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Abstract – In this paper we propose a method to
create discrete abstraction of state space behavior for
continuous-time systems based on gradient analysis of
the system dynamics. Then we describe how to use such
a discrete model to design a supervisory controller for
a given safety spiflication for the system. Finally we
provide an entropy measure of nondeterminism, which
can be used to evaluate the quality of the result dis-
crete model as the degree of nondeterminism in that
model. The discrete abstraction and supervisory con-
trol approach is demonstrated on a two tank system with
switching control.
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1 Introduction
In this paper we consider the problem of discrete ab-

straction of system bahavior and supervisory control for
a special class of dynamic systems, referred to as switch-
ing systems. Switching systems are characterized by a
finite set of inputs, and a finite set of operating modes.
In general, hybrid systems can be described by a transi-
tion structure whose state space consists of two domains
associated with the discrete-event and continuous-time
dynamics. Transitions in hybrid systems are either
time-based - changing the continuous-time variables ac-
cording to a given set of differential/difference equations
- or event-driven - changing the discrete variables and
possibly resetting the continuous-time variables to a new
value from which evolution is governed by another set of
equations. Switching systems represents a special class
of hybrid systems.

Considerable research work has been dedicated re-
cently to the study of hybrid systems. See for example
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[1, 2] and the references therein. In developing super-
visory control of hybrid systems, discrete abstractions
are usually employed to approximate the continuous dy-
namics of the system. As a result, the hybrid system is
modelled as a discrete event system with a finite state
space. Abstractions are essentially in dealing with com-
plex systems. Consider the example of a large chemi-
cal process made up of a number of tanks, pumps, and
pipes. The corrosive nature of the fluid in the tanks
may make it difficult to get accurate measures of height,
therefore, discrete level sensors are employed to deter-
mine if the height of fluid in a tank is above or below a
pre-determined value.

From a modeling viewpoint, typical abstraction
schemes first partition the state space of the system into
finite regions with well-defined boundaries. States in the
abstracted system corresponds to regions in the state
space of the hybrid system, and events capture the cross-
ing of the boundaries between these regions. Building
approximate discrete finite state models of hybrid sys-
tems has been an active area of research for more than
a decade. Several conservative abstraction techniques
have been proposed in literature, e.g. in [3] methods for
hybrid systems with discrete valued input and outputs;
in [6, 7] for linear systems are presented; in [8, 11, 4]
for nonlinear continuous-time systems are given; and in
[9, 10] methods for nonlinear discretizable systems are
proposed.

The proposed technique is aimed at reducing a switch-
ing system into a finite state structure that preserves the
important dynamics of the original system. It addresses
the task of discrete abstraction by performing gradient
analysis at the boundaries of different cells in a cho-
sen partition on the state space of the continuous-time
system. Since computation is restricted to boundary
regime, this method is more computationally efficient
than trajectory-based abstraction techniques in the lit-
erature, e.g., [6, 9, 10]. Abstraction based on gradient
analysis has been proposed in [8, 4]. However, these
approaches target a general setting with no specific as-
sumptions about the target system, and, therefore, did
not yield a concrete computation procedure for gradi-



ent analysis. The abstraction problem is addressed and
solved in detail in this paper. A supervisory control
scheme for the abstracted system is then proposed. Fi-
nally, we also propose a method to measure nondeter-
minism of a discrete model, which offers us a way to
evaluate the quality of the given partition.

This paper is organized as follows. In section 2, we
describe how to apply gradient analysis in discrete ab-
straction for a general class of switching systems. In
section 3 we describe the application of supervisory con-
trol technique on the discrete model. In section 4 we dis-
cuss how to measure nondeterminism of a discrete-event
mode. Conclusions and further research directions are
presented in section 5.

