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Abstract 
 

There is an ever increasing concern about security 
threats as embedded systems are moving towards 
networked applications. Model based approaches have 
proven to be effective techniques for embedded systems 
design. However, existing modeling tools were not 
designed to meet the current and future security 
challenges of networked embedded systems. In this 
paper, we propose a framework to incorporate security 
modeling into embedded system design.  We’ve 
developed a security analysis tool that can easily 
integrate with existing tool chains to create co-design 
environments that addresses security, functionality and 
system architecture aspects of embedded systems 
concurrently.    
 
 
1. Introduction 
 

Embedded systems play a crucial role in critical 
infrastructure in [1], which is essential to national 
security, success and economic health [2]. There is 
increasing concern of the security threats on these 
kinds of embedded systems [3],[4]. Successful attacks 
have been reported on the US Power Grid [5] and the 
sewer system of Australia’s Maroochy Shire Council 
[6]. Other incidents such as a worm infection [7] have 
affected the Davis-Besse Nuclear Power Plant and 
CSX Railroad Corp. [6]. To address such security 
threats we need to rethink the embedded software 
design process.  

Model Integrated Computing (MIC) [8] is gaining 
wide recognition in the field of embedded software 
design. Models represent embedded software, its 
deployment platform and its interactions with the 
physical environment. Models facilitate formal 
analysis, verification, validation and generation of 
embedded systems [9]. Hence, this approach is 
superior to traditional manual software development 
process. Although, there is modeling tool support for 

analysis of functionality, performance, power 
consumption, safety, etc., currently available tools 
incorporate little if any support for security modeling. 
As a result, security is looked at only once the 
complete system has been built. At best, this approach 
of addressing security in the last stages of development 
is inefficient taking large amounts of effort to achieve 
only modest improvements in security. Engineers 
designing embedded systems usually do not have the 
experience to address security issues and in many cases 
are not even aware of the issues [10]. Fixing security 
vulnerabilities involves releasing patches, which can 
introduce new problems such as viruses [11] or 
security vulnerabilities [12].  Still, systems designed 
without security in mind are intrinsically insecure. 
Patches can fix specific security vulnerabilities, but do 
not address poor system architecture.  

Many times vulnerabilities are only discovered 
once they have been exploited.  To address these 
unknown threats, systems can be isolated in private 
corporate networks using firewalls and intrusion 
detection systems. But such perimeter defenses, even if 
they are flawless, cannot protect against insider attacks 
[13].  In light of this situation, we advocate modeling 
environments that incorporate security into the early 
design phase of embedded systems.  

 One of the few modeling languages with 
security extensions is UML.  Currently available 
extensions to UML provide: access control [14] [15], 
fair exchange, assumptions about secrecy, integrity, 
etc. [16]. There are existing tools that can guarantee 
some security properties using automated proof 
verifiers [16]. However, UML based Model Driven 
Security is not sufficient for design and analysis of 
embedded systems. We strongly believe that embedded 
system design can benefit from Domain-Specific 
Modeling Languages (DSML) as opposed to the one-
size-fits-all approach of UML. For example, there is no 
concept of hardware in UML which makes it ill suited 
for embedded systems with their diverse hardware 
architectures. In many embedded applications system 
resources are scarce. Added overhead for security can 



have drastic effects on performance. An ideal 
embedded software development environment will 
allow the engineer to analyze security and performance 
tradeoffs based on the hardware platform the system 
will run on. 
 
2. Background and Motivation 
 

MIC can meet the challenges of designing secure 
embedded systems. A key advantage of the model 
based approach is the abstraction of the application 
domain.  This abstraction is facilitated through the use 
of DSMLs.  A DSML provides a system designer a set 
of concepts that are specifically tailored for a certain 
application domain. In our case, the domain is 
networked embedded real-time systems, such as 
process control systems, automotive, avionics and 
robotics systems. A DSML with the proper level of 
abstraction hides the inconsequential details of a 
system while allowing the engineer to shift focus to 
more important aspects. There are many examples of 
DSMLs developed for embedded system design in 
different domains [MILAN [17], SMOLES  [18], 
AADL [17]]. We propose an extension mechanism for 
DSMLs that adds security concepts similar to UML 
extensions [14]. By extending embedded system 
DSMLs, we can add tool support for security analysis, 
validation, verification and generation.  These security 
tools will extend the large tool chains that already exist 
for embedded system design. 

