
Integrating Security Modeling into Embedded System Design

Matthew Eby, Jan Werner, Gabor Karsai, Akos Ledeczi
Institute for Software Integrated Systems

Vanderbilt University, Nashville, TN 37235
{firstname.lastname}@vanderbilt.edu

Abstract

There is an ever increasing concern about security
threats as embedded systems are moving towards
networked applications. Model based approaches have
proven to be effective techniques for embedded systems
design. However, existing modeling tools were not
designed to meet the current and future security
challenges of networked embedded systems. In this
paper, we propose a framework to incorporate security
modeling into embedded system design. We’ve
developed a security analysis tool that can easily
integrate with existing tool chains to create co-design
environments that addresses security, functionality and
system architecture aspects of embedded systems
concurrently.

1. Introduction

Embedded systems play a crucial role in critical
infrastructure in [1], which is essential to national
security, success and economic health [2]. There is
increasing concern of the security threats on these
kinds of embedded systems [3],[4]. Successful attacks
have been reported on the US Power Grid [5] and the
sewer system of Australia’s Maroochy Shire Council
[6]. Other incidents such as a worm infection [7] have
affected the Davis-Besse Nuclear Power Plant and
CSX Railroad Corp. [6]. To address such security
threats we need to rethink the embedded software
design process.

Model Integrated Computing (MIC) [8] is gaining
wide recognition in the field of embedded software
design. Models represent embedded software, its
deployment platform and its interactions with the
physical environment. Models facilitate formal
analysis, verification, validation and generation of
embedded systems [9]. Hence, this approach is
superior to traditional manual software development
process. Although, there is modeling tool support for

analysis of functionality, performance, power
consumption, safety, etc., currently available tools
incorporate little if any support for security modeling.
As a result, security is looked at only once the
complete system has been built. At best, this approach
of addressing security in the last stages of development
is inefficient taking large amounts of effort to achieve
only modest improvements in security. Engineers
designing embedded systems usually do not have the
experience to address security issues and in many cases
are not even aware of the issues [10]. Fixing security
vulnerabilities involves releasing patches, which can
introduce new problems such as viruses [11] or
security vulnerabilities [12]. Still, systems designed
without security in mind are intrinsically insecure.
Patches can fix specific security vulnerabilities, but do
not address poor system architecture.

Many times vulnerabilities are only discovered
once they have been exploited. To address these
unknown threats, systems can be isolated in private
corporate networks using firewalls and intrusion
detection systems. But such perimeter defenses, even if
they are flawless, cannot protect against insider attacks
[13]. In light of this situation, we advocate modeling
environments that incorporate security into the early
design phase of embedded systems.

 One of the few modeling languages with
security extensions is UML. Currently available
extensions to UML provide: access control [14] [15],
fair exchange, assumptions about secrecy, integrity,
etc. [16]. There are existing tools that can guarantee
some security properties using automated proof
verifiers [16]. However, UML based Model Driven
Security is not sufficient for design and analysis of
embedded systems. We strongly believe that embedded
system design can benefit from Domain-Specific
Modeling Languages (DSML) as opposed to the one-
size-fits-all approach of UML. For example, there is no
concept of hardware in UML which makes it ill suited
for embedded systems with their diverse hardware
architectures. In many embedded applications system
resources are scarce. Added overhead for security can

have drastic effects on performance. An ideal
embedded software development environment will
allow the engineer to analyze security and performance
tradeoffs based on the hardware platform the system
will run on.

2. Background and Motivation

MIC can meet the challenges of designing secure
embedded systems. A key advantage of the model
based approach is the abstraction of the application
domain. This abstraction is facilitated through the use
of DSMLs. A DSML provides a system designer a set
of concepts that are specifically tailored for a certain
application domain. In our case, the domain is
networked embedded real-time systems, such as
process control systems, automotive, avionics and
robotics systems. A DSML with the proper level of
abstraction hides the inconsequential details of a
system while allowing the engineer to shift focus to
more important aspects. There are many examples of
DSMLs developed for embedded system design in
different domains [MILAN [17], SMOLES [18],
AADL [17]]. We propose an extension mechanism for
DSMLs that adds security concepts similar to UML
extensions [14]. By extending embedded system
DSMLs, we can add tool support for security analysis,
validation, verification and generation. These security
tools will extend the large tool chains that already exist
for embedded system design.

