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Abstract:  
 

This paper discusses the design and implementation of an integrated diagnosis system, 
MDS (Multi-level Diagnosis System), which combines associational and model-based approaches 
to diagnosis. The design and implementation of the associational module is tailored to achieving 
efficiency in routine diagnostic problem solving, and to providing a desirable interface for the 
users.  The model-based diagnosis module is developed to achieve completeness and consistency in 
the fault isolation task, and to avoid the brittleness that often occurs in associational systems.  MDS 
addresses the important issue of combining the use of “deeper” knowledge in the form of a system 
model with “shallow” (or associational) knowledge using a diagnostic controller to improve 
completeness and consistency without sacrificing efficiency.  The diagnostic controller also 
employs a methodology for automated knowledge refinement, by identifying incomplete and 
inconsistent rules and diagnostic tests in the associational module and by performing updates to 
correct problems. This paper focuses on the design and implementation of the diagnostic controller.  

 

1. Introduction 

 

 A field mechanic looks at the trouble report generated by the flight crew for an airplane 

which pulled up to the gate about 20 minutes ago, then walks up to the airplane, performs a half 

dozen tests, and after deliberating for a while, ends up swapping a valve in the pneumatic system, 

which fixes the problem indicated in the report. 

 

 The mechanic then walks to another airplane with a similar trouble report and attempts to 

isolate the problem following the same procedures, but this time, cannot seem to isolate the 

problem. He then sits down, studies the schematic diagrams of the pneumatic system for about 
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thirty minutes, goes back to the airplane, performs a few more tests, and finally discovers that the 

problem this time is a broken wire at the back of the controller. 

 

 An understanding of the mechanic's reasoning processes and the activities he performs 

provides much insight into how human experts solve complex problems. This understanding can be 

essential when we construct automated computer-based systems and computer assistants for 

complex problem solving tasks. In the first case, the trouble report immediately indicated to the 

mechanic that the situation was similar to cases he had successfully dealt with before. Based on his 

experience, he made a quick guess as to where the problem might be and proceeded to verify his 

conjecture by doing some relevant tests. The results confirmed his initial guess, and he quickly 

fixed the problem by swapping the faulty valve.  In this case, the mechanic relied mainly on his 

past experience to quickly narrow down the problem to a small number of possible faults, and a few 

directed tests helped him confirm the true fault. 

 

This scenario suggests that effective automated troubleshooting systems can be built by 

capturing experts’ experience, and transferring them into “rules of thumb” that can be encoded into 

computer programs. From the early 70's, computer systems have been developed that focus on the 

use of this knowledge for effective diagnosis of complex systems.  These systems have had their 

share of successes, but they have also exhibited a number of very important limitations. Most 

notably, they tend to be brittle, i.e., they fail in situations that are not specifically covered by the set 

of explicated rules. Factors that contribute to this brittleness include the incompleteness of experts’ 

knowledge and the difficulties in translating experts’ heuristics into a cohesive set of rules. 
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 To see how the associational systems can be improved, it is again useful to look at what our 

expert mechanic did when faced with an unfamiliar situation.  He first tried to cast the new problem 

(in the second airplane) in terms of problems he had seen before, but soon realized that this 

problem was different and solutions he had tried before wouldn’t work. He then went back to study 

the system from a more fundamental perspective (i.e., study the system schematics and 

functionality to determine components that could be linked to the observed symptoms).  This led to 

new possibilities. Additional tests related to these hypotheses helped to isolate the real problem.  

 

This example illustrates that effective diagnosis can also be accomplished by relying on 

fundamental knowledge about a system.  Since the mid 80s, diagnosis system design has focused 

on the use of this fundamental knowledge to achieve efficient and effective diagnosis (e.g., [8]). 

The fundamental knowledge is typically expressed as a model of the correctly functioning system 

that can be used to generate expected system behavior. For diagnosis, this behavior is compared 

with the observed behaviors of the system, and discrepancies are analyzed to derive possible faults. 

Typically, system models that derive behavior from structure are easier to construct for human-

engineered systems, where design documents in the form of schematics and system specifications 

are readily available. This is in contrast to systems, such as physiological processes, where the 

mapping from structure to function is not well defined, and the same component can play different 

roles in different contexts. The ability of a model-based diagnosis system to correctly identify 

different faults is very dependent on the existence of a good model of the system ([8]). Therefore, 

constructing adequate models becomes a crucial task for successful diagnosis.  
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 The use of more fundamental and first principle knowledge in model-based diagnosis 

systems enable them to deal with a more comprehensive set of situations and previously unseen 

faults.  This mitigates the brittleness problem suffered by traditional associational systems. 

However, a disadvantage of using model-based diagnosis techniques, especially for large, complex 

systems with large number of components and possible interactions, is that the diagnosis process 

can become computationally expensive. This is not to say that the model-based diagnosis system is 

always going to be less efficient. As Davis has correctly pointed out ([9]), the computational speed 

of the system does not depend on the form in which knowledge is used, but on the level of detail 

that this knowledge represents. Knowledge based systems that use associational knowledge derived 

from human experts often tend to produce more efficient performance because the experts have 

already succeeded in “inventing the right vocabulary and the right set of abstractions” ([9]) for the 

tasks at hand.  It is not easy to use generic model building techniques to develop models that 

include the right level of detail to cover all faults of interest while ensuring irrelevant details are 

omitted. Expert designers and analysts who are good at creating system models, are often not the 

expert diagnosticians. To address these problems, AI researchers have investigated strategies that 

focus the diagnosis to make it more efficient using techniques for model abstraction ([4]) and 

functional decomposition ([13]). Prior knowledge about component failures, expressed as 

probabilities have also been used to prune the search space ([11]). 

 

 Our research addresses the above problem by adopting an integrated approach to diagnosis.  

The primary goal is to develop a robust and efficient diagnosis system for complex, real-world 

systems.  This approach combines the associational knowledge available from human experts with 

a model-based approach.  This idea is to employ the more efficient and tailored associational 
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knowledge for routine faults. When the associational module fails, the model-based diagnosis 

component is invoked to derive a correct solution. This way the system maintains a good tradeoff 

between efficiency and robustness. In addition, our system employs knowledge refinement 

techniques to transfer new knowledge to the associational module from the model-based 

component to improve problem solving efficiency.  In a way, this transfers more generic, 

fundamental knowledge into a form more useful for diagnosis. This process leads to improvements 

in efficiency of diagnosis without sacrificing reliability. 

