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Diagnosis of Continuous Valued
Systems In Transient Operating Regions

Pieter J. Mosterman and Gautam Bisw&snior Member, IEEE

Abstract—The complexity of present day embedded systems employ failure models to establish the relations between
(continuous processes controlled by digital processors), and the measurements and a pre-enumerated set of faults [9], [18], but
increased demands on their reliability motivate the need for .o gisadvantage of this approach is that it fails to identify
monitoring and fault isolation capabilities in the embedded pro- .
cessors. This paper develops monitoring, prediction, and fault unus‘j'al and novel fauljts. More gene.ral fu'nctlc.)nal models
isolation methods for abrupt faults in complex dynamic systems. describe system behavior, and fault isolation is based on
The transient behavior in response to those faults is analyzed in analysis of reported deviations in the context of the given

a qualitative framework using parsimonious topological system model [1], [15]. Faults can be characterized as follows [4].
models. Predicted transient effects of hypothesized faults are « Incipient fault lowl fi d linked
captured in the form of signaturesthat specify future faulty ncipient faults occur slowly over ume, an _are Inke
behavior as higher order time-derivatives. The dynamic effects to the wear and tear of components and drift in control
of faults are analyzed by aprogressive monitoringscheme till parameters.
transient analysis mechanisms have to be suspended in favor .« |ntermittent faults are only present for very short periods
of st_eady state. an_aly5|s. This methodology_ has been successfully in time, but sometimes can have disastrous consequences.
applied to monitoring of the secondary sodium cooling loop of a « Abrupt faults are dramatic and persistent. and thev cause
fast breeder reactor. ' p N p ! ) y
significant deviations from steady state operations called
transients In time the system either moves into a new
steady state or returns to its original steady state.

I HE complexny and soph|st|cat|o.n of the.new generatiopne gifference in fault characteristics requires different
_ of engineered systems along with growing demands fQpemes for effective and reliable detection and isolation.
their reliability, safety, and low cost_ opera‘uon, is being mggor example, parameter estimation methods which compute
by the use of more automated monitoring and fault detectiqn ., meter values from input-output relations work well for

and isolation (FDI) subsystems. The goal is to accurételi’ﬁcipient faults because the system changes slowly and tends
isolate problems and restore the system to normal operatign o oin in steady state [5]

by making control changes to bring system behavior back 106 primary focus is on abrupt fault analysis in continuous

d(re]§|red fqperatmg ranges ofr atfleallsiaéemOQe Of_ opl)er_atlon. dynamic systems. This makes it essential to track and analyze
This defines a paradigm for fault detection, isolation, arEistem behavior at frequent intervals from the point of failure
recovery (FDIR). so_transient characteristics are not lost. Capturing behavior at

Functional redundancy schemes use measured system Valiyer, close to the point of failure is important, because,

able vaIue; witlh relationsimpoged by the.system configuratigg time progresses, compensating effects such as dynamic
and functionality to analyze discrepancies among the M&gayhack may begin to mask the effects of the fault. Moreover,
sured values [20]. Deviations in measurement values can ipqnay be impractical to rely on subsequent steady state

expressed in terms of changed component parameter valugs, . sis hecause the system may take a long time to reach

which are then mapped to faulty components. Traditiongl new steady state

functional redundancy schemes employ state and parameter eg—lg. 1 illustrates a generic model based approach to fault

timation methods, adaptive filtering, and logic based SChe”@éeCtion and isolation [5], [6]. A set of variables, called

for analysis [4]-[6]. observationsare monitored at frequent intervals. Deviations

System models capture relations between measured Valiopservations imply faults.

ables and system component parameters. FDI methods Oﬁelfbefinition 1 (Observation):An observation is a variable in
Manuscript received August 10, 1997; revised November 4, 1998 atide system model that is measured.
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I. INTRODUCTION
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Il. MODEL BASED DIAGNOSIS

u process Y :

Our approach to diagnosis uses qualitative dependency re-
£ lations between parameters and observed variables to generate

- hypothesized faults from observed deviations and to predict
their future transient and steady state behavior.