2 Discrete abstraction
Given an n-dimensional continuous-time dynamic

system, which consists of p discrete modes, the dynamic
model in a mode Mi takes on the following form,

ẋ = fMi(x, u) with x ∈ Xi, (1)

where x = [x1, · · · , xn], fMi = [f1, · · · , fn] and u =
[u1, · · · , um] are vectors. As a simple example, we use
the two-tank system shown in Figure 1. It consists of
two tanks (T1 and T2) and two valves (V1, V2). Valve
operations are binary, i.e., they can be fully open (=1)
or fully close (=0). When V1 is open, there is a steady
water flow into the system. Water level in each tank is
monitored by a level-crossing sensor, which only reports
whether water level is above or below some predefined
values, e.g. above 0.3m or below 0.3m. The state-space

Figure 1: Two-Tank System

equations for the system, shown below cover all operat-
ing modes:

ẋ =
[

ḣ1

ḣ2

]
=

[
u1Q−u2s1

√
2gh1

A1
u2s1

√
2gh1−s2

√
2gh2

A2

]
= f(x, u) (2)

where Q = 5m3/s is the steady water flow rate, hi ∈
[0, 9)(m), Ai = 2m2, si = 0.3m2 is the intersection area
of Tank i, ui ∈ {0 : off, 1 : on} is the control action
of Vi with i ∈ [1, 2], and g = 9.8Nm/s2 is the gravity
constant

Given a set X, we use the notation ∂X to mean the
boundary of X (i.e., the set of limit points of X). An
n-dimensional polyhedron X ⊆ Rn is regular if there is
a set of lower and upper bounds {ai,l, ai,h ∈ R|ai,l <
ai,h ∧ 1 ≤ i ≤ n} such that

X∪∂X = {(x1, · · · , xn) ∈ Rn|ai,l ≤ xi ≤ ai,h, i ∈ [1, n]}.

We make the following assumptions about the
continuous-time dynamic system:

A1: u is from a finite set U .

A2: For each i, Xi is a regular polyhedron, and so is
X =

⋃m
i=1 Xi.

A3: (∀i, j) Xi ∩Xj = ∅.

A4: For each control action u ∈ U , ẋ is continuous in
X ∪ ∂X.

With those assumptions our objective is to build a
discrete-event model

G = (Z, U, ξ),

where Z is the state set, U is the transition event set,
and ξ : Z×U → Z is the (partial) transition function. G
is supposed to be an abstraction (which will be defined
latter) of the continuous-time system.

Assume that for each i, Xi is partitioned into a set
Zi of regular n-dimensional polyhedrons. Then Z =⋃m

i=1 Zi. In the two-tank system, X = {(h1, h2)|h1 ∈
[0, 9)∧h2 ∈ [0, 9)}, hence it is a regular polyhedron. We
divide the height of each tank into three equal intervals
[0, 3), [3, 6), [6, 9) and let W be the set of these intervals.
Then Z = W ×W and each element z ∈ Z is a regular
polyhedron. Figure 2 depicts the partition on X.

Figure 2: Partition on X in Two-Tank System



It is easy to check that the two-tank system model
satisfies all above assumptions. Let Tu,x : [0,∞) →
X be a trajectory of the continuous-time system under
control action u with Tu,x(0) = x. Let T = {Tu,x|u ∈
U ∧ x ∈ X} be the set of all possible trajectories.

Definition 2.1 A discrete-event model G is an abstrac-
tion of the continuous-time model ẋ = f(x, u), if for
each pair of states z1, z2 ∈ Z and each control action
u ∈ U , z2 ∈ ξ(z1, u) if and only if there exists a trajec-
tory Tu,x ∈ T such that

1. Tu,x(0) ∈ z1 and Tu,x(t) ∈ z2 for some t < ∞,

2. {t′|0 ≤ t′ ≤ t ∧ Tu,x(t′) ∈ z1 ∪ z2} is dense in [0, t].