 

These ideas are incorporated into Multi-level Diagnostic System (MDS), a system that 

assists mechanics1 in the diagnosis of complex aircraft subsystems ([38]). These subsystems, such 

as the pneumatic system of an airplane, cover multiple domains (hydraulic, mechanic, 

thermodynamic, and electric), and individual components can assume multiple behavior modes.  

MDS contains two diagnostic modules: (i) an associational module that uses heuristics extracted 

from troubleshooting manuals and human experts, (ii) an MBD (Model-Based Diagnostic) module 

that relies on behavior and functional knowledge of the system to be diagnosed. The MBD module 

performs steady-state diagnosis based on the assumption that (i) the system is operating in a 

normal, steady state before the failure and (ii) the components degrade in a gradual, continuous 

manner. The activities of the two modules and the knowledge/data transfer between the two are 

handled by a third module, the diagnostic controller.  

 

This paper focuses on the design and implementation of the diagnostic controller. This 

involves two primary tasks: (i) controlling the interaction among the two diagnostic modules, and  

                                                           
1 Our original target users are the mechanics at Federal Express Corporation. 
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(ii) updating and refining the associational module using results derived from the MBD 

module when the associational module is found to be incomplete or in error. To facilitate this 

discussion, the two diagnosis modules are briefly presented in section 5, but additional details can 

be found in ([2] [3] [39]).  The system has been applied to trouble-shooting the pneumatic system 

of the DC-10 aircraft.  

 

 

2.  Background  

 

 A number of techniques have been developed for automated computer-based diagnosis in 

different domains. Early programs employed decision trees, fault directories, and probability 

theory techniques for diagnosis tasks.  These approaches were successful in simple applications that 

involved well-understood systems in narrow and carefully chosen domains. However, they suffered 

serious drawbacks when attempts were made to scale them up to complex systems where the 

possible number of interactions among components is high.  The primary pattern was that the 

complexity resulted in incomplete and inconsistent diagnostic knowledge, which in turn produced 

incorrect diagnoses. 

 

 To address the problems of computational complexity and reliability, artificial intelligence 

and knowledge based techniques were applied to building diagnostic systems. An important 

characteristic of early AI work was the use of heuristics and judgmental knowledge of human 

experts to improve system performance.  For example, the MYCIN system ([31]) encoded expert 

knowledge in the form of heuristic production rules with certainty factors.  Other approaches used 
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causal models (e.g., CASNET ([38]) and set covering techniques that allowed for simultaneous 

diagnosis of multiple diseases (e.g., [26]). As discussed earlier, these systems exhibited 

performance problems that could be attributed to: (i) incompleteness and inconsistencies in the 

knowledge of human experts, (ii) the difficulty in extracting heuristic information from human 

experts, and (iii) the task dependency of the derived knowledge.  These limitations motivated the 

development of model-based systems.  

 

 The key to the model-based approach to diagnosis of a device (or system) is the availability 

of knowledge about the structure and behavior of the correctly functioning device,  and a means for 

explicit representation of that knowledge (e.g., via measured variable values).  Based on this 

knowledge, the behavior of the device or system can be predicted through derivation and 

simulation (e.g., GDE ([10]), Sherlock ([11]), GDE+ ([34]).  The General Diagnostic Engine, GDE, 

a landmark system developed by de Kleer and Williams ([10]) performed multiple fault diagnosis 

using an Assumption-Based Truth Maintenance System (ATMS).  For purposes of efficiency, 

diagnosis systems also store, as part of the model, nominal behavior of the device for standard input 

sets (e.g., [15] [19]).  Model-based approaches have also employed directed causal relations 

between system variables for diagnostic analysis ([24]).  Qualitative simulation methods have also 

formed the basis for monitoring and diagnosis (e.g., [12]). TEXSYS ([16]) used the GDE-like 

methodology for monitoring and diagnosis of a complex thermal system.  DEDALE ([7]) employed 

order of magnitude relations. This work was extended to deal with more continuous analog systems 

(CATS ([21])). Gallanti, et al. ([15]) combined a Boolean model for candidate generation with a 

simplified quantitative (difference equation) model for candidate verification.  Their work focused 

on control issues and did not relate faulty parameters to individual component failures. More 
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recently, there has been work that employs a temporal causal graph and higher order derivatives to 

model system dynamics, and represent faulty situations as dynamic transients ([21]).  A progressive 

monitoring scheme compares observations to the predicted transients to isolate the true faults.

 To improve the diagnostic efficiency, diagnostic systems have also incorporated fault 

models (e.g., Sherlock([11]), GDE+ ([34])). Sherlock used fault models to rank candidates. GDE+ 

used fault models to eliminate spurious candidates (i.e., candidates that are inconsistent with the set 

of known faults) and MIMIC ([12]) used fault models to hypothesize candidates.  

  

  Techniques have been developed that combine different approaches to diagnosis.  Fink and 

Lusth's IDM system ([14]) combines the use of associational and functional reasoning for diagnosis 

of complex electro-mechanical systems. IN-ATE ([5]) uses associational rules to generate initial 

candidates (i.e., one or a set of suspects) and then uses a model-based approach to further test and 

discriminate among the candidates. ABEL ([25]), a system developed for medical diagnosis 

combines the use of multi-level causal models that describes domain phenomena at different levels 

of granularity for effective problem solving. More recently, many hybrid systems have been 

developed that integrate different (usually two) modules, such as neural network nad model-based 

systems ([29]), neural network and associational systems ([34]), constraint satisfaction and case-

based systems, (e.g., [18] [30]), and model-based with case-based (e.g., [27] [31]). The modules 

these systems integrate are different from MDS : (i) the individual modules they use (none of them 

combine model-based with associational rule base), and (ii) the way the two module cooperate to 

generate better performance. However, their goal of achieving efficiency and completeness are 

similar to ours. 