 
3. General Approach 
 

We will demonstrate a process for integrating 
security analysis into existing tool chains to create a 
security co-design environment.  The approach taken is 
to create a common DSML that is used to capture and 
analyze security properties of systems.  The advantage 
of this approach is that the effort needed develop the 
security analysis tool is only spent once.  Then this tool 
can be incorporated into existing embedded systems 
languages with minimal effort.  By defining mappings 
from an embedded system DSML onto the security 
analysis DSML, we can analyze the security properties 
the embedded system.  Figure 1 illustrates the process 
of defining mappings from one or more DSMLs onto a 
language supporting security analysis and feeding the 
analysis results back to the DSML. 
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Figure 1. Mappings from DSMLs to SAL enable 

security analysis of the DSMLs 
  

The co-design environment is implemented in the 
Generic Modeling Environment (GME) [9]. GME is a 
metaprogrammable tool which facilitates the graphical 
implementation of DSMLs through the use of 
metamodels.  In this environment, we create a Security 
Analysis Language (SAL) that enables a user to model 
and analyze security related properties of embedded 
systems.  (Note that while SAL is technically a DSML, 
from this point out we use the term DSML only in 
reference to a language for embedded systems design 
which we wish to add security analysis capabilities to.)  
The purpose of this analysis tool is to identify points in 
the system model that violate certain security 
requirements and provide useful feedback to the 
modeler. SAL allows such violations to be identified 
and remedied at design time before they can be 
exploited.  Currently, SAL supports two types of 
analyses: information flow analysis and threat model 
analysis, which are detailed in the following sections. 
 
3.1. Information Flow Analysis 
 

The two traditional models for dealing with 
information flow in systems are the Bell-LaPadula 
model [19] and the Biba model [20].  Both of these 
models enforce an access control scheme that defines 
the rights of a subject to access information.  Subjects 
and information are assigned a security level and a 
compartment which define what information a given 
subject is permitted to access.  The set of all security 
levels is an ordered set that can be evaluated as an 
inequality (i.e. Top Secret > Secret).  Compartments 
are a set that can be evaluated as an inequation (i.e. 
FBI ≠ CIA). 

The Bell-LaPadula model deals with 
confidentiality or secrecy of information in systems.  
The two properties that the Bell-LaPadula enforces are 
the Simple Security Property and the * (star) Property.  
The Simple Security Property states that a subject may 
not read information that is classified at a level greater 
than that subject’s classification.  The * Property states 
that a subject may not write information to a level less 
than that subject’s classification.   



The Biba model deals with integrity of 
information in systems.  Biba also enforces a Simple 
Security Property and a * Property.  The Biba version 
of the Simple Security Property states that a subject 
may not read information that is classified at a level 
less than that subject’s classification and the Biba 
version of the * Property states that a subject may not 
write information to a level greater than that subject’s 
classification. 

 

 
Figure 2. Partitions and dataflows in SAL 

 
To analyze the Bell-LaPadula and Biba models, 

SAL views a system as a set of partitions, a set of data 
objects contained in each partition and the dataflows 
inside and across the partitions.  Dataflows are 
represented as connections between input and output 
ports on a partition.  In SAL, partitions are the subjects 
and are assigned a security level and compartment 
attributes.  A data object inherits the security level and 
compartment classification of its containing partition.  
SAL allows the security level to be an integer value 
and the compartment to be a string value.  Our analysis 
tool treats each data object as the root node in a tree 
search algorithm.  The tool will traverse the dataflow 
paths originating from a data object and verify that 
each partition through which that data object flows has 
a security level and compartment that permit that 
partition to access the data object.  Bell-LaPadula does 
not allow information to flow to a lower security level 
while Biba does not allow information to flow to a 
higher security level.  When composed, these two 
models only allow information to flow between 
partitions with the same security level.  Applying both 
models is too restrictive in a system where the designer 
does not need to restrict access to all data objects.  
There may be some data objects that have a secrecy 
requirement but no integrity requirement and vice 
versa.  To provide a less restrictive model, data objects 
in SAL are assigned two Boolean attributes, secrecy 
and integrity.  The flow of every data object is 
evaluated based on the settings of these attributes.  
When secrecy is true the Bell-LaPadula model is 
enforced and when integrity is true the Biba model is 

enforced on the flow of that data object between 
partitions.  Figure 2 shows a small example model in 
SAL. 
 