2

The second condition means that “almost all” parts of
Tu,x is in z1∪z2; if it does include points which are not in
Such “almost all” requirement instead of “all” has prac-
tical reasons which will be made clear later. Notice that
Def. 2.1 implies that there exists a transition between zi

and zj only if they are neighbored to each other. Oth-
erwise by assumption of continuity A4, condition 2 in
Def. 2.1 won’t hold. Thus if such trajectory Tu,x does
exist then it must cross the boundary of z1, z2, namely
z1 ∩ z2 where the symbol z1 represents the closure of z1

(i.e. z1 ∪ ∂z1). So in order to build the (partial) transi-
tion function ξ we only need to analyze those boundary
crossings. Given two states:

zi = {(x1, · · · , xn) ∈ X|(∀k) xk ∈ [bi
k,l, b

i
k,h)}

zj = {(x1, · · · , xn) ∈ X|(∀k) xk ∈ [cj
k,l, c

j
k,h)}

Let dij
k,l = max{bi

k,l, c
j
k,l} and dij

k,h = min{bi
k,h, cj

k,h}.
Then their boundary is defined by

B(zi, zj) =
{

(x1, · · · , xn) ∈ X|

(∀k) xk ∈ [dij
k,l, d

ij
k,h] ∧ dij

k,l ≤ dij
k,h

}

If B(zi, zj) = ∅ then states zi and zj are not adja-
cent to each other, hence no transition exists between
them. Now suppose B(zi, zj) 6= ∅ and zi in mode Mi,
zj in mode Mj . We discuss how to determine boundary
crossings on B(zi, zj).
By assumption A3 we get that dim(B(zi, zj)) < n,
namely (∃k) dij

k,l = dij
k,h. We call xk = dij

k,l = dij
k,h a

border. Let I(zi, zj) = {k|dij
k,l = dij

k,h} and

φ(zi, zj) := {(x1, · · · , xn)k | k ∈ I(zi, zj)∧

xk =
cj
k,l + cj

k,h − bi
k,l − bi

k,h

|cj
k,l + cj

k,h − bi
k,l − bi

k,h|
∧ (∀q)q 6= k ⇒ xq = 0}

By assumptions A2 both zi and zj are regular poly-
hedrons, so bi

k,l < bi
k,h and cj

k,l < ci
k,h. Consider-

ing that max{bi
k,l, c

j
k,l} = min{bi

k,h, cj
k,h}, we get either

bi
k,h > bi

k,l = cj
k,h > cj

k,l or cj
k,h > cj

k,l = bi
k,h > bi

k,l.
In either case, φ(zi, zj) is well defined as a set of unit
vectors. We use the notation “¦” to represent the dot
product of two vectors.

Proposition 2.1 Given two neighboring states zi, zj ∈
Z and control action u ∈ U , if

(∃x̂ ∈ B(zi, zj))(∀~r ∈ φ(zi, zj)) fMi(x̂, u) ¦ ~r > 0 (3)

then there exists a trajectory Tu,x ∈ T with Tu,x(0) ∈ zi

and Tu,x(t) ∈ zj for some t < ∞, and the set {t′|0 ≤
t′ ≤ t ∧ Tu,x(t′) ∈ zi ∪ zj} is dense in [0, t].

(Sketch) Proof: If such x̂ exists then by assumption A4

there exists x̃ in the neighborhood of x̂ such that (1)
x̃ ∈ B(zi, zj)\∂X; (2) (∀~r ∈ φ(zi, zj)) fMi

(x̃, u) ¦ ~r > 0.
Since x̃ is an internal point of X and ẋ is continuous
anywhere in X, we get that

(∃T̃u,x ∈ T )(∃t) T̃u,x(t) = x̃

Again, by continuity we get that

lim
∆t→0

T̃u,x(t)− T̃u,x(t−∆t)
∆t

= fMi(x̃, u) =

fMj (x̃, u) = lim
∆t→0

T̃u,x(t + ∆t)− T̃u,x(t)
∆t

(4)

Therefore, there exists ε > 0 such that ∆t < ε implies

(∀~r ∈ φ(zi, zj)) (T̃u,x(t)− T̃u,x(t−∆t)) ¦ ~r > 0 ∧
(T̃u,x(t + ∆t)− T̃u,x(t)) ¦ ~r > 0

If we make ∆t small enough, then by the definitions
of φ(zi, zj), B(zi, zj) and the fact that T̃u,x(t) = x̃ ∈
B(zi, zj), we get that