3. General Approach

We will demonstrate a process for integrating
security analysis into existing tool chains to create a
security co-design environment. The approach taken is
to create a common DSML that is used to capture and
analyze security properties of systems. The advantage
of this approach is that the effort needed develop the
security analysis tool is only spent once. Then this tool
can be incorporated into existing embedded systems
languages with minimal effort. By defining mappings
from an embedded system DSML onto the security
analysis DSML, we can analyze the security properties
the embedded system. Figure 1 illustrates the process
of defining mappings from one or more DSMLs onto a
language supporting security analysis and feeding the
analysis results back to the DSML.

DSML1
Security
Analysis

Language

Feedback Analysis
Results

DSMLn

Model
Transformation

DSML1
Security
Analysis

Language

Feedback Analysis
Results

DSMLn

Model
Transformation

Figure 1. Mappings from DSMLs to SAL enable

security analysis of the DSMLs

The co-design environment is implemented in the
Generic Modeling Environment (GME) [9]. GME is a
metaprogrammable tool which facilitates the graphical
implementation of DSMLs through the use of
metamodels. In this environment, we create a Security
Analysis Language (SAL) that enables a user to model
and analyze security related properties of embedded
systems. (Note that while SAL is technically a DSML,
from this point out we use the term DSML only in
reference to a language for embedded systems design
which we wish to add security analysis capabilities to.)
The purpose of this analysis tool is to identify points in
the system model that violate certain security
requirements and provide useful feedback to the
modeler. SAL allows such violations to be identified
and remedied at design time before they can be
exploited. Currently, SAL supports two types of
analyses: information flow analysis and threat model
analysis, which are detailed in the following sections.

3.1. Information Flow Analysis

The two traditional models for dealing with
information flow in systems are the Bell-LaPadula
model [19] and the Biba model [20]. Both of these
models enforce an access control scheme that defines
the rights of a subject to access information. Subjects
and information are assigned a security level and a
compartment which define what information a given
subject is permitted to access. The set of all security
levels is an ordered set that can be evaluated as an
inequality (i.e. Top Secret > Secret). Compartments
are a set that can be evaluated as an inequation (i.e.
FBI ≠ CIA).

The Bell-LaPadula model deals with
confidentiality or secrecy of information in systems.
The two properties that the Bell-LaPadula enforces are
the Simple Security Property and the * (star) Property.
The Simple Security Property states that a subject may
not read information that is classified at a level greater
than that subject’s classification. The * Property states
that a subject may not write information to a level less
than that subject’s classification.

The Biba model deals with integrity of
information in systems. Biba also enforces a Simple
Security Property and a * Property. The Biba version
of the Simple Security Property states that a subject
may not read information that is classified at a level
less than that subject’s classification and the Biba
version of the * Property states that a subject may not
write information to a level greater than that subject’s
classification.

Figure 2. Partitions and dataflows in SAL

To analyze the Bell-LaPadula and Biba models,

SAL views a system as a set of partitions, a set of data
objects contained in each partition and the dataflows
inside and across the partitions. Dataflows are
represented as connections between input and output
ports on a partition. In SAL, partitions are the subjects
and are assigned a security level and compartment
attributes. A data object inherits the security level and
compartment classification of its containing partition.
SAL allows the security level to be an integer value
and the compartment to be a string value. Our analysis
tool treats each data object as the root node in a tree
search algorithm. The tool will traverse the dataflow
paths originating from a data object and verify that
each partition through which that data object flows has
a security level and compartment that permit that
partition to access the data object. Bell-LaPadula does
not allow information to flow to a lower security level
while Biba does not allow information to flow to a
higher security level. When composed, these two
models only allow information to flow between
partitions with the same security level. Applying both
models is too restrictive in a system where the designer
does not need to restrict access to all data objects.
There may be some data objects that have a secrecy
requirement but no integrity requirement and vice
versa. To provide a less restrictive model, data objects
in SAL are assigned two Boolean attributes, secrecy
and integrity. The flow of every data object is
evaluated based on the settings of these attributes.
When secrecy is true the Bell-LaPadula model is
enforced and when integrity is true the Biba model is

enforced on the flow of that data object between
partitions. Figure 2 shows a small example model in
SAL.