) r | generate & | £
model 3 monitor refine faults

i
¥ A 1

A. Model Based Diagnosis System

Fig. 1. Diagnosis of dynamic systems. . . L
9 g Y Y In previous work, static models based on qualitative con-

straint equations [1] and signed directed graphs (SDG) [16]

Continued monitoring and comparison with these predictiolsd to under constrained models that caused combinatorial
helps refine the initial fault set,f. Faults whose predictions problems in the diagnosis task. These system models did
remain consistent with the observations establish the roebt incorporate dynamics, therefore, temporal feedback effects
causes for the observed failures. Monitoring, comparison, agould not be dealt with, or had to be re-introduced on an ad
refinement continues till a unique fault has been isolated leoc basis [15].
transient analysis has to be suspended. The overall process df) Modeling for Diagnosis:Generating successful models
monitoring, hypothesizing faults, prediction, and fault isolatiofor diagnosis of continuous dynamic systems introduces a
with explicit system models as the core of the analysis schenngique set of requirements.
is referred to asnodel based diagnosis  The models should describe both normal and faulty sys-

In processes that operate mostly in steady state, nominal tem behavior. The former provides the reference variable
values and their upper and lower limits can often be re- values for the monitoring task, and the latter forms the
trieved from design specifications or documentation created by core for the prediction algorithm.
process engineers. For systems whose normal operation modes The model should generate dynamic behavior under faulty
include transients and dynamic behaviors, it is harder to de- conditions, so fault transients can be predicted by the
termine nominal values and thresholds from which deviations model.
in process variables can be derived [19]. A fairly accurate« The model should incorporate sufficient behavioral detail
process model that simulates system behavior under normal so deviations in observed variables can be mapped back
conditions is required to run in parallel with the operating to system components and parameters.
process. In reality, approximations in the models and drift in « \When faults occur, the system may undergo a structural
the system may result in the estimated state vector slowly change. Analyzing structural changes is beyond the scope
deviating from the actual system values. To prevent this, an of this paper. However, they constitute an important
observer mechanism [6] is employed to make corrections to category of failures, so it is important to not preclude
the estimated state vector. A critical issue with observers them from the underlying framework. In parallel, we
is the model adaptation rate, especially in case of incipient have been developing modeling technigues that combine
faults. If this rate is too fast, the model quickly adapts to discrete changes with continuous behavior analysis [11].
changes in the system variables caused by the incipient faultsy addition, to constrain the inherently exponential search
therefore, the generated nominal values do not indicatesgace for diagnosis, it is important that the model impose all
deviation. The comparison of actual measurements to predictegbvant physical constraints on the search process. Also, given
nominal values of measured system variables lead&u the limits of purely qualitative and purely quantitative schemes
detection To account for the effects of noise and measurememiat have been discussed elsewhere [5], [6], [16], models that
inaccuracies, based on design documentation, a margin of egienerate and use both qualitative and quantitative information
is added to the nominal values to increase robustness and apisl preferred to prevent loss afpriori information.
false alarms [19]. When error thresholds are exceeded, the\nalyzing the effects of abrupt faults is the key to successful
diagnosis system responds by setting corresponding alarmgault isolation. Abrupt changes in the parameter values of

The monitoring stage plays a crucial role in successful fawhergy storage elements may cause an abrupt change in some
detection, isolation, and refinement. Monitoring parameteniseasured variables [10], [13]. To illustrate, assume that at
such assampling ratesaffect measurement interpretationtime ¢, a rock falls into an open tank with capacify and an
and, therefore, fault hypothesis generation and refinemeniitflow resistancek for a connected outlet pipe (Fig. 2). The
Depending on the monitoring implementation, certain faultapacity of the tank decreases abruptly(tb Sincep = &,
may or may not be distinguishable from others, and this det@ndg, the amount of liquid in the tank is conserved (assuming
mines the overall diagnostic accuracy. A critical and relatet overflow), the abrupt change in the capacitance value must
issue in FDI is sensor placement and measurement selectieflect as an abrupt change in pressuyreto p’ = Sp. This
This is an integral component adiagnosability analysis does not have to be the case always. For example, an abrupt
i.e., choosing measurements that help isolate and differentiab&nge in pipe resistance, may cause an abrupt change in
among possible faults that may occur in the system [9], [14utflow, but not an abrupt change jin
This paper develops an integrated framework for monitoring, 2) Bond Graphs for DiagnosisBond graphs [17] provide
prediction, and diagnosis from transientRANSCEND, based a systematic framework for building consistent and well con-
on the architecture presented in Fig. 1. strained models of dynamic physical systems across multiple
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Fig. 3. Delay times of two first order systemsr ( and 72), their
sum (r1 + 72), and the actual delay time of their combined effects
(F(t,71) * F(t,72)).