(∀∆t′) ∆t′ ≤ ∆t ⇒ T̃u,x(t−∆t′) ∈ zi∧T̃u,x(t+∆t′) ∈ zj

Therefore we can define a trajectory Tu,x′ ∈ T with

(∀t′ : 0 ≤ t′ ≤ 2∆t)Tu,x′(t′) := T̃u,x(t−∆t + t′)

Clearly Tu,x′(0) = x′ = T̃u,x(t−∆t) ∈ zi, Tu,x′(2∆t) =
T̃u,x(t + ∆t) ∈ zj and

[0, 2∆t]\{∆t} ⊆ {t′ ∈ [0, 2∆t]|Tu,x′(t′) ∈ zi∪zj} ⊆ [0, 2∆t]

Hence the proposition is true. 2

The existence of such x̂ is a sufficient condition for the
transition zj ∈ ξ(zi, u), but not necessary in general. Its
necessary condition depends on higher order (left-hand
side and right-hand side) derivatives of x(t) on t. If we
interpret x(t) as a displacement, then fMi(x, u) ¦~r is the
velocity on the direction ~r. Even if fMi(x, u) ¦ ~r = 0,
namely the velocity projected onto ~r (i.e., the normal
direction of a border) is zero, the trajectory can still



cross the border from the current point instantaneously
as long as the acceleration (ẍ) or an even higher but
finite order of derivative projected onto ~r is nonzero at
the current point. If the high derivatives don’t exist,
then we need to consider left-hand side and right-hand
side derivatives at the point where the velocity is zero.
Considering the complexity involved in computing high
order derivatives, we will not discuss it in this paper.
Now the problem is to determine whether or not such
x̂ in Condition (3) exists. This can be converted to the
following optimization problem.

minimize Jzi,zj ,u =
∑

~r∈φ(zi,zj)

(fMi
(x, u) ¦ ~r − y~r)2

subject to x ∈ B(zi, zj) and
y = {y~r ≥ 0|~r ∈ φ(zi, zj)}

We say y > 0 if (∀~r ∈ φ(zi, zj)) y~r > 0.

Proposition 2.2 Condition (3) in Proposition 2.1
holds iff y > 0 and J(zi, zj , u) = 0.

Proof: For the “only if” part, if

(∃x̂ ∈ B(zi, zj))(∀~r ∈ φ(zi, zj)) fMi(x̂, u) ¦ ~r > 0

then by A4, fMi(x̂, u) ¦~r < ∞. Let y~r = fMi(x̂, u) ¦~r > 0
and this makes J(zi, zj , u) = 0.
For the “if” part,

J(zi, zj , u) = 0 ⇒ (∀~r ∈ φ(zi, zj)) fMi(x̂, u) ¦ ~r − y~r = 0

Since y > 0, we finally get that

(∀~r ∈ φ(zi, zj)) fMi(x̂, u) ¦ ~r > 0

By Prop. 2.1 we have zj ∈ ξ(zi, u), as required. 2

Solvers for the above nonlinear constraint mini-
mization problem can be found in several softwares,
e.g. Optimization Toolbox in MATLAB, Math-
Optimizer in Mathematica. A discrete abstraction
procedure can be described as follows. Suppose
the resultant discrete model is stored in a matrix
DiscreteModel(ControlAction, TargetState, ExitState),
where DiscreteModel(u, zj , zi) = 1 means there is a
transition u from zi to zj , namely zj ∈ ξ(zi, u). Initially
all entries in DiscreteModel are set to be zero.