3.2. Threat Model Analysis

In a distributed system, partitions may reside on
multiple nodes and data is transferred between these
nodes over some communication channel. The
information flow analysis addresses the movement of
data explicitly defined in the system model but does
not address covert channels. One such covert channel
could be a man-in-the-middle attack on the
communication channel. To prevent such attack, the
communication channel can be encrypted. Adversary
modeling in SAL enables the analysis tool to identify
vulnerable channels and determine which encryption
algorithms can be used to protect data being
transmitted on that channel. Figure 3 illustrates the
adversary model.

Figure 3. Encryption algorithms library and

adversary models in SAL

In each system there is a library of encryption

algorithms that contains the set of all encryption
algorithms that can be used to encrypt a channel. Each
system also contains a set of adversary models that
define which encryption algorithms are vulnerable in
the context of that adversary. Each adversary contains
a set of references to algorithms that are defined in the
algorithms library. Each reference has an attribute,
maxkeysize, which means that the referenced algorithm
is vulnerable to that adversary if the strength of its
encryption is not greater than maxkeysize. Together,
the encryption algorithm library and adversary models
allow our analysis tool to determine which algorithms
are safe to use to encrypt information flows. Each
information flow in SAL has an attribute, adversary,
which identifies the adversary model associated with
that information flow. Each information flow in SAL
also has an EncryptionAlgorithm and KeySize attribute.
For each information flow in the system, the analysis

tool checks the EncryptionAlgorithm and KeySize
attribute against the set of encryption algorithms that
are vulnerable for the adversary model specified by
adversary.

3.3. Integrating Security Analysis with Existing
Tool Chains

Although, there is modeling tool support for
analysis of functionality, performance, power
consumption, safety, etc., currently available tools
incorporate little if any support for security modeling.
As a result, security is only addressed once the
complete system has been built. We want to leverage
the work behind existing tool chains by incorporating
security analysis in the system design process. SAL
was created to be a reusable tool that can be integrated
with multiple tool chains, thus reducing the effort that
would be required to develop custom security analysis
for each tool chain.

In MIC, a transformation is, in general, a one way
function with a domain being the set of all valid
models in the original DSML and a range being the set
of all valid models in the destination DSML. By
defining a transformation that maps models of an
embedded system DSML onto SAL, we can perform
information flow analysis and threat model analysis on
the embedded systems models. In order to define such
a transformation, the original DSML must be able to
capture those security properties that are need for SAL
to provide a useful analysis. In other words, for
information flow analysis, the DSML must be able to
model the concepts such as data object, dataflow,
partition, security level, compartment, secrecy and
integrity requirements and for threat model analysis the
DSML must be able to model the concepts such as
encryption algorithm library, encryption algorithm,
adversary model, vulnerable encryption algorithm,
encrypted channel and channel adversary. Typically,
the DSML will not have all of the concepts needed to
create such a transformation. For example, take a
DSML built on the synchronous dataflow model of
computation [21]. This DSML would have the
concepts such as data objects and dataflow, but none of
the other security specific concepts. It would be the
responsibility of a tool designer to add the ability to
capture these security specific concepts in a DSML.
The process of extending a DSML to capture security
related properties is not as difficult as it might seem.
One of the powerful concepts of the MIC approach is
easy composition of metamodels to form new
languages. By composing the metamodel of a DSML
with concepts from SAL, it is relatively easy to form
these security specific extensions to an existing

language. The tool designer can then create the
transformation rules that map models in the DSML
onto models in SAL. GME is integrated with the
Graph Rewriting and Transformation language
(GReAT) [22]. GReAT is built on top of an execution
engine (GReAT-E) which can translate models based
on transformation rules specified by GReAT. This
mapping specification needs to be created only once
for a given DSML and then any valid models for that
DSML can be automatically transformed into a
corresponding SAL model.