Fig. 2. Discontinuous change in tank capacitance.

domains. They include causality constraints that provide the P 5 : L’;’.’Liii;iﬁ 1,201
mechanisms for effective and efficient diagnosis. An addedo»s o N Boos—

advantage of bond graph representations is their direct ap- | .« % 1=l 5=0.1

plicability to qualitative processing, making them useful in ©° = {, tme 250 o s g g, tme 280
situations where precise numerical information may not be @ )

available. Analytic system models derived from bond graphs _ . -
. . . Fig. 4. Delay times for observing deviations.
are also amenable to quantitative simulation and anaIyS|sg.
Tanginaet al. [21] derived analytic redundancy relations, and
Linkens and Wang [7] compute local qualitative relations faystem at rates that are faster than the smallest time constant, it
fault isolation. Our work exploits the topological constrainteecomes easier to track transients, and relate them to primary
of bond graph model for efficient diagnosis. fault causes. In this work, without much discussion, this is
To extend bond graph modeling to component oriented diagssumed to be true.
nosis requires establishing correspondence between individuahssumption 1 (Time Scale of Observatioi@bservations
components and bond graph elements. In the bond gragre sampled at rates that are faster than modeled system time
framework, primitive elements, such as resistors and capacitosmistants in both normal and faulty operation.
represent mechanisms which may not always be in one-to-igysical systems are inherently continuous, and hypothesized
correspondences with individual system components [2]. Aibrupt changes (e.g., the abrupt pressure change caused by
individual component may have multiple aspects representg@ falling rock) actually occur on time scales smaller than
in the bond graph. For example, a component such as a pihe sampling rate for the observations. Therefore, they seem
may be represented in the bond graph by its build-up of floy manifest as discontinuous changes, but this is a sampling
momentum(/) and resistance to flowR). Biswas and Yu artifact attributed to the time scale of observation.
[2] describe a compositional methodology for deriving bond Definition 3 (Discontinuity): A change in a signal value
graph models for diagnosis from a physical system descriptigiat takes place on a time scale much smaller than the time
so that the bond graph elements directly correspond to systegale of observations is classified as abrupt, and called a
components and mechanisms under diagnosis scrutiny. Hh€continuity.
modeling methodology is further developed by Mosterman andobserved transients in system behavior may be affected
Biswas [11], [13]. In our framework, a fault manifests as gy the combination of multiple time constants in subsystems
deviation of a component parameter in the bond graph modglat define the overall delay. The combined effects are a
Definition 2 (Fault): Faults are defined by model paramegonvolution rather than the sum of individual time constants
ters that have deviated from their normal operating values.[lo]. As an illustration, Fig. 3 shows the step response of two
first order systems with time constantsandr, respectively.
B. Diagnosis from Transients The combined effect of these systems is givenHfy, 71) *
Abrupt faults like sudden blockages in pipes create trad(t,72) (convolution) whereas the sum of their individual
sients in dynamic system behavior. This differs from a pipéelay times is shown by, + 7. Tracking of the measured
that slowly accumulates dirt creating an incipient fault, whickalues will produce significant error if the sum of the time
is more likely to cause a gradual drift in the system stead@nstants is used instead of the convolution. This approach is
state behavior. further complicated by the fact that nominal time constants
1) Characterizing Transients with Time Constants: Timehange when faults occur.
constantgplay a key role in characterizing the dynamic behav- A qualitative framework mitigates this tracking problem to
ior of physical systems. Faults cause instantaneous changesie extent but introduces problems in temporal ordering.
in some system variables. For other variables, energy stQualitatively, a measurement is consideneormal if it is
age elements acting as buffers introduce propagation delayithin a certain percentage (say 2%-5%) of its nominal value
and changes take longer to manifest. In general, variablsd deviant otherwise. Fig. 4(a) shows two variables affected
with larger time constants take longer to produce obsery a fault, a first order effect;;, and a second order effeet;.
able changes when compared to variables with smaller tifibe delay times, i.e., the time before these variables cross the
constants. If measurement snapshots are available from éneor threshold aré;; andtys, respectively. At times between
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ty2 andityr, zo is reported deviant but; is reported normal.
Although z» embodies a second order effect with a zero valug.
first-order derivative at the point of failure, it crosses the
error threshold before a first order effect. This is contrary to,
expectations; a first order effect is expected to dominate (i.e .
be much faster than) a second order effect. Fig. 4(b) compar I 2 e
two signals whose first order time constants are equal. The <2 o
pure first order effect is faster than the signal that combingfg. 5. Bi-tank system and its causally augmented bond graph model.
the first order effect with a second order effect.