  
3. Architecture of MDS 
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The architecture of MDS system is illustrated in Figure 1. The associational module uses 

rules that are direct associations between symptoms and hypotheses.  Since it is created by human 

experts and is based on the vocabulary and tasks that the aircraft mechanics use to perform their 

day to day operations, it helps define the right level of detail at which diagnostic analysis needs to 

be performed for particular tasks. The knowledge for this module was extracted largely from 

troubleshooting documents such as the TAFI (Turn Around Fault Isolation) manuals2, and human 

experts (both mechanics and engineers). This module also provides the appropriate vocabulary used 

in the system’s interaction with the users (i.e., the mechanics) in the form of partial decision tree 

which most mechanics are trained to use.  The MBD module incorporates 
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MBD
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Figure 1: Architecture of MDS 

 

                                                           
2 The TAFI manual is a troubleshooting manual for DC-10 aircraft, developed by McDonnell Douglas Corporation. 



 10

schematic, functionality, and behavioral models of the ([2]). Every effort was made during the 

design phase to make it complete and consistent.  It is mainly used for diagnosis when the 

associational module fails to identify faults in a given situation. Furthermore, it is used to identify 

errors in the associational module and assist engineers and expert mechanics in updating the 

associational module. However, when updating the associational module, we only add faults that 

have occurred multiple times, and include tests that are suggested by engineers and mechanics. In 

this way, we maintain a relative small knowledge base in the associational module for efficient 

reasoning.  

 

 To achieve the integrated capabilities, the diagnostic controller coordinates the diagnostic 

activities between the associational and MBD modules. The idea is to derive typical faults quickly 

using symptom-cause associations and drop down to the MBD module only for unusual cases. 

During diagnosis, the associational module is invoked first. If a conclusion is derived, then the 

MBD module is used to verify the conclusion. If the result is correct, then the problem is solved. 

Otherwise, the MBD module goes back and deduces the solution from the initial symptoms. When 

the associational module cannot derive a definite conclusion, the MBD module takes over. 

Information obtained by the associational module is transferred to the MBD module by the 

diagnostic controller. Conclusions as well as intermediate results derived by the two modules are 

used by the diagnostic controller to identify problems within the associational module.  
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4. The Pneumatic System of the DC-10 Aircraft 

 

 Our modeling and diagnosis tasks focus on the part of the pneumatic system (Figure 2) that 

regulates air pressure and temperature drawn from one of three engines before it is delivered 

through the manifold system to different subsystems of the aircraft that constitute loads (e.g., the 

wing de-icing system). 

 

Figure 2: The Pneumatic System 

 
The pneumatic pressure is regulated by a pressure regulator subsystem. The pressure 

regulator valve is modeled as a first-order system, where the opening of the regulating valve is 

determined by the changes in pressure at the regulator output. The temperature is controlled by a 
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pre-cooler subsystem, whose primary component, a heat exchanger, draws cool air from a second  

source to cool the bleed air from the engine. Feedback mechanisms sense the temperature at the  

pre-cooler output. This information is fed back to the valve controller that fixes the opening of the 

valve to control the amount of cold air input to the heat exchanger, using the power obtained from  

the hot air transmitted through the sense line.  For the diagnosis model, both the pressure regulator 

and pre-cooler subsystem are modeled in more detail in terms of primitive components. For  

           Cold Air Source 
        Fci, Tci 
          

        Valve Controller (Ef) 
   Ps    F           Valve (k) 
 
      Sense           Controller (Ec) 
      Line (Rs)  Vc    
                
 
Flow from P.R.                      Pho, Tho           Ts         Load 
Subsystem: Phi, Thi    
 
                Heat Exchanger (Rp)         Control Sensor (Rcs) 
      

Figure 3: The Pre-cooler Subsystem 
 
 

example, the pre-cooler subsystem is modeled in terms of six primitive components (Figure 3): (i)  

the heat exchanger, (ii) the feedback controller, (iii) the valve, (iv) the valve controller, (v) the 

temperature control sensor, and (vi) the sense line. 

 

5.  The Diagnosis Modules 

This section provides an overview of the associational and model-based diagnosis modules. 

Details of the design and implementation of these modules are presented in [2] [3] [39].  

 

5.1.  The Associational Module 
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The associational module adopts a conventional expert system architecture with the focus 

on developing methods for generating partial decision trees that indicate to the mechanics 

suggested sequences of tests for fault isolation.  The system has three primary components: the 

knowledge base, the inference engine, and the decision tree generator.  

 

 Information in the knowledge base is derived directly from human experts and existing 

troubleshooting manuals (in this case, the TAFI manual), and is represented as: (i) production rules 

that link symptoms to hypotheses, and (ii) a list of available tests.  Production rules are used to 

derive plausible hypotheses from available symptoms. A typical rule has the form (LHS BF RHS 

BV), where LHS (Left Hand Side) specifies one or more symptoms and situations that need to be 

true for the rule to be fired. RHS (Right Hand Side) contains the conclusions of the rule i.e., 

possible hypotheses that explain the given symptoms. BV (Belief Value) specifies the confidence 

level associated with each hypothesis in the conclusion on a scale of 0 to 1. BF (Belief Function) 

specifies the confidence level of the rule itself. The Dempster-Schafer probability model is used to 

combine various belief values during the inferencing process ([1]).  An example of a rule used in 

the current system is show below: 

 
 (|rule121| ((((system)(pneumatic)) ((temp_light) (on)) ((stage_light) (normal))  
      ((pneu_temp) (high)) ((pneu_pressure) (normal)) 0.7) 
    ((((hyp) (heat_exchanger))) 0.7) (((hyp)(valve))) 0.6))) 
 

The above rule states that if the system is pneumatic, the temperature light is on, the stage light is 

normal, the pneumatic temperature is high, and the pneumatic pressure is normal, then the two 

possible fault candidates are the hear exchanger and the valve, with belief values of 0.7 and 0.6, 
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respectively.  The overall confidence level for this rule is 0.7.  An interpretation of the later value is 

that the importance of this fact in the fault isolation process is 0.7. 

 

 The test list contains relevant tests that either support individual hypotheses or help to 

further discriminate among the individual hypotheses in the possible faults list. Each test in the list 

contains the following information:  

 
         •  Rankings of the tests in terms of the three criterion: (i) cost of the test, (ii) time required to 
     perform the test, and (iii) the predictability of the test,  
 •  How the result of that test may affect other tests, and 
 •  Conclusions or intermediate results that may be derived directly from the result of the test,  
   when one or more hypotheses are verified. (Otherwise, the result of a test is considered a  
   new symptom that can be used to update the hypothesis list.) 
 