3.2. Threat Model Analysis 
 

In a distributed system, partitions may reside on 
multiple nodes and data is transferred between these 
nodes over some communication channel.  The 
information flow analysis addresses the movement of 
data explicitly defined in the system model but does 
not address covert channels.  One such covert channel 
could be a man-in-the-middle attack on the 
communication channel.  To prevent such attack, the 
communication channel can be encrypted.  Adversary 
modeling in SAL enables the analysis tool to identify 
vulnerable channels and determine which encryption 
algorithms can be used to protect data being 
transmitted on that channel.  Figure 3 illustrates the 
adversary model.   

 

 
Figure 3. Encryption algorithms library and 

adversary models in SAL 
 
In each system there is a library of encryption 

algorithms that contains the set of all encryption 
algorithms that can be used to encrypt a channel.  Each 
system also contains a set of adversary models that 
define which encryption algorithms are vulnerable in 
the context of that adversary.  Each adversary contains 
a set of references to algorithms that are defined in the 
algorithms library.  Each reference has an attribute, 
maxkeysize, which means that the referenced algorithm 
is vulnerable to that adversary if the strength of its 
encryption is not greater than maxkeysize.  Together, 
the encryption algorithm library and adversary models 
allow our analysis tool to determine which algorithms 
are safe to use to encrypt information flows.  Each 
information flow in SAL has an attribute, adversary, 
which identifies the adversary model associated with 
that information flow.  Each information flow in SAL 
also has an EncryptionAlgorithm and KeySize attribute.  
For each information flow in the system, the analysis 



tool checks the EncryptionAlgorithm and KeySize 
attribute against the set of encryption algorithms that 
are vulnerable for the adversary model specified by 
adversary. 
 
3.3. Integrating Security Analysis with Existing 
Tool Chains 
 

Although, there is modeling tool support for 
analysis of functionality, performance, power 
consumption, safety, etc.,  currently available tools 
incorporate little if any support for security modeling. 
As a result, security is only addressed once the 
complete system has been built.  We want to leverage 
the work behind existing tool chains by incorporating 
security analysis in the system design process.  SAL 
was created to be a reusable tool that can be integrated 
with multiple tool chains, thus reducing the effort that 
would be required to develop custom security analysis 
for each tool chain.   

In MIC, a transformation is, in general, a one way 
function with a domain being the set of all valid 
models in the original DSML and a range being the set 
of all valid models in the destination DSML.  By 
defining a transformation that maps models of an 
embedded system DSML onto SAL, we can perform 
information flow analysis and threat model analysis on 
the embedded systems models.  In order to define such 
a transformation, the original DSML must be able to 
capture those security properties that are need for SAL 
to provide a useful analysis.  In other words, for 
information flow analysis, the DSML must be able to 
model the concepts such as data object, dataflow, 
partition, security level, compartment, secrecy and 
integrity requirements and for threat model analysis the 
DSML must be able to model the concepts such as 
encryption algorithm library, encryption algorithm, 
adversary model, vulnerable encryption algorithm, 
encrypted channel and channel adversary.  Typically, 
the DSML will not have all of the concepts needed to 
create such a transformation.  For example, take a 
DSML built on the synchronous dataflow model of 
computation [21].  This DSML would have the 
concepts such as data objects and dataflow, but none of 
the other security specific concepts.  It would be the 
responsibility of a tool designer to add the ability to 
capture these security specific concepts in a DSML.  
The process of extending a DSML to capture security 
related properties is not as difficult as it might seem.  
One of the powerful concepts of the MIC approach is 
easy composition of metamodels to form new 
languages.  By composing the metamodel of a DSML 
with concepts from SAL, it is relatively easy to form 
these security specific extensions to an existing 

language. The tool designer can then create the 
transformation rules that map models in the DSML 
onto models in SAL.  GME is integrated with the 
Graph Rewriting and Transformation language 
(GReAT) [22].  GReAT is built on top of an execution 
engine (GReAT-E) which can translate models based 
on transformation rules specified by GReAT.  This 
mapping specification needs to be created only once 
for a given DSML and then any valid models for that 
DSML can be automatically transformed into a 
corresponding SAL model.   