Discrete abstraction procedure: Suppose
Z = {z1, · · · , zk} and U = {u1, · · · , ur}.
1. for i = 1 to k − 1 {
2. for j = i + 1 to k {
3. for l = 1 to r {
4. if Jzi,zj ,ul

= 0 and yzi,zj ,u > 0,
5. DiscreteModel(u, zj , zi) := 1;
6. if Jzj ,zi,ul

= 0 and yzi,zj ,u > 0,
7. DiscreteModel(u, zi, zj) := 1;}}}

In the two-tank system, after we put in all values of
parameters, the system dynamic model is as follows,

ẋ =
[

ḣ1

ḣ2

]
=

[
2.5u1 − 0.89u2

√
h1

0.89u2

√
h1 − 0.49

√
h2

]
= f(x, u)

(5)
Assume zi = [0, 3)× [6, 9) and zj = [3, 4)× [6, 9). Then
B(zi, zj) = [3, 3]× [6, 9), I(zi, zj) = {1} and φ(zi, zj) =
{(1, 0)}. Suppose the control action u = (1, 0), namely
V1 is open and V2 is close. Then we get that

J(zi, zj , u) = min
x,y

∑

~r∈φ(zi,zj)

(fMj (x, u) ¦ ~r − y~r)2

= min(2.5− y(1,0))2

subject to x ∈ B(zi, zj) and y(1,0) > 0. Clearly
J(zi, zj , u) = 0. So by Propositions 2.1 and 2.2,
zj ∈ ξ(zi, u). Suppose zj = [3, 6) × [3, 6). Then
B(zi, zj) = [3, 3] × [6, 6] = {(3, 6)}. This gives that
φ(zi, zj) = {r1 = (1, 0), r2 = (0,−1)}. With the same
control action u = (1, 0) we have

J(zi, zj , u) = min
∑

~r∈φ(zi,zj)

(fMj
(x, u) ¦ ~r − y~r)2

= min[(2.5− y(1,0))2 + (1.2− y(0,−1))2]

Again J(zi, zj , u) = 0 which, by Propositions 2.1 and
2.2, implies that zj ∈ ξ(zi, u). In the second case the
boundary point x = (3, 6) is not in zi∪zj . But there is a
trajectory Tu,x with Tu,x(0) = (2.8, (

√
6+0.0784)2) ∈ zi

and Tu,x(0.1) = (3.05, 5.904) ∈ zj such that
{t′|0 ≤ t′ ≤ 0.1 ∧ Tu,x(t′) ∈ zi ∪ zj} = [0, t]\{0.08},
which is obviously dense in [0, t]. This trajectory
passes the point x = (3, 6) at t = 0.08 instantaneously.
Although in general justifying the correctness of as-
sumption A5 for a continuous-time system may be very
difficult, we can analytically show that it holds in the
two-tank system. So we can apply the above procedure
to do discrete abstraction. Figure 3 displays the result
discrete-event model. In this picture the value in each
state is the state number and the value on each edge is
the control action. Control actions are defined in Table
1 and state numbers are defined in Table 2.

Table 1: Control action for the Two tanks System
Control Action u1 u2

1 0 (V1 close) 0 (V2 close)
2 0 (V1 close) 1 (V2 open)
3 1 (V1 open) 0 (V2 close)
4 1 (V1 open) 1 (V2 open)

The above discrete abstraction procedure has also been
applied to the well-known three-tank system. Once we
have a discrete model G = (Z,U, ξ), we can impose su-
pervisory control which is described in the next section.
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Figure 3: Discrete-Event Model for Two-Tank System

Table 2: State numbers for the Two tanks System

State Number h1 h2

1 [0,3) [0,3)
2 [0,3) [3,6)
3 [0,3) [6,9)
4 [3,6) [0,3)
5 [3,6) [3,6)
6 [3,6) [6,9)
7 [6,9) [0,3)
8 [6,9) [3,6)
9 [6,9) [6,9)