 The inference engine controls the diagnostic activity within the associational module. It 

assumes an iterative hypothesize, test, and refine control structure ([1] [39]).  The system first 

derives initial symptoms from preliminary information collected by mechanics. A set of hypotheses 

(possible malfunctioning components) is then generated from a initial set of symptoms using a 

forward chaining reasoning mechanism. Given the set of hypotheses, a backward chaining 

reasoning mechanism is used to select tests that either discriminate among candidate hypotheses, or 

verify that a potential candidate is actually faulty. This basic forward and backward chaining 

reasoning structure is adopted from the MIDST expert system shell  ([1]). The tests are then 

ordered and presented as a partial decision tree.  In the current system, the tests are ordered based 

on a value computed from the three criteria listed above. The weighting scheme for the criteria is 

determined by mechanics ([39]) based on the particular situation. The test with the highest rank 

becomes the root of the decision tree. For each possible result of that test, a new set of tests is 

generated, and their scores are calculated. The test with the highest score on each branch becomes 
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the root of that sub-tree. This process continues recursively until either a leaf node is encountered 

(i.e., the child of a test is a conclusion) or the tree has reached a predetermined number of levels 

(see figure 5 for an example tree). 

 

 The user can study the decision tree presented, and conduct one or more tests3. Results of 

the additional tests performed are fed back into the system, and they may determine that a 

particular hypothesis has been verified. This would complete the current diagnostic session. 

Otherwise, if no conclusion has been reached, the system goes back to derive new symptoms based 

on the test results, and uses these symptoms to update and prune the list of possible hypotheses. A  

new set of tests are then selected, and the diagnostic session continues. The system repeats the 

symptoms-hypotheses-test-decision tree loop until the faulty components are identified.  

 

 It should be pointed out that the reasoning process of associational module is designed to 

make the testing process efficient and flexible for the users. Rather than asking a mechanic to 

conduct one test at a time, it generates a partial decision tree dynamically, so that a set of related 

tests can be conducted before the user interacts with the system for additional information and help. 

The decision tree approach provides the user both flexibility (test orders are determined 

dynamically) and efficiency (the results of one test will change the importance of some other tests). 

From our interaction with mechanics, we found that they prefer the decision tree approach. On the 

other hand, just providing a complete, static decision tree annoys them, because they felt tied to a 

pattern that they cannot alter, even if their experience indicates otherwise. 

                                                           
3 Users are not restricted to perform only the tests that appear on the decision tree. They may choose to make additional 

and/or alternative tests and report results that they consider relevant. 
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5.2.  The Model-Based Diagnostic Module 

 

 The Model-Based Diagnostic (MBD) module has two main components: the model builder 

and the model-based diagnoser. Given a description of the physical system, (e.g., system 

schematics and design documents that describe the functions of the components of the system and 

their interconnections) the model builder assists the expert in developing equation models of the 

physical systems that can be used effectively for diagnosis. Based on the model of the system, the 

diagnostic engine isolates faulty components using an iterative sequence of candidate generation 

and testing, and measurement selection. 

 

5.2.1.  Equation Model of the Pre-cooler System 

 

The model builder assist the human expert in developing model of a physical system in the 

form of a set of output equations that relate measurable parameters to parameters that are linked to 

individual components. These output equations are then used by the MBD module to perform 

model-based diagnosis. Since the modeling process is not the focus of this paper and is discussed in 

detail elsewhere ([2] [39]), we will only present the output equations here.  However, it should be 

pointed out that the MBD module is independent of the modeling scheme used to create the 

equations. It works with output equations that are either generated by the model builder ([2]) or 

provided by human experts ([3]). 
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For the pre-cooler system shown in figure 2 and 3, the following two sets of output equation 

are generated for output parameters Tho (equations 1 through 6) and Pho (equations 7 and 8), the 

output temperature and pressure of the bleed air at the load, respectively. 
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Parameters in the above equations are by illustrated in the table below. 

 

Parameter Their meaning in the Pneumatic System 
Thi Initial temperatures of the hot air 
Tci Initial temperatures of the cold air 
V Velocity of the hot air flow 
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L Length of the path the air masses traverse in the pre-cooler 
Rc Resistance of the pipe line from the cold air source to heat exchanger 
Rh Resistance of the pine line from the hot air source to heat exchanger 
V Volume of the cold air in the heat exchanger unit 
ρ Density of the air 
C Unit thermal capacitor of the air 
Fc Flow rate of the cold air 
Rs Resistance of the sense line to liquid flow 
Rp Heat flow resistance of the heat exchanger 
Ef Effort transfer ratio of the valve controller 
Ec Effort transfer ratio of the controller  
Rcs Heat flow resistance of the control sensor 
K Spring constant of the cold air valve 
Xmax Maximum length of opening of the cold air valve 
P3 Pressure difference over the cold air valve 
C3 Cold air valve constant 
Tset Desired temperature 
Pro Pressure of the flow from the pressure regulator subsystem 
A Area of the opening of the sense line 
Pin Input pressure of the flow to the pneumatic system 
Xset Default opening of the pressure regulator 
A2 Area of the opening of the pipe to the pressure regulator 
Rpt Liquid flow resistance of the pipe line from the hot air source to the 
Fpt Liquid flow constant 
Ep Effort transfer ratio of the feedback controller  
Kp Spring constant of the pressure regulator valve 

 

For diagnosis purpose, parameters of a system are divided into four categories. 

1. Output parameters – measurable parameters at the output of the system being diagnosed, such 

as Tho and Pho. 

2. Input parameters – parameters associated with subsystems at the upstream, such as Pin, Thi, and 

Tci. 

3. Component parameters – parameters that represent the functions of individual components in 

the system. For example, Rp represent the resistance of the heat exchanger to heat flow. Other 
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component parameters include: Rs, Ef, k, Rs, Ec, Rcs, kp, and Rpt.  The set of component parameters 

define the set of possible single fault hypotheses that are considered for diagnostic analysis. 

4. Co-component parameters – intermediate parameters that combine equations from different 

subsystems and domains to establish direct links between output parameters to component 

parameters. For example, Cc represents the thermal capacitance of the heat exchanger. This 

parameter helps to connect the thermal and fluid parts of the system. They can be derived from 

component parameters and other system variables (e.g., see equation (3)), and, therefore, are 

not included as possible fault hypotheses.  Other co-component parameters include: D, Fc, X, E, 

P, Xh. Note that a single equation can be generated for each output parameter by repeatedly 

substituting co-component parameters. However, this often produces complicated forms that 

result in less efficient analysis by our automated algorithm.  

5. Constants – domain and system parameters whose value do not change within the subsystem, 

such as ρ, l and C3. 