This brings up an Important issue yvhen dea}lmg with normgharacteristic forms a necessary but not sufficient condition
values and deviations from nqrmal in a qualltatlye reasoning. discontinuity detection.
gg;zv?;k'stﬁ d;?rrgp%rs\l/i;gﬁgnfgro(r)rf 2rosrtm21rl1dishl?nhegrer?g:2r Ano_thgr ggneral characteristic of most physical systems is

' hgt dissipative effects eventually cause the system to return

|mp035|ble unless the sensor system is wired 'anoll callbrag a steady state. This translates to another feature that aids
with extreme care to guarantee a temporal ordering in FESPOIRE fault isolation process. If it can be determined from the
times. Also, an observation being reported normal at a giv

: . onitoring process that the eventual steady state will be above,
time may actually be a slowly changing value that has n

; BE ow, or at the previous steady state value, one can distinguish
i:rossfe (tj tr]:e ':thre?r;:.)ld,. and., Ef;erefo;le, It ShOUItd ggtt'be Uetween certain resistive and energy storage element faults.
0 retute faufls.  This invariably produces contradictions in Overall, our approach uses three features that take on the

consistency based dlag_noses. . S following values in our qualitative reasoning framework:
In our approach, deviant observations are individually an- )
magnitude:

alyzed to generate sets of single fault hypotheses. Normal i
observations are not necessarily used to refute faults because —low, high

it is hard to differentiate between a truly normal signal ~—discontinuity low, no discontinuous change, discontin-
versus one that is changing slowly and will cross the normal uously high

threshold at some future point in time. Only in situations ¢ slope:below normal, above normal

where discontinuities can be reliably detected can normale steady statebelow, at, above original

observations be used to refute faults that would cause a
discontinuous change for that observation.

2) Feature Detection:Individual signal features are the
prime discriminating factor between competing fault hy- The general FDI methodology illustrated in Fig. 1 is im-
potheses. Signals can be noisy, therefore, prudence npiemented using bond graphs as the underlying modeling
be exercised in distilling information from them. Magnituddanguage. Dynamic characteristics of system behavior derived
or zero order changes are measurable within a given erfeom the bond graph are represented atemporal causal
tolerance that is determined by the properties of the associaggdph Our algorithms for monitoring, fault isolation, and pre-
sensors. Slopes or first order derivatives can be relialsliction are based on this representation. The fault analysis and
computed from measured signals in a qualitative framewor&finement process continues till fault transients are masked
[no change (0) and increasing or decreasififg)] using by interactions or the system reaches a steady state. The goal
standard filtering techniques. However, the measurementi®ito uniquely identify the true fault using a combination of
derivation of higher order derivatives produces unreliableansient and steady state analysis.
results [3]. Dedicated transducers, such as accelerometers,
may be employed to measure second derivatives, but only for The Temporal Causal Graph
specific kinds of measurements. Therefore, our monitoring andThe temporal causal graph is derived in two steps [12]
feature detection subsystem focuses on making magnitude and ) ) . '
slope measurements. Like magnitude, a slope that is currently) An extension of the SCAP algorithm [17], [22] is used to
within bounds and labeled normal (0) cannot be used to derive ~ 9€nerate a graph that incorporatesise-effectelations
diagnostic conclusions because its value may change with among the power variables in the bond graph.
time. Only when the measured slope deviates significantly?) Component parameters and temporal information are
from the expected value is this value directly used for fault ~ @dded to individual causal edges to form the temporal
isolation and refinement. causal graph. This adds temporal characteristics to the