Since SAL is only capable of capturing those 
concepts which are relevant to security analysis, it is 
not possible to define a transformation from SAL back 
onto the original DSML.  Those concepts which are 
unique to the original domain are lost in the translation 
from the DSML to SAL.  In order for SAL to provide 
useful feedback to the user, we introduce the path and 
id attributes which belong to partition, information 
flow, data object, ports, adversary model and 
encryption algorithm in SAL.  Path and id store the 
path and the unique ID of an object in the original 
DSML.  When a SAL model is analyzed and security 
violations are identified, the results will be fed back to 
the user of the original DSML in the form of an error 
messages along with hyperlinks that identify at which 
point in the original model there is a security violation.  
Using this approach, a user of a DSML will never have 
to view the SAL model.  The transformation to a SAL 
model, the security analysis and the result feedback 
form an automated process.   

When adding these security specific concepts to a 
DSML, it is important to consider what they mean in 
the context of the entire tool chain.  Often the design 
flow includes other tools for such things as 
functionality, schedulability, power consumption and 
safety analysis.  The division between these different 
types of analyses is not always clear-cut.  Many times 
decisions made based on one type of analysis can have 
an impact on the outcome of other types of analysis.  
One such example in the context of SAL is the use of 
encryption algorithms.  The decision to encrypt a 
communication channel could have a major effect on 
the schedulability of the system.  Also, if there is a 
code generator for the DSML, it must be modified to 
support these security properties (i.e. linking to 
encryption libraries, enforcing the partition model, 
etc.).  The tool developer who is integrating SAL 
capabilities to a DSML must address concerns such as 
making these other tools aware of the impact the 
security properties will have on the system.  Figure 4 
shows a typical design flow for performing security 
analysis with an embedded system DSML. 
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Figure 4. Typical embedded system design 

flow with SAL 
 

4. Example: Integrating Security Analysis 
to an Existing Embedded System Language 
 

As a proof of concept, we have integrated SAL 
with an existing tool for the design of embedded 
systems called SMOLES [18]. SMOLES alone does 
not address security concerns.  We show how we add 
the capability for capturing security specific properties 
to SMOLES.  Models in SMOLES are enriched with 
these concepts and we create a mapping from 
SMOLES concepts to objects in SAL.  This mapping 
allows us to create a transformation from SMOLES 
models to SAL models.  We show how results from the 
analysis of a SAL model can feed back warnings of 
security violations so that the user can correct the 
SMOLES model accordingly. 
 
4.1. Description of SMOLES 
 

The Simple Modeling Language for Embedded 
Systems (SMOLES) was designed as a simple 
modeling language that allows constructing small, 
embedded systems from components [18]. The 
components are assumed to be concurrently executing 
objects that communicate and synchronize with each 
other. Furthermore, objects can perform blocking I/O 
operations in which they wait for the result, while other 
objects can execute. Communication between 
components means passing data from a source 
component to a destination component, which is then 
enabled to run, in order to process the data. In addition 
to data triggering, periodic timers can also trigger the 
components. The language consists of components and 
assemblies. Components are the elementary building 
blocks, and contain input and output ports, which are 
used to receive/send data tokens from/to other 
components.  Assemblies contain components, and 

describe how they are interconnected. Like 
components, assemblies can have their own input and 
output ports, and assemblies can contain other 
assemblies.  Assemblies are organized into a hierarchy. 
The various components and assemblies in the 
hierarchy communicate with each other through the 
dataflows, as specified by the designer.  SMOLES has 
a code generation utility that will interpret the model 
and output C++ code that will execute on top of a 
small custom dataflow kernel.  Figure 5 shows a small 
example model in the SMOLES DSML.   
 

 
Figure 5. Example SMOLES model 

 
4.2. Integrating SAL with SMOLES 
 

Since SMOLES does not capture any security 
properties, we must add the appropriate concepts, so 
that we can define a transformation from SMOLES to 
SAL. We call this extended language SMOLES_SEC.  
SMOLES_SEC allows the modeler to capture the 
security properties required to perform the two types of 
analysis that SAL supports, the information flow 
analysis and threat model analysis.   