Since SAL is only capable of capturing those
concepts which are relevant to security analysis, it is
not possible to define a transformation from SAL back
onto the original DSML. Those concepts which are
unique to the original domain are lost in the translation
from the DSML to SAL. In order for SAL to provide
useful feedback to the user, we introduce the path and
id attributes which belong to partition, information
flow, data object, ports, adversary model and
encryption algorithm in SAL. Path and id store the
path and the unique ID of an object in the original
DSML. When a SAL model is analyzed and security
violations are identified, the results will be fed back to
the user of the original DSML in the form of an error
messages along with hyperlinks that identify at which
point in the original model there is a security violation.
Using this approach, a user of a DSML will never have
to view the SAL model. The transformation to a SAL
model, the security analysis and the result feedback
form an automated process.

When adding these security specific concepts to a
DSML, it is important to consider what they mean in
the context of the entire tool chain. Often the design
flow includes other tools for such things as
functionality, schedulability, power consumption and
safety analysis. The division between these different
types of analyses is not always clear-cut. Many times
decisions made based on one type of analysis can have
an impact on the outcome of other types of analysis.
One such example in the context of SAL is the use of
encryption algorithms. The decision to encrypt a
communication channel could have a major effect on
the schedulability of the system. Also, if there is a
code generator for the DSML, it must be modified to
support these security properties (i.e. linking to
encryption libraries, enforcing the partition model,
etc.). The tool developer who is integrating SAL
capabilities to a DSML must address concerns such as
making these other tools aware of the impact the
security properties will have on the system. Figure 4
shows a typical design flow for performing security
analysis with an embedded system DSML.

Embedded
System Language

(DSML)

Security
Extension

Security
Analysis

Language

DSML + Security Extension

Graph
Transformation

Feedback
Analysis
Results

Target Platform

Code
Generation

Embedded
System Language

(DSML)

Security
Extension

Security
Analysis

Language

DSML + Security Extension

Graph
Transformation

Feedback
Analysis
Results

Target Platform

Code
Generation

Figure 4. Typical embedded system design

flow with SAL

4. Example: Integrating Security Analysis
to an Existing Embedded System Language

As a proof of concept, we have integrated SAL
with an existing tool for the design of embedded
systems called SMOLES [18]. SMOLES alone does
not address security concerns. We show how we add
the capability for capturing security specific properties
to SMOLES. Models in SMOLES are enriched with
these concepts and we create a mapping from
SMOLES concepts to objects in SAL. This mapping
allows us to create a transformation from SMOLES
models to SAL models. We show how results from the
analysis of a SAL model can feed back warnings of
security violations so that the user can correct the
SMOLES model accordingly.

4.1. Description of SMOLES

The Simple Modeling Language for Embedded
Systems (SMOLES) was designed as a simple
modeling language that allows constructing small,
embedded systems from components [18]. The
components are assumed to be concurrently executing
objects that communicate and synchronize with each
other. Furthermore, objects can perform blocking I/O
operations in which they wait for the result, while other
objects can execute. Communication between
components means passing data from a source
component to a destination component, which is then
enabled to run, in order to process the data. In addition
to data triggering, periodic timers can also trigger the
components. The language consists of components and
assemblies. Components are the elementary building
blocks, and contain input and output ports, which are
used to receive/send data tokens from/to other
components. Assemblies contain components, and

describe how they are interconnected. Like
components, assemblies can have their own input and
output ports, and assemblies can contain other
assemblies. Assemblies are organized into a hierarchy.
The various components and assemblies in the
hierarchy communicate with each other through the
dataflows, as specified by the designer. SMOLES has
a code generation utility that will interpret the model
and output C++ code that will execute on top of a
small custom dataflow kernel. Figure 5 shows a small
example model in the SMOLES DSML.

Figure 5. Example SMOLES model

4.2. Integrating SAL with SMOLES

Since SMOLES does not capture any security
properties, we must add the appropriate concepts, so
that we can define a transformation from SMOLES to
SAL. We call this extended language SMOLES_SEC.
SMOLES_SEC allows the modeler to capture the
security properties required to perform the two types of
analysis that SAL supports, the information flow
analysis and threat model analysis.