 

5.2.2.  Model-based Diagnosis 

 

 Given the set of measurements made on the system and the system description which 

include parameter definitions and the current set of output equations, the diagnostic algorithm is 

summarized as follows: 

Repeat until one candidate is confirmed or all candidates are eliminated 
1. Generate partial explanations, one for each new measurement. 
2. Generate/update candidate set using best first search.   

  3. Perform test(s) selected using a decision theoretic scheme. 
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The diagnosis algorithm is based on the assumptions: (a) the system was operating in steady-state, 

and the measurement sampling rate is high enough to catch deviations soon after they manifest, and 

(b) components degrade in a continuous manner and there are no abrupt structural changes in the 

system. Diagnosis is initiated when observed system behavior deviates from a steady state. Again, 

the pneumatic system is used to illustrate the process. Details of step 1 and 2 can be found in ([3]). 

 

Step 1. Generate partial explanations by performing qualitative causal analysis on the set of 

output equations. For each output parameter and a new measurement, first determine the sign of 

PDC(Pk,Wi(+|-)) (Possible Direction of Change of Pk caused by change in Wi) for all output 

parameter Pk  and component parameter Wi pairs by computing the partial derivative  
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Where s1…si are co-component parameters that link Pk to Wi.  For example, the relation between Rs, 

and Tho can be determined using equations (1)-(5):  
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Since the qualitative values of variables A, k, E, Fs, Cc, Rc, c, ρ, D, l, Ch, C3, P3, and v are all known 

to be + and our steady-state assumption implies that Thi-Tci  > 0 (i.e., the initial temperature 

difference between hot and cold air may fluctuate but is always positive), the partial derivative 

evaluates to -, therefore, PDC(Tho, Rs+) is -, and PDC(Tho, Rs-) is +. Next, partial explanations for 

each measurable parameter is generated based on whether it is normal (within 2% of the normal 

value), above-normal (+), or below-normal (-), as described below: 

 



 21

•  For each deviant output parameter Y, form a proposition formula: X1(+|-) ∨  X2(+|-) ∨ …∨  Xn(+|-), 

where Xi(+|-)’s are changes in the component parameters Xi’s that are consistent with the 

observed deviation of Y, i.e., PDC(Y,Xi(+|-)) is equal to the deviation in Y. In our example, 

suppose the observed deviation for Tho is +, the following partial explanation for Tho+ would be 

generated:   

F(Tho+) = Rp+ ∨  Ef+ ∨  K- ∨  Rs- ∨  Ec ∨  Rcs-. 

      

Notice that, based on previously established value of PDC(Tho,Rs-) (+) and PDC(Tho,Rs+) (-) 

     Rs- is included in the formula while Rs+ is not. In other words, only a decrease in the resistance      

     of the sense line is consistent with above-normal temperature. Further notice that although Rs- is     

     included in the explanation, the low probability associated with the event (decreased resistance)  

     will result in it being dropped from the candidate list for further analysis. 

• For each measurement Y that is reported to be normal, form a proposition formula: 

 

    (¬X1 ∧  ¬X2 ∧  … ∧  ¬Xn) ∨  (X1(+|-) ∧  X2(+|-)) ∨  (X2(+|-) ∧  X3(+|-)) ∨  … ∨  (Xn-1(+|-) ∧  Xn(+|-)) 

   

   Each pair of (Xi, Xj) is included if their influence on Y are complementary (i.e., if PDC(Y,Xi(+|-))     

   is +, then PDC(Y,Xj(+|-)) is -, and vice versa.). This formula suggests that the Xi’s are either all   

   normal or at least two of them are deviant and their combined effect on Y is null. In our example,   

   assuming the output parameter Pho is normal, the following formula will be generated: 

    F(Pho) = (¬Kp ∧  ¬Rp ∧  ¬Ep ∧  ¬Rpt) ∨  (Kp+ ∧  Ep+) ∨  (Kp- ∧  Ep-) ∨  … 

   Note that each ¬Xi implies both ¬Xi+ and ¬Xi-. 

 

Step 2. Generate the candidate/update candidate set based on the current set of partial 

explanations.  Our system uses a best-first search algorithm that generates candidates in order of 
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their prior probabilities until either (i) the number of candidates reaches a preset threshold k1, or (ii) 

the prior probability of the best candidate is k2 times greater than the prior probability of the last 

candidate. The following table shows the prior probabilities of the components in the pneumatic 

system:  

Ef+ Ef- Ec+ Ec- Kp+ Kp- K+ K- Rp+ 

0.2 0.1 0.18 0.01 0.15 0.18 0.15 0.15 0.2 

Ep+ Ep- Rpt+ Rpt- Rcs+ Rcs- Rs+ Rs- Rp- 

0.1 0.2 0.2 0.01 0.1 0.05 0.2 0.001 0.001 

 

For each component parameter, two probability values are used, one indicating the likelihood of its 

increasing, the other indicating the possibility of its decreasing. This use of prior probabilities 

allows the system to take into account that components are more likely to fail in one direction than 

the other. For example, the resistance of a pipe used for fluid transfer may increase over time but 

almost never decreases.  In our example, given that Tho is above normal and all other measurable 

parameters are normal, the following candidates are generated (k1 and k2 are both set to 25): 

 

Cand = ((Ef+), (Ec+), (K-), (Rcs-), (Rp+, Rpt+), (Rp-, Ep-), (Kp+, Rp+), (Kp-, Rpt+),  

(Kp-, Ep-), (Ep+, Rpt+), (Ep+, Kp+)) 

 

Notice that Rs- (the resistance of a sense line used for fluid transfer decreasing) is not included in 

the initial set even though it is consistent with the current observation because its extremely low 

probability. 