Specialized algorithms may be employed to derive other ~ reélations between variablés.
useful features from signals in a qualitative framework. For The temporal causal graph for the bi-tank system in Fig. 5 is
example, a simple discontinuous change detection mechanf#ewn in Fig. 6. The graphical structure represents effort and
can be based on observing that the magnitude and sldlgyv variables as vertices, and relations between the variables
of an observed signal at the time point of failure have

opposing signs. This discontinuity detection scheme has beefNote that the bond graph formalism presents one way to derive temporal
full lied to svstems in the hvdraulics domax:ausal graphs. Other modeling formalisms that support the physical modeling
successiully app Yy y I;Qiradigm and allow for the generation of a temporal causal graph may be

Not all discontinuities take this form, and, therefore, themployed in its place.

Ill. FAULT HYPOTHESES ANDSIGNATURES
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Fig. 6. Temporal causal graph of the bi-tank system.

7 [C2° Rb2*
as directed edges. The relations can be attributed to junctions 1‘7"{?:1:*‘_—:%2 w—y |or “3__’{2’{_’}(,
and system components. Junctions are of two types: ’ { { { {

14—
1) parallel or common effort (0-) junctions;
2) series or common flow (1-) junctions. Fig. 8. Backward propagation giverf to find faults.

O-junctions require that the effort (e.g., pressure) values of

all bonds incident on that junction be equal, and the sugj sioreq energy takes place. The steady state bond graph and
of the flow (e.g., the fluid flow rate) values be zero. lzq reqiting steady state causal graph are shown in Fig. 7. In
junctions require that the flow values of all incident b_onqg‘teady state, causality assignments do not imply a temporal
be equal, and the effort values sum to zero. In the qualitatiygyering, and a steady state graph represents a set of algebraic
framework these re_Iatlo_ns Impose I_abe#i, 1, and:_ on equations rather than differential equations. Therefore, causal
graph edges. The- implies that the junction constrains thejns in the steady state graph have less meaning. Because
two variable vertices associated with the edge to take on eqyal set of algebraic equations is invariant, parameter deviation

values, 1 implies a direct proportionality ardl implies an effects do not change for different causality assignments.
inverse proportionality for the variables associated with the

two incident vertices. An edge associated with a component
represents the component’s constituent relation. For exam;ﬁ’e,
the edge corresponding to a resistive element involved in anFor every recorded discrepancy between measurement
effort to flow relation is Iabeled}—?, and for a capacitor in and nominal value a backward propagation algorithm
integral causality the edge from flow to effort is Iabelgdit. (Algorithm 1) is invoked on the temporal causal graph
Junctions, transformers, and resistors define instantanetiusmplicate component parameters. Implicated component
magnitude relations, whereas capacitors and inductors prameters are also labeled(below normal) and+ (above
troduce magnitude and temporal effects on causal edgeermal). The algorithm propagates observed deviant values
In general, the temporal effects ametegrating and their backward along the directed edges of the temporal causal
associated rate of change is determined by the path that ligkaph and consistent and + deviation labels are assigned
an observed variable to the initial point where a deviatigsequentially to vertices along the path if they do not have a
occurs. Natural feedback mechanisms in dynamic physigakeviously assigned value. An example of its application is
systems result in closed paths in the temporal causal gragitown in Fig. 8 for a deviant pressure}, in the right tank
(see Fig. 6). For loops with passive elements, these feedbaékhe two tank system in Fig. 5. When is measured to be
mechanisms always have a negative gain [23] (e.g.fthe above its nominal value, backward propagation starts along

er — eg — fg — f7 loop). Loops that include an mtegratlngf7 cz_ft ¢+ and implicatesCs as below normalC, ) or fr
effect (€.9.,.fo — e2 — e4 — e5 — f5 — fo — f2) are v 2

as above normalfF). Backward propagation fronf alon
referred to asstate loops af7) propad v g

Definition 4 (State Loop):A closed causal path with one:f6 - f7 _|mplles fe ,_and the inverse rglatlon _ofg — f7
plies fg . Propagation along a path is terminated when a

and only one time-integrating effect is called a state loop. " =~ ) :
onflicting assignment is reached.