First, we address those concepts necessary to 
perform the information flow analysis.  SMOLES 
already has the concept of dataflows but none of the 
other concepts used in SAL.  Assemblies in SMOLES 
are close to the concept of a partition in SAL.  One 
possible approach would be to add the security level 
and compartment attributes to assemblies.  However, 
assemblies are organized in a hierarchy whereas 
partitions in SAL are not.  So, we introduce the idea of 
partition to SMOLES_SEC.  Partitions will have input 
and output ports which can be connected by dataflow 
connections.  Like in SAL, partitions will have security 
level and compartment attributes that define their 
access rights in the context of the Bell-LaPadula and 
Biba models.  Assemblies will be contained by 
partitions and will inherit the security level and 
compartment of the containing partition.  SMOLES has 
the concept of dataflow; however there is no first class 
object that is a data object.  We assign the secrecy and 



integrity attributes to an assembly in SMOLES_SEC 
and evaluate these attributes against the dataflows 
originating from that assembly. 

Next, we address the concepts necessary to 
perform the threat model analysis.  SMOLES has no 
concept of encryption algorithms or adversary 
modeling.  We add these concepts to SMOLES_SEC 
and define them in the same way that they are defined 
for SAL.  In each system, there is an encryption 
algorithms library with a set of encryptions algorithms.  
Each system contains a set of adversaries and each 
adversary contains a set of references to encryptions 
algorithms.  Each encryption algorithm has an 
attribute, maxkeysize.  We do not associate an 
encryption algorithm and adversary model directly 
with dataflows as it is done in SAL. Rather, 
SMOLES_SEC can model a deployment diagram 
where nodes, which represent the execution platform, 
are connected to other nodes through a link (or bus).  A 
node can be viewed as a set that contain partitions that 
execute on that node.  Likewise, a link can be viewed 
as a set that contains the dataflows that are transmitted 
over that link.  Each link in SMOLES_SEC has an 
attribute, adversary, which identifies the adversary 
model associated with that link.  Each link in 
SMOLES_SEC also has an EncryptionAlgorithm and 
KeySize attribute.  Dataflows inherit the adversary, 
KeySize and EncryptionAlgorithm of the link that they 
are transmitted across. 

The effect that these extensions for 
SMOLES_SEC have on tools that were written for the 
SMOLES languages must be examined.  SMOLES has 
a utility that will generate C++ code from models.  
This utility is unaware of encryption algorithms and 
their meaning in the context of SMOLES_SEC.  There 
are two solutions to this problem.  Either we define a 
transformation that will map SMOLES_SEC models 
back onto SMOLES models or we port this code 
generator to work with the SMOLES_SEC 
environment.  In our case we choose to port the code 
generator to the SMOLE_SEC environment.  To do 
this we will need to make some slight modifications 
such as enabling assemblies to be contained in 
partitions and linking to a library of encryption 
algorithms. 
 
4.3. Model Transformation from 
SMOLES_SEC to SAL 
 

Now that the appropriate concepts have been 
added to extend SMOLE_SEC we are able to define a 
model transformation that maps SMOLES_SEC 
models to corresponding models in SAL.  Once we 
have defined these rules, the process of converting 

SMOLES_SEC models to SAL models will be 
automated.  We have written a small script that can be 
invoked from the SMOLES_SEC environment.  This 
allows the user of the SMOLES_SEC environment to 
transform their model into a SAL model in one step, 
run the information flow and threat model analysis on 
the SAL model and receive the analysis results.   
 
4.4. Example Application in SMOLES_SEC 

 

 
 
An example SMOLES_SEC model is shown in 

Figure 6.  This is a generic application that 
demonstrates the capabilities of the security analysis.  
Real applications of this tool will be too large to cover 
in the scope of this paper.  There are four partitions in 
the system.  Partitions A, B, and D have a security 
level of 1 and PartitionC has a security level of 2.  This 
means that data objects with a secrecy requirement 
may not flow from PartitionC and those data object 
with an integrity requirement may not flow to 
PartitionC.  In this example, we do not consider 
partitions with different compartment classifications.  
PartitionB contains an Assembly_B1 that has an 
integrity requirement but no secrecy requirement.  

a) 

 
 
b) 

 
c) 

 
 

Figure. 6 SMOLES_SEC example 
application  a) partitions and dataflows, b) 

deployment diagram, c) threat model. 