 

Step 3. Perform measurement selection based on the established relationship between 

measurable parameters and individual components (the set of output equations) using an 
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information-theoretic method similar to the one used in GDE ([10]). For each possible 

measurement Oi, we calculate ∆He(Oi) to evaluate the expected changes in the entropy of the 

system if the measurement Oi is made, using the formula:  
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In the above formula, each Vik (1≤k≤m) is a possible outcome of measurement Oi, Ui is the set of 

candidates that do not predict a value for Oi. In the qualitative framework, a measurement can take 

one of three values: above-normal (+), normal (0), and below-normal (-). Give the current set of 

candidates C, the probability P(Oi=Vik) can be calculated using the formula:  
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where p(Cl) is the current probability for the candidate Cl . P(Oi=Vik|Cl) (the probability that 

parameter Oi will have value Vik given that the candidate is Cl ) can be easily calculated using 

qualitative analysis on the equations for Oi. When Vik is either + or -, P(Oi=Vik|Cl) has value 1 if Cl 

contains only components that are in the corresponding partial explanation of Ol. It has value 1/3 

when Cl contains components in partial explanations for both Oi+ and Oi-. It has value 0 when Cl 

does not contain any components in either of the partial explanations. When Vik is 0, P(Oi=Vik|Cl)  

has value 1 if Cl does not contain any components in either of the two lists. It has value 0 when Cl 

only contains components in one of the partial explanations. It has value 1/3 when Cl contains 

components in both partial explanations. For example, given the two possible partial explanations 

for Pro+ and Pro-: 

 

 F(Pro+) =Kp+ ∨  Ep- ∨  Rpt+ ∨  Rp-  F(Pro-) =Kp- ∨  Ep+ ∨  Rpt-  
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Since Ep- is only in F(Pro+) and Kp- is only in F(Pro-), (Ep-,Kp-) supports, with equal probabily, Pro+ 

(with Ep-), Pro- (with Kp-), Pro normal (using both Ep- and Kp-). Therefore, we get p(Pro=+ | (Ep-,Kp-

)) = 1/3 Similarly, p(Pro=+ | Ecs-) = 0 because Ecs- is not included in the partial explanations for Pro.  

 

After ∆He(Oi) is calculated for all the remaining possible measurements Oi, the one with the 

smallest ∆He(Oi) value is selected. In our example, the following ∆He’s are computed:  

Test Pvc Fc Vc Pro Phv Pprc Tcs Op 

∆He -0.909  -0.890 -0.727  -0.676 -0.457   -0.457 -0.362 -0.175  

 

Based on this information, Pvc (The output power at the valve controller) was chosen as the next 

measurement.  The initial probability of a candidate CL is calculated from the prior probability of 

its components using the formula:  
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After each measurement, the probability of a candidate is updated using Bayes rule:  
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We do not compute p(Oi=Vik) because it is the same for all candidates, and, therefore, would not 

affect their relative order. Continuing with our example, given the new measurement Pvc was 

recorded as being above normal, indicates that the fault is in the pre-cooler subsystem. As a result, 

the new candidate set is Cand = ((Ef+), (Ec+), (Rcs-)).  By calculating ∆He, the system identified 

that the measurement Vc (the voltage signal sent by the controller) would provide the most 

information. The result from Vc was reported to be normal, and that left Ef+ as the only single 
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candidate. However, the system also noticed that a double fault involving Rcs+ and Ec+ could also 

explain the symptoms observed so far. As a result, (Rcs+, Ec+) was also generated as a candidate. A 

measurement at Tcs was then suggested, and since it was normal, the system concluded that the 

actual faulty component is Ef (the valve controller). 

 

6. The Diagnostic Controller 

 

 The diagnostic controller directs diagnostic activities within the system, and communicates 

information from the MBD module to the associational module whenever the associational module 

fails. This involves two primary tasks: (i) controlling the interaction among the two modules to 

solve particular diagnosis problems, and (ii) updating and refining the associational module from 

results derived from the MBD module when the associational module is found to be incomplete or 

in error. Specifically, the task of the diagnostic controller includes: 

1. Diagnostic control: invoking the appropriate module at the appropriate time with the  
     right information, 

 2. Problem characterization: identifying and characterizing the problem in the associational 
     module when it produces an incorrect conclusion or fails to draw a conclusion, and 
 3. Knowledge base refinement: updating the knowledge base of the Associational module  

    depending on the type of problem identified.  
 
 

6.1.  Diagnostic Control 

 A high level description of the overall control algorithm is shown below: 

 
  Step 1:    Diagnose using the Associational Module;  
  Step 2:    If faulty components are found  
         Then {Invoke MBD module to verify the conclusion;  
          If conclusion is verified, then done;  
          Else {Diagnose using the MBD module;  
         Update the associational module; }} 
  Step 3:   Else {Invoke MBD module for further diagnosis;  
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       Update the associational module; } 
 

 A diagnostic session begins with the associational module, and terminates in one of the 

following situations:  

 
 1. A confirmed candidate (single or multiple faults) is found.  
 2. All candidates generated initially are eliminated (or no candidate is generated at all).  
 3. More than one candidate still remains and cannot be further discriminated.  
 
 
 In situation 1, the MBD module is invoked to verify the conclusion, if it has not been 

verified before. This can often be done offline, especially in situations when the mechanic faces a 

busy schedule. If the conclusion is found to be correct, the diagnostic session is completed, and the 

faulty component(s) is (are) reported. However, if the conclusion cannot be verified to be correct, 

the system resumes diagnosis in an attempt to derive the faulty components using the MBD 

module.4 If the MBD module is successful, the entire diagnostic record is then sent back to the 

diagnostic controller to further identify and characterize problems in the associational module. 

Situations 2 and 3 can be caused by incomplete and/or inconsistent knowledge in the associational 

module.  In both cases, the MBD module is invoked to perform diagnosis.  As in situation 1, the 

results from the MBD module are sent back to the diagnostic controller for problem identification. 

When control switches to the MBD module, the information is passed from the associational 

module in the form of: 

 

         •  Results of the tests conducted and partial diagnosis conclusions derived by the associational 

module are passed to the MBD module. Tests conducted in the associational module fall into one of 

the following categories: (i) those that directly establish the status of individual components 

                                                           
4 This can be done with a different mechanics since all diagnostic records were kept intact 
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(working/faulty), (ii) those that can be interpreted as directly measurable parameters (e.g., pressure, 

temperature) on individual components in the MBD module, and (iii) those that use heuristics to 

confirm or eliminate candidate components.  In the MBD framework, tests in category (i) and (ii) 

are considered reliable, whereas test results in category (iii) are considered ad hoc, and therefore, 

not used to eliminate any candidates. 

 

         •  Partial diagnosis results derived by the associational module are passed to the MBD 

module. Partial results occur when the associational module has narrowed down the problem to a 

smaller set of candidates but could not derive more specific results. This information is used by the 

MBD module to rank candidate when the measurements indicate that multiple solutions are 

possible. Candidates flagged by the associational module are given additional weights during the 

ranking process, while candidates that were eliminated by ad hoc tests (category (c)) will have their  

prior probability reduced for this particular diagnosis. 

