Some more complex evolution cases occur when changes in the meta-model require a
change in the structure of the old models to make them conformant to the new meta-
model. Consider a meta-model with a three level containment hierarchy, with a type

8



Figure 7: MCL rule for changing a containment hierarchy

Class contained in Parent, and Parent contained in ParentParent. Suppose that this
meta-model is changed by moving Class to be directly contained under ParentParent.
The intent of the migration may be to move all instances of Class up the hierarchy.
The MCL rule to accomplish this is shown in Figure 7 (the WasMappedTo link is
used to identify a previously mapped parent instance).

Note that this rule only affects Class instances. The other entities remain as they
are in the model. Any Parent instances within ParentParent remain unaffected. If
Class contained other entities, they continue to remain within Class, unless modified
by other MCL rules.

3.5 Idioms and Complex Rules

Based on the descriptions given above, we created a set of idioms that capture the
most commonly encountered migration cases. Some of the idioms were shown in Fig-
ures 4, 5, 6 and 7. We earlier described a case where associations (connections) may
be rerouted using “ports”, by creating a “port” for each connection end within the
models. Figure 8 shows the idiom for rerouting associations. The specific case shown
here is rerouting associations through ‘ports’ that are contained model elements un-
der some container. In the old language we had ‘inAssociationClass’-es between
‘inSrcModel’-s and ‘inDstModel’-s, and the new language the same association is
present between the ‘Port’-s of the ‘outSrcModel’ and ‘outDstModel’ classes that
were derived from the corresponding classes in the old model. The “WasMappedTo”
link is used to find the node corresponding to the old association end. For the cor-
rect results, the new association ends must be created before the “MapsTo” can be
processed for the association, and this is enforced by the use of the “WasMappedTo”
link.

The MCL also provides primitives to specify the migration of attributes of classes
in the metamodel. Attributes may be mapped just like classes, and the mapping can

9



Figure 8: MCL rule for rerouting associations

perform type conversions or other operations to obtain the new value of the attribute
in the migrated model. Figure 9 shows an MCL for migrating attributes.

Figure 9: MCL rule for migrating attributes

In addition to the idioms listed so far, the tool suite for model migration will
provide a library of similar idioms to handle common migration cases. Some of these
idioms are shown in Figure 10 and summarized here. Figure 10(a) shows the idiom for
adding a new attribute to some class in the metamodel. If the newly added attribute
is mandatory, then it must be set in old models that did not have the attribute. A
default value can be added for the attribute in the idiom, or a function may be added
to calculate a value for the new attribute based on the values of other attributes in
the instances. Figure 10(b) shows the idiom for deleting an attribute. This is similar
tot he case of deleting classes. Figure 10(c) shows an idiom for the case when an
inheritance relationship has been removed from the metamodel (the portion above
the dashed line is not part of the rule, but shown for clarity). If the derived class
had an inherited attribute, this will no longer be present in the migrated model, and
must therefore be deleted.

Figure 10(d) shows an idiom for changing a containment relationship in the meta-
model. This is a variation of the idiom shown earlier in Figure 7, for a more generic

10



(a) Add attribute (b) Delete attribute

(c) Delete inheritance relationship (d) Change containment relationship

(e) Merge classes (f) Replace association with attribute

Figure 10: Idioms for model migration

case. This idiom also introduce a generic primitive called “Navigate”. It can be
used to locate objects in the instance model by following a “navigation condition”
starting from the object on the left end of the “Navigate” link, and use this object
to determine the new parent in the migrated model. Figure 10(e) shows an idiom for
merging two classes in the metamodel into a single class, possibly adding an attribute
to record its old type. This is effected using two migration rules, separated by the
dashed line. The migration rule can encode a command that will set the value of the
attribute based on its original type. Figure 10(f) shows an idiom for the case where
an association in the metamodel is replaced by an attribute on the source side of
the metamodel. This is accomplished by mapping the association to a “null” class
(similar to the ‘delete class’ case), and adding a new attribute on the source side.

These idioms may also be composed together to accomplish more complex evo-
lutions. A complex migration case may be handled by putting together different
relevant idioms. Figure 11 shows an example where different idioms have been com-

11



Figure 11: A complex MCL rule

bined into a complex migration rule. In this rule, Port can be mapped to either a
TCPPort or a UDPPort. The condition for the mapping is decided by the string
attribute “Protocol”. The “Number” attributes of the new classes is determined
from the “PortNumber” attribute of the old class.

4 The Implementation of MCL

We have implemented MCL in the context of two existing tools for domain-specific
languages: the metaprogrammable Generic Modeling Environment (GME) [8], and
the Universal Data Model (UDM) [10]. GME is a visual tool for creating both
metamodels and domain (instance) models, and UDM is a meta-programmable data
layer package that provides programmatic (C++) access to models, both for model
creation and model transformation. Our overall approach is the following.