3 Application of supervisory
control on discrete model

Given the continuous model

ẋ = fMi(x, u) x ∈ Xi

by the proposed abstraction method, we obtain a dis-
crete model G = (Z, U,ΣO, ξ, θ, z0), where Z is the state
set, U the event set which consists entirely of control-
lable events, ξ : Z × U → Pwr(Z) the nondeterministic
transition function, z0 ∈ Z is the initial state, ΣO the
output event set, θ : Z → ΣO the output map. For
convenience purposes, assume ΣO ⊆ Z ∪ {εo}, where εo

is the silence output event. Let

(∀z ∈ Z) θ(z) :=
{

z if output is observable
εo if output is unobservable

In other words, if a state z has observable output,
then its output is distinguishable from outputs of all
other states. Assume that θ(z0) = z0 6= εo, namely the
initial state has observable output. Let Zm ⊆ Z be the
desirable state set. For example, in that 2-tank system,
we wish that the water levels in both Tanks should be
maintained between 3 - 6m. Then any state z that is

entirely contained in [3, 6] × [3, 6] is a desirable state.
The control objective is to make sure that once the
system’s state is within the desirable set, then it should
remain in it from then on. If the initial state z0 is not
in Zm at the beginning, which is common for processing
control, then we have to move the system into the
desirable zone first. This problem has been discussed
in the literature about optimal supervisory control, e.g.
[5]. Here we only consider the situation that the initial
state z0 is within the desirable set Zm. We use state
feedback control [12] with partial observation.

Let {εo}∗ be the set of all finite strings which consists
entirely of silence event εo. Let Γ : Z × U∗ → Pwr(Z)
such that for each z ∈ Z and each u1 · · ·uq ∈ U∗ (q ≥ 1),

Γ(z, u1 · · ·uq) := {z′ ∈ Z|
(∃z1, · · · , zq ∈ Zm) z1 ∈ ξ(z, u1) & z′ = zq

& [(∀i ∈ [1, q − 1]) zi+1 ∈ ξ(zi, ui+1)& θ(zi) = εo]}

Let V : (θ(Zm) ∩ Zm) → Pwr(U) be an enabling map,

(∀z ∈ (θ(Zm) ∩ Zm)) V (z) := {u ∈ U |
(∀s ∈ {u}∗) s 6= ε ⇒ Γ(z, s) ∩ (Z\Zm) = ∅}

An enabling map V is applied on z ∈ Zm if and only
if z has observable output θ(z) 6= εo. If no new output
is obtained then we don’t know whether or not a new
state has been reached. So the only thing we can do is
to keep the last control action u. In other words, once
a control action is taken, it won’t change until the next
observable output is obtained. Once a control action u
is taken at state z, even though the discrete model is
non-deterministic, the underlying continuous trajectory
starting from a given initial value in z0 can only pass
one state at a time. So the transition behavior at the
abstract level is,

z(k + 1) = ξ(z(k), u(k)) (k = 0, 1, 2, · · · )

where n represents the nth state in the sequence of
states generated by G, z(0) = z0 and u(0) ∈ V (z0)
because θ(z0) 6= εo. Let C : Z × U → U be the control
map such that (∀z ∈ Z)(∀u ∈ U)

C(z, u) :=
{

u θ(z) = εo

any u′ ∈ V (z) θ(z) 6= εo

The close loop transition behavior G/C is as follows,

z(k + 1) = ξ(z(k), u(k))
u(k + 1) = C(z(k + 1), u(k))

Proposition 3.1 (k ∈ N) z(k) ∈ Zm.

Proof: Suppose it is not true. Then there exists k ∈ N
such that z(k) ∈ Z\Zm. Suppose zk is the first state



that is not in Zm. Since z(0) = z0 ∈ Zm and θ(z0) 6= εo,
there exists j < k such that

zj ∈ Zm & θ(zj) 6= εo & (∀r ∈ N) 1 ≤ r < k − j ⇒
z(j + r) ∈ Zm & θ(z(j + r)) = ε (6)

But this is impossible because by the control map,
u(j) = C(z(j), u(j − 1)) ∈ V (z(j)), which implies that
(6) cannot happen. 2

In the two-tank system we partition the desirable zone
[3, 6]× [3, 6] as shown in Figure 4.

Figure 4: Desirable States for Two-Tank System

By the proposed abstraction method we obtain the fol-
lowing discrete model as in Figure 5, where a1 = [u1 =
0, u2 = 0], a2 = [u1 = 1, u2 = 0], a3 = [u1 = 0, u2 = 1]
and a4 = [u1 = 1, u2 = 1]. Circles with dark colors
represents states in Z\Zm.