 

6.2.  Problem Characterization and Knowledge Base Refinement 

 

 As discussed in the previous sections, knowledge in the associational module is represented 

in two forms: (i) production rules of the form (LHS BF RHS BV), and (ii) the list of available tests. 

Problems in the associational knowledge base can be attributed to inconsistency, which can be 

classified into: 

 
 1. Incorrect test specifications: the implications of a test are incorrectly specified. 
 2. Incorrect rules: either the LHS or the RHS of a rule is incorrect.  
 

or incompleteness, similarly categorized as: 
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 3. missing tests. 
 4. missing rules. 
 5. under-specified tests: possible conclusions are missing from the implications of a test. 
 

A problem is identified when the associational module fails to reach a definite conclusion. 

Whenever this happens, the diagnostic controller characterizes the problem in terms of one of the 

five categories listed above. This is based on a step by step comparison of the candidate sets at each 

step of the problem solving process, the measurements made, tests conducted, and the final 

conclusions drawn. The characterization process is summarized below:  

 

Case (i): the associational module eliminated all candidates. 

 

•  If the actual faulty component(s) identified by the MBD module were initially generated as 

 candidates by the associational module and then eliminated, the problem is incorrect test 

 specifications. The tests that caused this elimination can be identified by comparing the            

  two different candidate sets generated by the associational module at various steps. 

         •  If the candidates were never generated, then there are missing rules in the knowledge base. 

 

Case (ii): multiple candidate sets remain, but no further tests are applicable. 

 

•  If the candidates that remain unverified are also generated by MBD module, and were   

 retained after candidate testing, then identify the set of measurements that confirmed or 

 eliminated them during the candidate discrimination phase. Check if these measurements 

 were in the test list of the associational module. If they are, under-specified tests is the     
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   cause.  Otherwise, the cause is missing tests.  

         •  If these candidates were not generated by the MBD module, or were initially generated but 

 later discarded during candidate testing, the associational module has generated spurious 

 candidates from the initial symptoms. The rules that caused the generation of these 

 candidates are incorrect rules.  

 

Case (iii): the components declared faulty by the associational module are verified to be normal by 

the MBD module. This can be looked upon as a combination of cases (i) and (ii) since the real 

component(s) was (were) not confirmed, and candidate(s) that should be eliminated remained.  

After the problem is characterized, the next step is to update the knowledge base.  

 

6.3.  Knowledge Base Refinement 

 

 Knowledge acquisition and refinement are difficult problems. Recently, many methods have 

been developed for the verification and validation of existing knowledge bases (e.g., [17] [29]). 

Knowledge acquisition and refinement tools have been developed for general applications (e.g., [6] 

[23] [35]), and particular expert systems ([22]).  These tools often guide the user in their modifying 

efforts. Methods have also been developed for automated knowledge acquisition that use induction 

of decision trees (e.g., [28]), rule induction methods (e.g., [20]), and rough set theory (e.g., [37]) to 

extract knowledge from databases.  

  

As a step toward automating the knowledge base refinement task, our current system 

focuses on improving the completeness of an existing knowledge base by analyzing diagnostic 
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cases where the MBD module performed better than the associational module. Specifically, the 

diagnostic controller starts the refinement process when the associational module fails with a 

problem that is later solved by the MBD module, indicating an incompleteness problem within the 

associational module. After characterization, the diagnostic controller deals with each one of the 

incompleteness problems as follows:  

  

 1. Missing tests: When the problem of missing tests (or measurements) are identified, new 

     tests need to be added to the knowledge base. The effect of these tests, in terms of the  

     candidates they confirm or eliminate, can be identified by comparing the two candidate 

     sets that the MBD module maintained before and after the tests were made. Information  

     about the subjective evaluative criteria for the tests as well as how the tests should be    

     presented are obtained from domain experts. Therefore, addition of the new tests involves 

     the joint efforts by the system and the domain expert. 

 

 2. Under-specified tests: When under-specified tests are found, these tests are updated    

     automatically. Effects of the tests on additional candidates are added to the specifications 

     of these tests. Again, these effects can be found by comparing the different candidate sets 

     the MBD module generated during problem solving. The evaluation information on tests 

     remain unchanged by default, but the domain expert may change them on his own    

     initiative. 

 

 3. Missing rules: When a missing rule situation occurs, new rules are added to the  

    associational module. These rules link initial symptoms to candidates that were generated  
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    by the MBD module, but were missing from the candidate set of the associational         

    module.  

 

 Inconsistent rules and tests are reported to the experts, along with detailed descriptions of 

the exact problem encountered by the system. For each incorrect test specification, the diagnostic 

controller reports the name of the test, the candidates it had incorrectly confirmed or eliminated, 

and the test results that are related to it. As for incorrect rules, the diagnostic controller reports the 

rule number and the candidates it had incorrectly included in its RHS.  In both cases, the burden of 

actually correcting the knowledge base is left to a domain expert. 

 

6.4.  Example 

 

 We illustrate the working of the overall diagnosis system with an example. Consider the 

pneumatic system with a malfunctioning controller. The initial symptoms reported were: output 

temperature Tout above normal, input temperature Tin, input pressure Pin, and output pressure Pout 

normal. Since the problem appears to be in the temperature regulation part, the diagnosis system 

focus was on the pre-cooler subsystem. The associational module was invoked first, and it 

generated five candidates: (i) sense line, (ii) heat exchanger, (iii) valve controller, (iv) valve, and 

(v) control sensor circuit wire. Note that the controller was not listed; we are probably dealing with 

an incomplete associational module. The system generated the following partial decision tree (the 

leaf nodes are exclosed in <>):  

Sensor Circuit 
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               >100 ohms     <10 ohms 
                10-100  

           ohms 
 
 

              Sensor Grounding      <Sensor Wire>             Valve Circuit 
       
 
          Grounded           Not Grounded        ok              not ok 
 
 
   
             <Sensor>               <CS Wire>         Sense Line         Valve Controller 
 
 

 
Figure 5:  A Partial Decision Tree Used in the Example 

 

The user can choose tests from the tree, or follow his or her intuitions. In this case, the user 

followed the tree and reported the following test results: (i) Sensor circuit -- the resistance 

difference between the control sensor circuit and the indicating sensor circuit was less then 10 

ohms, (ii) Valve circuit (this include the valve and the valve controller) was found to be operating 

normally, (iii) Sense line -- no leakage or blockage detected, and (iv) Heat Exchanger (a child node 

of sense line in the initial decision tree and was therefore not shown in the partial tree)-- tested to 

be normal. Given these results, the associational module eliminated all candidates and was not able 

to isolate the problem. At this point, the MBD module was invoked to continue the diagnosis. 