1. The language engineer defines the first version of the metamodel. As mentioned
above, this metamodel is an UML Class Diagram.

2. Domain-specific models that conform to the metamodel defined above are cre-
ated. These domain specific models are usually created either with interactively
or programmatically.

3. When the metamodel needs to be changed, it is modified, resulting in a new
version of the metamodel, which is another UML Class Diagram.

4. In order to upgrade the existing models so that they conform to the new version
of the metamodel, the language engineer creates an MCL model describing the
changes between the old and new metamodels. From this model, executable

12



code is generated that implements the transformation from models conform-
ing to the old metamodel to models that conform to the new version of the
metamodel.

For the last step above, MCL has been implemented as a domain specific lan-
guage with a metamodel of its own. An MCL model contains (1) the metamodels
for the ’old’ and the ’new’ versions of the modeling language as UML class diagrams,
and (2) model migration rules based on the idioms described in the previous sec-
tions. The migration rules are visually defined by using references to the metamodel
elements (UML classes) of the old and new metamodels. Each transformation rule
describes the mapping between one or more elements in the old metamodel to ele-
ment(s) in the new metamodel. Using these transformation rules, a code generator
produces executable code that takes as input a model conforming to the old version
of the metamodel, and produces a model that conforms to the new version of the
metamodel. The structure of this code generator is described below.

4.1 The Code Generator

The code generator produces the executable transformation program that traverses
the input (’old’) models and incrementally builds up the target (’new’) models. We
will first describe how the generated code should transform an input model, which
will give the motivation for our code generator’s algorithm.

Assuming that we know how to “map” all types of elements in ‘old’ models to
elements in the ’new’ models, we can use the following simple algorithm to facilitate
the transformation. Model databases always have one singleton “root” model object,
so we can start with this object, examine its type, and create the corresponding ’new’
model object that conforms to the new version of the paradigm, assuming we know
how to map elements of every type. We then continue this mapping in a depth-first
manner, recursively mapping the contained “child” elements of the current object.
Finally, after all elements in the old model are “migrated” into the appropriate
elements in the new model, associations (i.e., connections between elements) in the
old model are migrated into associations or to the appropriate elements in the new
model, in a second, depth-first pass over the input model. This summarizes the
high-level algorithm used by the generated code to migrate models.

We assumed above that as individual elements in the old model are traversed,
the generated code has knowledge about the corresponding element(s) to be created
in the new model. In terms of code, this can be implemented by having a function
for every type of element in the old metamodel. Then, as the elements in the old
model are traversed in a depth-first manner, their type is examined, and they are
passed to the appropriate function which then creates the corresponding concept(s)
in the new model. Thus, the logic of the migration needs to go into these individual
functions. The pseudocode of the code generator algorithm is given in Table 1.

Because the data access layer package (UDM) offers a reflective API, we can

13



// Code generator algorithm for model migration code
for all elements x in the old metamodel
create a function f to migrate x

if the user has defined mappings for x in the MCL model
then use the user defined mapping in f
else
look in the new metamodel to see if there is an element y
with the same name as x

if such an element y exists then x is mapped to y in the generated code
else x is not mapped, signal an error about potential loss of information

add code to f that retrieves all children of x and passes each
to the appropriate migration function

Table 1: Code generator algorithm

easily query the metamodels (contained in the MCL model) for information such as
the types of children an individual object can have.

The generated migration functions for each element X in the old metamodel take
two parameters: an instance of X, which is the element in the input model that the
function is migrating, and a reference to the parent object in the output model in
which the corresponding element for X will be created. The function performs the
migration of an element of type X according to the code that was generated (by the
algorithm above) from the migration rules defined by the user, then finds the children
elements of X, and for each one, calls the appropriate migration function, passing
in the current child element of the X instance (the next element to be migrated)
and the object to which the current X instance was mapped in the new model (this
will be the parent of objects created in the migration function being called). This
process continues in a depth first manner until all objects in the old model have been
traversed.

5 Related Work

Our work presented here has its origins in the technology for database schema evolu-
tion in object-oriented databases [4]. However, models and modeling languages are
typically richer semantically than object-oriented data, hence the increased complex-
ity in migration operations.

For model-based tools, the prevailing current approaches to paradigm evolution
are either manual reconstruction, simple rewriting scripts, or general purpose graph-
rewriting tools like [1] [2] [12]. Note that all of these are general purpose transfor-
mation approaches, and not domain-specific. Data and program transformation, as
approached in [3] [5] exhibits a similar problem. However, program transformation
for the purpose of optimization does not address the problem of rewriting the input

14



into another language.