Since this assembly is in PartitionB it inherits the 
security level of 1.  Figure 6b shows the deployment 
diagram.  Nodes 1, 2, and 3 are connected by a 
common link.  PartitionA and PartitionB execute on 
Node1.  PartitionC executes on Node2 and PartitionD 
executes on Node3.  All dataflows transfer data across 
the Link, except the dataflow connecting PartitionA 
and PartitionB which reside on the same node.  Figure 
6c shows the threat model of this system.  The 
adversary model of Link is the Internet_Adversary. 

First, we will invoke the information flow analysis 
on this model.  Figure 7 shows the error message that 
we receive for the flow analysis.  The assembly in 
PartitionB has an integrity requirement so the 
dataflows originating from this assembly are evaluated 
with the Biba model.  There is a dataflow that connects 
PartitionB to PartitionC which represents data objects 
moving from a low security level to a high security 
level.  This dataflow violates the Biba model.  There 
are a several possible solutions to this error.  It is up to 
the system modeler to determine which solution is 
appropriate in the context of their system.  For this 
example, we determine that the PartitionB can be 
classified at a security level of 2.  When this change is 
made to the model the security analysis tool does not 
return any errors. 

   

 
 

Next, we invoke the threat model analysis.  Figure 
8a shows the error message we receive.  There is an 
adversary associated with the link so the channel must 
be encrypted.  The error message warns that Link must 
be encrypted so we set the encryption attributes on 
Link to 256 bit RSA.  Internet_Adversary is capable of 
breaking RSA with a key size of  256 bits or less.  
The error message in Figure 8b shows the error 
message we receive.  To fix this error message we 
increase the key size used to encrypt Link to 512 bits.  
This fixes the security violation the threat model 
analysis no longer returns any error messages. 

 

 
 
5. Future Work 
 

SAL currently supports modeling of access control 
policies in the context of the Bell-LaPadula and Biba 
models.  These access control policies are not 
sufficient for the needs of all applications.  We would 
like for SAL to have the expressiveness to model other 
types of access control schemes.  Another area that 
needs to be addressed is how to more tightly integrate 
the security analysis with the other analysis tools 
available for a DSML.  This would allow the designer 
to look at tradeoffs made based on security properties 
such as analyzing the tradeoffs between security and 
performance.  We have shown how SAL can be 
integrated with SMOLES which is a dataflow based 
language.  This leads to a simple mapping from 
SMOLES to SAL.  There needs to be work done to 
look at how security analysis can be integrated with 
other classes of DSML such as those based on control 
flow. 
 
6. Conclusion 
 

Model driven security approaches have been 
successfully used in various industrial, governmental 
and financial applications.  Model-Integrated 
Computing has proven to be a valuable tool in 
embedded systems design process.  We have 
demonstrated a security analysis tool that is capable of 
analyzing the flow of data objects through a system 
and identifying points in a distributed system that are 
vulnerable to attack.  We have outlined a method for 
composing this type of security tool with existing tool 
chains for DSMLs.  This approach leverages the 
development efforts that have gone into design of tool 
suites for existing embedded system DSMLs.  Creating 
a separate analysis language for security properties 
allows reuse of this tool for multiple DSMLs.  The 
example application shown is a proof of concept that 
demonstrates the potential of integrating security 
modeling capabilities with existing languages. 
 

a) Connection not encrypted -- The 
connection at path: /SimpleSystem/Link is 
vulnerable. Please specify an encryption 
algorithm.  

 
b) Vulnerable Encryption Algorithm -- The 

connection at path: /SimpleSystem/Link is 
vulnerable. The adversary knows RSA up to 
a key size of 256 bits. Please specify a 
larger key size or change the algorithm. 

 

Figure 8 Error messages – threat model 
analysis 

Integrity Requirement Violated -- 
/SimpleSystem/PartitionB/Assembly_B1 has 
an integrity requirement which is 
violated by the information flow 
connecting 
/SimpleSystem/PartitionB/Port_B2 to 
/SimpleSystem/PartitionC/Port_C1. 

  

Figure 7 Error message - information flow 
analysis 
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