Figure 5: Discrete Model for Two-Tank System in De-
sirable Zone

Suppose the output event set ΣO = Z, namely each
state generates an observable output. If the initial state
is in Zm = {z1, · · · , z9}, then the close loop controlled
behavior is shown in Figure 6.

Figure 6: Close Loop Model for Two-Tank System

So far we have seen that, even though the proposed
gradient-based method can only produce a rough model,
it may still be able to fulfil control task as shown in the
two-tank system.

4 Measure of nondeterminism in
discrete-event models

Usually a discrete-event model generated from dis-
crete abstraction is nondeterministic (see Figure 3),
namely at some state one transition could end up in
a set of states instead of one state. Nondeterminism
in a discrete model is caused by the partition on the
state space. In this paper we propose a measurement of
nondeterminism. If the discrete model is deterministic
then given the initial state z0, a specific input sequence
always generates the same sequence of states no matter
how many times we run that input sequence. However,
if the model is nondeterministic then with the same in-
put sequence, we may get difference sequences of states
in different runs. When the total number of test runs
is very large, the frequency of each specific sequence of
states will approach a fixed number, which is the proba-
bility of the occurrence of that specific sequence of states
under the same input sequence.

Intuitively we can see that if some sequence of states
has very high probability and the rest sequences have
relatively low probability, then we may say that the
model is very close to a deterministic model. In other
words, the higher the difference among probabilities
of different sequence of states under the same input
sequence, the closer the model to a deterministic one.
This intuition suggests us that we should consider each
possible input sequence and compute the occurrence
probability of each possible output sequence. But
clearly this way is not easy to follow since we may
have an infinite number of input sequences. So here we
take a “weak” version of the above intuition. Under
the same input sequence u1 · · ·un ∈ U∗, a sequence



of states z1, · · · , zn ∈ Z has very high probability of
occurrence if for each i (1 ≤ i ≤ n), ξ(zi−1, ui) has
very high probability to reach zi, namely the prior
probability p(ui, zi−1|zi) should be very high. Although
the product of locally high probabilities may not lead
to globally high probability, it is almost true when at
each state the difference of local prior probabilities is
very high. So we can say that, if at each state z and for
each input event u, transition ξ(z, u) is more prone to
a specific state z′ than to any other state z′′ ∈ ξ(z, u),
then the model is more close to a deterministic model.
As we know, entropy is a very good measure about
such a bias among transitions with the same exit state
z and the same event u. So we apply it as follows.

First, we measure the nondeterminism at each state.
Assume that we have a prior probability distribution p :
U ×Z ×Z → [0, 1] on each transition, namely p(u, z′|z)
is defined if z′ ∈ ξ(z, u). Hence

(∀z ∈ Z)
∑

u,z′,
z′∈ξ(z,u)

p(u, z′|z) = 1

Let p(u|z) :=
∑

z′:z′∈ξ(z,u) p(u, z′|z). In practical appli-
cation, each prior probability p(u, z′|z) can be approx-
imated by the ratio of the number of trajectories from
z to z′ over the number of all trajectories from z to its
neighbor states under input u, which can be obtained by
a sufficient number of simulations. Based on this prior
probability distribution we can define a local measure
of nondeterminism as follows, (∀z ∈ Z)

Hz := −
∑
u,

ξ(z,u) 6=∅

p(u|z)
[ ∑

u,z′,
z′∈ξ(z,u)

p(u, z′|z)

p(u|z)
log

p(u, z′|z)

p(u|z)

]

(7)

We can check that Hz becomes zero when transitions
at z are deterministic. Figure 7 depicts three different
local transition structures with different measures of
nondeterminism, where clearly 0 = Ha

z < Hc
z < Hb

z . So

Figure 7: Transition Models with Different Degrees of
Nondeterminism

we can conclude that at state z, transition structure (c)
is much closer to the deterministic structure (a) than
(b) does.