First, we address those concepts necessary to
perform the information flow analysis. SMOLES
already has the concept of dataflows but none of the
other concepts used in SAL. Assemblies in SMOLES
are close to the concept of a partition in SAL. One
possible approach would be to add the security level
and compartment attributes to assemblies. However,
assemblies are organized in a hierarchy whereas
partitions in SAL are not. So, we introduce the idea of
partition to SMOLES_SEC. Partitions will have input
and output ports which can be connected by dataflow
connections. Like in SAL, partitions will have security
level and compartment attributes that define their
access rights in the context of the Bell-LaPadula and
Biba models. Assemblies will be contained by
partitions and will inherit the security level and
compartment of the containing partition. SMOLES has
the concept of dataflow; however there is no first class
object that is a data object. We assign the secrecy and

integrity attributes to an assembly in SMOLES_SEC
and evaluate these attributes against the dataflows
originating from that assembly.

Next, we address the concepts necessary to
perform the threat model analysis. SMOLES has no
concept of encryption algorithms or adversary
modeling. We add these concepts to SMOLES_SEC
and define them in the same way that they are defined
for SAL. In each system, there is an encryption
algorithms library with a set of encryptions algorithms.
Each system contains a set of adversaries and each
adversary contains a set of references to encryptions
algorithms. Each encryption algorithm has an
attribute, maxkeysize. We do not associate an
encryption algorithm and adversary model directly
with dataflows as it is done in SAL. Rather,
SMOLES_SEC can model a deployment diagram
where nodes, which represent the execution platform,
are connected to other nodes through a link (or bus). A
node can be viewed as a set that contain partitions that
execute on that node. Likewise, a link can be viewed
as a set that contains the dataflows that are transmitted
over that link. Each link in SMOLES_SEC has an
attribute, adversary, which identifies the adversary
model associated with that link. Each link in
SMOLES_SEC also has an EncryptionAlgorithm and
KeySize attribute. Dataflows inherit the adversary,
KeySize and EncryptionAlgorithm of the link that they
are transmitted across.

The effect that these extensions for
SMOLES_SEC have on tools that were written for the
SMOLES languages must be examined. SMOLES has
a utility that will generate C++ code from models.
This utility is unaware of encryption algorithms and
their meaning in the context of SMOLES_SEC. There
are two solutions to this problem. Either we define a
transformation that will map SMOLES_SEC models
back onto SMOLES models or we port this code
generator to work with the SMOLES_SEC
environment. In our case we choose to port the code
generator to the SMOLE_SEC environment. To do
this we will need to make some slight modifications
such as enabling assemblies to be contained in
partitions and linking to a library of encryption
algorithms.

4.3. Model Transformation from
SMOLES_SEC to SAL

Now that the appropriate concepts have been
added to extend SMOLE_SEC we are able to define a
model transformation that maps SMOLES_SEC
models to corresponding models in SAL. Once we
have defined these rules, the process of converting

SMOLES_SEC models to SAL models will be
automated. We have written a small script that can be
invoked from the SMOLES_SEC environment. This
allows the user of the SMOLES_SEC environment to
transform their model into a SAL model in one step,
run the information flow and threat model analysis on
the SAL model and receive the analysis results.

4.4. Example Application in SMOLES_SEC

An example SMOLES_SEC model is shown in

Figure 6. This is a generic application that
demonstrates the capabilities of the security analysis.
Real applications of this tool will be too large to cover
in the scope of this paper. There are four partitions in
the system. Partitions A, B, and D have a security
level of 1 and PartitionC has a security level of 2. This
means that data objects with a secrecy requirement
may not flow from PartitionC and those data object
with an integrity requirement may not flow to
PartitionC. In this example, we do not consider
partitions with different compartment classifications.
PartitionB contains an Assembly_B1 that has an
integrity requirement but no secrecy requirement.

a)

b)

c)

Figure. 6 SMOLES_SEC example
application a) partitions and dataflows, b)

deployment diagram, c) threat model.