The work presented here is highly relevant to process-centered model engineer-
ing [5], where the modeling languages themselves evolve. Our previous work [13]
developed the origins of the approach described here, which has resulted in an auto-
matically generated XSLT translation script. The work presented here extends the
results with a much richer set of migration operators, as well as a code generator
that produces executable code in a procedural language to execute model migration.

6 Summary and Future Work

We have presented an approach to the automated evolution of models when their
metamodel changes. The approach is based on the explicit modeling of how the
metamodel have changed, and on the automatic generation of executable transfor-
mation code from these models of the changes. The work has identified a number
of useful idioms for model migration, and showed how these could be composed to
form complex migration operations. A language, called MCL, has been developed
for representing the changes, and supporting tools have been created that synthesize
the executable code from these declarative specifications.

The model migration problem is an essential one for model-driven development
and tooling, and there are several challenging problems remaining in this area. One,
highly critical issue is that of semantics: how can we ensure that the migrated models
do preserve semantics? It is very hard to answer this question in general, but for
specific cases one could envision tools that validate that semantics is preserved in
some sense - which could be, arguably, defined using an extended MCL. Efficiency of
the migration code is also of paramount importance, especially on large-scale models.
The migration idioms that we have developed were based on our past experience,
but it seems that this should be an evolving set, to be extended and refined by other
developers. Thus, a continuation of this work would need to address the problem of
supporting such an extensible migration idiom set. Finally, model migration is only
part of the problem - we often need to migrate the tools that process those models.
Hence, further research is needed on automatically migrating the executable code of
the tools based on the metamodel changes.

7 Acknowledgments

The work described in this paper has been supported by the Defense Advanced Re-
search Projects Agency, the National Science Foundation, and the US Army Research
Office. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the above agencies or the U.S. Government.

15



References

[1] Aditya Agrawal, Tihamer Levendovszky, Jonathan Sprinkle, Feng Shi, and Ga-
bor Karsai. Generative programming via graph transformations in the model-
driven architecture. In OOPSLA, 2002: Workshop on Generative Techniques in
the Context of Model Driven Architecture, November 2002.

[2] D. H. Akehurst. Model Translation: A UML-based specification technique and
active implementation approach. PhD thesis, University of Kent at Canterbury,
United Kingdom, December 2000.

[3] Robert Balzer, N. Goldman, and D. Wile. On the transformational implemen-
tation approach to programming. In Proceedings of the 2nd International Con-
ference on Software Engineering, pages 337-344, 1976.

[4] Banerjee, J., Kim, W., Kim, H., and Korth, H. F. 1987. Semantics and imple-
mentation of schema evolution in object-oriented databases. SIGMOD Rec. 16,
3 (Dec. 1987), 311-322. DOI= http://doi.acm.org/10.1145/38714.38748

[5] Erwan Breton, Jean Bezivin, “Process-Centered Model Engineering,” edoc, p.
0179, Fifth IEEE International Enterprise Distributed Object Computing Con-
ference, 2001

[6] S. Gerhart. Correctness-preserving program transformations. In Proceedings of
the 2nd ACM SIGACT-SIGPLAN

[7] Karsai, G.; Sztipanovits, J.; Ledeczi, A.; Bapty, T.; Model-integrated develop-
ment of embedded software, Proceedings of the IEEE, Volume: 91, Issue: 1,
Jan. 2003 Pages:145 - 164

[8] Ledeczi, A.; Bakay, A.; Maroti, M.; Volgyesi, P.; Nordstrom, G.; Sprinkle, J.;
Karsai, G.: Composing domain-specific design environments, IEEE Computer,
Nov. 2001, Page(s): 44 -51.

[9] Ledeczi A.; Maroti M.; Bakay A.; Karsai G.; Garrett J.; Thomason IV C.;
Nordstrom G.; Sprinkle J.; Volgyesi P.: The Generic Modeling Environment,
Workshop on Intelligent Signal Processing, 2001.

[10] Magyari E.; Bakay A.; Lang A.; Paka T.; Vizhanyo A.; Agrawal A.; Karsai, G.:
Udm: An infrastructure for implementing domain-specific modeling languages,
The 3rd OOPSLA Workshop for Domain-Specific Modeling, October 2003.

[11] Meta-Object Facility – Standards available from Object Management Group,
www.omg.org

[12] Schürr, A. Programmed Graph Replacement Systems, pages 479-546. World
Scientific, Singapore, 1997.

[13] Sprinkle J., Karsai G.: A Domain-Specific Visual Language for Domain Model
Evolution, Journal of Visual Languages and Computing, 15, 2, April, 2004.

16