The global measure of nondeterminism in a discrete-
event model can be simply taken as the average over all

local measures, namely

HND :=
∑

z∈Z Hz

|Z|

where |Z| is the cardinality of Z. Based on this mea-
sure we can show that a model DM is deterministic
if and only if HDM

ND = 0, which is equivalent to that
(∀z ∈ Z)Hz = 0. We say a model DM1 is more non-
deterministic than a model DM2 if HDM1

ND > HDM2
ND . In

other words. HND over the degree of nondeterminism
of discrete models is nonnegative monotonically increas-
ing.

In the two-tank system let us assume for the sake of
example that the prior probability is uniform over facet-
crossing transitions (zj ∈ ξ(zi, u) ⇒ dim(B(zi, zj)) =
n−1) and zero over non-facet-crossing transitions (zj ∈
ξ(zi, u) ⇒ dim(B(zi, zj)) < n−1). The reason for zero-
probability assignment on non-facet-crossing transitions
is that for each state z, the ratio of total number of tra-
jectories starting from z and crossing non-facet bound-
ary over total number of trajectories starting from z is
zero. With such probability assignment, the measure of
nondeterminism is HND = 0.414721. If we increase the
total number of states from 9 to 16 by simply increas-
ing the number of divisions over each tank height from
3 to 4, then HND = 0.461403, which indicates that such
partition refinement won’t reduce the nondeterminism.

This result can be intuitively explained as follows. In
the two-tank discrete model, most states usually have
eight neighboring states, except boundary states which
have fewer neighbors. The measure of nondeterminism
of a state with eight neighbors is higher than that of a
boundary state. When we increase the number of states
by the proposed way, each non-boundary state still has
eight neighbors and the transition structure of such a
non-boundary state is the same as in the fewer-state
model. Since a finer partition means a larger portion
of states with eight neighbors, the global measure of
nondeterminism increases. On the other hand, when
the total number of states become larger and larger, the
portion of states with eight neighbors become dominant.
So we expect that the global measure of nondeterminism
will asymptotically approach to a fixed number. Figure
8 depicts another example where increasing the number
of states from (A) to (B) cannot reduce the measure of
nondeterminism.

Although using the proposed way to build a model
with more states won’t reduce the degree of nondeter-
minism, it may make it possible for us to do supervisory
control if the original fewer cell model cannot. This is
nothing to do with nondeterminism, but to do with how
much details an abstract model can reveal. For exam-
ple, if we want to maintain the trajectories within the
area of [3, 9) × [3, 9), then we cannot model this area
with one single state because this will leave no place for
us to take control actions. So we have to refine our par-



Figure 8: Effect of Partition on Nondeterminism

tition and model this area with more states, which will
make it possible for us to take control actions to main-
tain trajectories within these states, hence within the
desirable area. So when two models with similar global
measure of nondeterminism, the model with more states
is usually better. On the other hand, when we increase
the number of states, if the global measure of nondeter-
minism increases drastically, then it strongly suggests
that the current partition method is not good for con-
trol purpose. So this entropy measure offers us a way
to evaluate the quality of the current partition method.
But it cannot suggest us how to improve a partition if
the partition is found not good enough. As for how to
efficiently refine a partition to reduce nondeterminism,
it is still under investigation.

5 Conclusions
In this paper we have shown that, with a partition

consisting of regular polyhedra, we can generate dis-
crete abstraction of a continuous-time system by using
gradient analysis on boundaries of each cell in the par-
tition. It is more computationally efficient than other
trajectory-based discrete abstraction methods in the lit-
erature as long as a continuous-time system with a regu-
lar polyhedron state space is concerned. After a discrete
model is obtained, we illustrate how to apply supervi-
sory control on such a model. Then considering that the
resulting discrete model is usually nondeterministic, we
propose an entropy measure on nondeterminism, which
can be used as a quality index of the current partition.
There are still several problems left unsolved, e.g. how
to expand the proposed method to a system whose do-
main is not a regular polyhedron, and how to reduce
nondeterminism after the entropy index indicates that
the current partition is not satisfactory. These problems
will be discussed in our future work.
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