Since this assembly is in PartitionB it inherits the
security level of 1. Figure 6b shows the deployment
diagram. Nodes 1, 2, and 3 are connected by a
common link. PartitionA and PartitionB execute on
Node1. PartitionC executes on Node2 and PartitionD
executes on Node3. All dataflows transfer data across
the Link, except the dataflow connecting PartitionA
and PartitionB which reside on the same node. Figure
6c shows the threat model of this system. The
adversary model of Link is the Internet_Adversary.

First, we will invoke the information flow analysis
on this model. Figure 7 shows the error message that
we receive for the flow analysis. The assembly in
PartitionB has an integrity requirement so the
dataflows originating from this assembly are evaluated
with the Biba model. There is a dataflow that connects
PartitionB to PartitionC which represents data objects
moving from a low security level to a high security
level. This dataflow violates the Biba model. There
are a several possible solutions to this error. It is up to
the system modeler to determine which solution is
appropriate in the context of their system. For this
example, we determine that the PartitionB can be
classified at a security level of 2. When this change is
made to the model the security analysis tool does not
return any errors.

Next, we invoke the threat model analysis. Figure
8a shows the error message we receive. There is an
adversary associated with the link so the channel must
be encrypted. The error message warns that Link must
be encrypted so we set the encryption attributes on
Link to 256 bit RSA. Internet_Adversary is capable of
breaking RSA with a key size of 256 bits or less.
The error message in Figure 8b shows the error
message we receive. To fix this error message we
increase the key size used to encrypt Link to 512 bits.
This fixes the security violation the threat model
analysis no longer returns any error messages.

5. Future Work

SAL currently supports modeling of access control
policies in the context of the Bell-LaPadula and Biba
models. These access control policies are not
sufficient for the needs of all applications. We would
like for SAL to have the expressiveness to model other
types of access control schemes. Another area that
needs to be addressed is how to more tightly integrate
the security analysis with the other analysis tools
available for a DSML. This would allow the designer
to look at tradeoffs made based on security properties
such as analyzing the tradeoffs between security and
performance. We have shown how SAL can be
integrated with SMOLES which is a dataflow based
language. This leads to a simple mapping from
SMOLES to SAL. There needs to be work done to
look at how security analysis can be integrated with
other classes of DSML such as those based on control
flow.

6. Conclusion

Model driven security approaches have been
successfully used in various industrial, governmental
and financial applications. Model-Integrated
Computing has proven to be a valuable tool in
embedded systems design process. We have
demonstrated a security analysis tool that is capable of
analyzing the flow of data objects through a system
and identifying points in a distributed system that are
vulnerable to attack. We have outlined a method for
composing this type of security tool with existing tool
chains for DSMLs. This approach leverages the
development efforts that have gone into design of tool
suites for existing embedded system DSMLs. Creating
a separate analysis language for security properties
allows reuse of this tool for multiple DSMLs. The
example application shown is a proof of concept that
demonstrates the potential of integrating security
modeling capabilities with existing languages.

a) Connection not encrypted -- The
connection at path: /SimpleSystem/Link is
vulnerable. Please specify an encryption
algorithm.

b) Vulnerable Encryption Algorithm -- The

connection at path: /SimpleSystem/Link is
vulnerable. The adversary knows RSA up to
a key size of 256 bits. Please specify a
larger key size or change the algorithm.

Figure 8 Error messages – threat model
analysis

Integrity Requirement Violated --
/SimpleSystem/PartitionB/Assembly_B1 has
an integrity requirement which is
violated by the information flow
connecting
/SimpleSystem/PartitionB/Port_B2 to
/SimpleSystem/PartitionC/Port_C1.

Figure 7 Error message - information flow
analysis

7. Acknowledgement

This work was supported in part by TRUST (The
Team for Research in Ubiquitous Secure Technology),
which receives support from the National Science
Foundation (NSF award number CCF-0424422).

8. References

[1] Fernandez, J. D. and Fernandez, A. E. 2005. SCADA
systems: vulnerabilities and remediation. J. Comput. Small
Coll. 20, 4 (Apr. 2005), 160-168.