Results of the tests were also transferred to the MBD module, with the following implications: (i) 

the sense line and heat exchanger were considered normal since they were tested directly, (ii) the 

correctness of the resistance of the sensor circuit was interpreted as an indication that the 

temperature from the control sensor (Ts) is normal since the temperature reading is a function of the 

resistance, and (iii) The valve circuit test checks the current at Pin 49 of the circuit and consider the 
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circuit ok when it is properly grounded. However, this interpretation by the associational module 

was considered ad hoc. Consequently, components of the valve circuit were not eliminated. 

However, the test did indicate that both the valve and valve controller would be less likely 

candidates than what its prior probability indicated. Given this information, the MBD module 

generated three candidates: {controller}, {valve-controller} and {valve}, with the {controller} 

ranked as the most likely candidate. It then suggested that the voltage signal VC sent to the valve 

controller be measured. Since the output temperature is higher than normal, this voltage should be 

below normal. When that measurement did not concur with expectations, the MBD module 

concluded that the controller was actually the faulty component.  

 

At this point, the diagnostic controller took over again to initiate the knowledge refinement 

process. Since the faulty component was not generated initially as a candidate by the associational 

module, a missing rule situation was identified, and the diagnostic controller added the following 

new rule to the associational knowledge base:  

 (|rule200| ((((system)(pneumatic))((temp_light) (off))  
      ((stage_light) (normal)) ((pneu_temp) (high))  
      ((pneu_pressure) (normal)) ((pressure_light) (off))  
      ((sensor_circuit) (<10)) ((valve_circuit) (normal)) 
      ((sense_line) (normal)) ((heat_exchanger) (normal)) 
      ((valve_controller_valtage) (low)) 0.9) 
    ((((hyp) (controller))) 0.9)))  
 
 
The missing test Vc was also reported and the appropriate information about the test was requested 

from the domain experts.  

 

6.5.  Implementation 
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 The Associational module is implemented in Common Lisp and C, and runs on Unix-based 

workstations. The current knowledge base contains about 130 rules and 30 tests for troubleshooting 

the pneumatic system of the DC-10 aircraft. Rules and tests can be entered into the system using 

the KB Editor that was extended from the Rule Editor used in the MIDST system. (MIDST is an 

expert system shell used for geological exploration. Details about MIDST system can be found in 

([1]). A Graphical User Interface that displays partial decision trees, tests information, and 

conclusion(s) has also been implemented. This software runs in parallel with the inference 

mechanism of the associational module, and is implemented in C using X-Windows. A model 

builder has been implemented in X-Windows and C with a simple graphics and menu-based 

interface. It provides users with tools for creating equation models of physical systems ([2] [39]). 

Models created can be stored as subsystems (e.g., the pre-cooler or the pneumatic system) or as 

mechanisms.  The MBD Module and the Diagnostic Controller were both implemented in C using 

X-Window. The MBD module also calls subroutines from Mathematica to perform symbolic 

manipulation and calculate partial derivatives in order to generate partial explanations.  

     

7.  Discussion and Conclusions 

 

 In this paper, we have discussed the design and implementation of an integrated diagnosis 

system MDS that combines associational and model-based approaches to diagnosis. The design and 

implementation of the associational module is tailored towards achieving efficiency in routine 

diagnostic problem solving, and for satisfying the needs of the users that this system was developed 

for (i.e., aircraft mechanics). The MBD module is developed to achieve completeness and 

consistency in performing diagnosis on complex systems, and to avoid the brittleness that often 
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occurs in associational approaches, especially when dealing with unusual and novel faults. It 

employs qualitative causal analysis of the system equations.  By analyzing the effects of changes in 

component parameters on a particular output parameter and comparing the results with the 

observed deviation of the output parameter, our method can effectively eliminate a large number of 

candidates during the initial candidate generation phase and produce a more focused result. 

Coupled with this, we use information theory-based methods (e.g., de Kleer and Williams ([10])) to 

compute the information gain for each possible additional measurement, and, therefore, are able to 

focus the measurement selection task for further refinement of candidate components. 

 

An important issue addressed in our integrated diagnosis framework is how to use the 

“deeper” knowledge from system models to improve the completeness and consistency of the 

“shallow” (or associational) knowledge base. Our hybrid scheme develops a methodology for 

automated knowledge refinement. The MBD module is used to identify incompleteness and 

inconsistencies in the associational module, and through the diagnostic controller perform 

knowledge refinement to update the associational knowledge base.  

 

There are similarities as well as differences between MDS and other existing integrated 

approaches to diagnosis (e.g., [14] [18] [27] [30] [31] [36]). Major differences include: (i) the type 

of individual modules used ([18] [30] [36]), (ii) how the modules interact ([14]), and (iii) the 

amount and type of information exchange among the modules ([27] [33]). Perhaps our system is 

most similar to the systems by Portinale [27] and Someren ([33]).  In all three systems, the 

associational component is designed and used to “speed up” the diagnostic process and the Model-

Based Reasoning (MBR) module is used for completeness. However, the MBR components in their 
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system are not used to help improve its associational component (in their case, a case-based 

reasoning module) as our system does. Our knowledge acquisition method also differs from many 

existing approaches.  Instead of deriving new knowledge and rules from databases using induction 

methods ([20] [28] [37]), our approach extracts knowledge from the model-based subsystem by 

analyzing new diagnostic cases, either automatically (when new rules are added), or semi-

automatically (when it guides the human expert to modify existing rules and tests).  Currently, we 

are working on the premise that the existing model-based diagnosis module is accurate and 

complete. For complex systems, this may not always be the case. In the future, we will be looking 

into developing techniques where unusual diagnostic cases may be employed to refine both model-

based and associational modules. Updating of the system model will necessarily be performed with 

the help of human experts. 
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	4. The Pneumatic System of the DC-10 Aircraft
	Our modeling and diagnosis tasks focus on the part of the pneumatic system (Figure 2) that regulates air pressure and temperature drawn from one of three engines before it is delivered through the manifold system to different subsystems of the aircraft t
	
	
	
	Figure 2: The Pneumatic System

	pre-cooler subsystem, whose primary component, a heat exchanger, draws cool air from a second
	source to cool the bleed air from the engine. Feedback mechanisms sense the temperature at the
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