[2] Amin, M. North America's electricity infrastructure: are
we ready for more perfect storms? Security & Privacy
Magazine, IEEE Volume 1, Issue 5, Sept.-Oct. 2003
Page(s):19 - 25

[3] Kocher, P., Lee, R., McGraw, G., and Raghunathan, A.
2004. Security as a new dimension in embedded system
design. In Proceedings of the 41st Annual Conference on
Design Automation (San Diego, CA, USA, June 07 - 11,
2004). DAC '04. ACM Press, New York, NY, 753-760.

[4] Ravi, S., Raghunathan, A., Kocher, P., and Hattangady,
S. 2004. Security in embedded systems: Design challenges.
Trans. on Embedded Computing Sys. 3, 3 (Aug. 2004), 461-
491.

[5] F. Schneider, editor. Trust in .National Academy Press,
Washington, DC, 1999. Available at
http://www.nap.edu/readingroom/books/trust/

[6] Andrew Hildick-Smith, Security for Critical
Infrastructure SCADA systems. August 24 2005. SANS
Institute. Available at
http://www.sans.org/rr/whitepapers/warfare/1644.php

[7] Weaver, N., Paxson, V., Staniford, S., and Cunningham,
R. 2003. A taxonomy of computer worms. In Proceedings of
the 2003 ACM Workshop on Rapid Malcode (Washington,
DC, USA, October 27 - 27, 2003). WORM '03. ACM Press,
New York, NY, 11-18

[8] Sztipanovits, J.; Karsai, G. Model-integrated computing,
Computer Volume 30, Issue 4, April 1997 Page(s):110 –
111

[9] Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.:
“Model-Integrated Development of Embedded Software,”
Proceedings of the IEEE, Vol. 91, No.1., pp. 145-164,
January, 2003

[10] Tsipenyuk, K.; Chess, B.; McGraw, G.; Seven
pernicious kingdoms: a taxonomy of software security errors
Security & Privacy Magazine, IEEE Volume 3, Issue 6,
Nov.-Dec. 2005 Page(s):81 - 84

[11] Microsoft TechNet. Information About Virus-Infected
Hotfixes. April 25 2001. Available at
http://www.microsoft.com/technet/
security/alerts/info/vihotfix.mspx

[12] Microsoft TechNet. Microsoft Security Bulletin MS06-
007. February 14 2006. Available at
http://www.microsoft.com/technet /security/Bulletin/MS06-
007.mspx

[13] Kevin Poulsen, Slammer worm crashed Ohio nuke plant
network, August 19 2003. Available at
http://www.securityfocus.com/ news/6767

[14] Jürjens, J. 2005. Sound methods and effective tools for
model-based security engineering with UML. In Proceedings
of the 27th international Conference on Software
Engineering (St. Louis, MO, USA, May 15 - 21, 2005). ICSE
'05. ACM Press, New York, NY, 322-331.

[15] Basin, D., Doser, J., and Lodderstedt, T. 2003. Model
driven security for process-oriented systems. In Proceedings
of the Eighth ACM Symposium on Access Control Models
and Technologies (Como, Italy, June 02 - 03, 2003).
SACMAT '03. ACM Press, New York, NY, 100-109.

[16] Jan Jürjens, Secure Systems Development with UML,
Springer-Verlag, 2004

[17] Available from the Authors

[18] Szemethy, T. and Karsai, G. 2004. Platform modeling
and model transformations for analysis. Journal of Universal
Computer Science 10, 10, 1383–1406.

[19] D.E. Bell and L.J. LaPadula. “Secure Computer
Systems: Mathematical Foundations and Model,” Mitre
Corp. Report No. M74-244, Bedford, Mass., 1975.

[20] K.J. Biba, “Integrity Considerations for Secure
Computer Systems,” Mitre Corp. Report TR-3153. Bedford.
Mass., 1977.

[21] E. A. Lee and D. G. Messerschmitt, “Synchronous data
flow,” Proc. IEEE, vol. 75, pp. 1235–1245, Sept. 1987.

[22] Agrawal, A., Karsai, G., Ledeczi, A.: An End-to-End
Domain-Driven Software Development Framework.
Conference on Object Oriented Programming Systems
Languages and Applications, 2003.