In previous diagnosis work, where temporal aspects of re “Backward i ts for t | effects b
tions were not modeled explicitly, these ubiquitous negative ackward propagation accounts for temporal €fiects by
pagating deviant values along edges with instantaneous

feedback mechanisms caused difficulties in assigning deviatfg)rrﬁ)ti ns first. This ensures that no fault iated with
values in a consistent manner during the fault generation st guons irst. S ensures that no faulls associate

. Jngher order effects conflict with faults identified with lower
(see Section IlI-B). The problem was addressed by employin . P )
o . .order effects. An example is shown in Fig. 9. Backtracking
ad hoc criteria to break loops. In our work, this problem is A dr o ) N
easily addressed by exploiting the time delays in propagatiffpnd the pathe; « ey < ey, < e5, hypothesizesa
signal values introduced by the integrating effects in staf® atfault consistent with the observatiefi, but the link
loops. ea — ey4 introduces a first order effect. However, the path
An added advantage of bond graph models is that they alka:\ﬂuL €3 e ey < e5 depicts a set of instantaneous relations
automatic derivation of the steady state model of the systethat support the hypothesis;” implies ¢i". At the point of
For the bi-tank system, both the tank capacities in steady stéddure, the instantaneous™ — ¢ effect dominates the

can be replaced by flow sources with value 0, since no charfgst orderat — ¢ effect. When analyzing an individual

St ledat w2 |2t

C2° Rb2* Ri2° C1° RbI*

Component Parameter Implication
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‘ dynamic, transient, behavior of the observed variables and the
ol*— [eziﬁx‘ ) eventual steady state behavior of the system under the fault
v et _’{25» conditions. Future behavior is expressed in qualitative terms:

magnitude (zeroth order time-derivative), slope (first order
Fig. 9. Instantaneous edges propagate first. time-derivative) and higher order effects.

Definition 5 (Signature): The prediction of zeroth, first, and
signal’s transient behavior, it is clear that its lower orddtigher order time-derivative effects of a system variable as
effects manifest before its higher order effects. Therefore, tHgalitative values: below normalofv), normal and above
backward propagation algorithm is designed to propagate irm@rmal igh) in response to a fault is called its signature.
depth-first manner in increasing order of time-derivatives. All
component parameters along a propagation path are possipl
faults. As discussed earlier, observed normal measurement
not terminate the backward propagation process. The resultof | . | . .
backward propagation is a set of hypothesized single faultsadd initial vertex, i.e., immediate consequence of the fault

a*
clts {c2¥h>c4*——> {ci*—-

x c3t—e D

05— cd 3

477 S

L‘Z—lbcl-—-—>

eorithm 2 Predict Future Behavior for a Fault

that are consistent with the reported deviant observations. 0 list vzise ; o ) o
mark vertex0'” order derivative with qualitative value
Algorithm 1 Identify Possible Faults while vy;s, is not emptydo
Veurrent — the first vertex invy; ¢
P while v.urent has successorsot determined to
st T st — . _»
X sufficient order do

for all reported discrepant measuremeas

add vertex corresponding to deviant measurement to if successor relation includes a time integral effect
then increase current derivative order

Vlist
and mark vertex with qualitative deviation value endif .
while vy, is not emptydo if derivative order< maximum ordetthen
Veurrent — the first vertex inuy;,. (and delete if successor derivative iso_mark then
Veurrent fFOM vist) successor derivative value new_value(current
while vzypren: has unmarked ancestais value, relation)
if ancestor relation includes a parametezn else if successor derivative has opposite value of
add the parameter with consistent label to the current
Jrist then
end if successor derivative value conflict
if ancestor vertex is unmarkehen end if
ancestor value— new.value(current value, add the successor to end @f s,
relation) end if
if relation is instantaneouben end while
add the ancestor vertex to the beginning of end while
Viist for all vertex derivativegio
else if value=no_mark and any higher order derivative
add the ancestor vertex to the enduvpf,; # no_mark
end if then
end if replaceno_mark with normal
end while end if
end while if value = conflict then
Vst = 0 replaceconflict with no_mark
end for end if
end for
C. Prediction

Once faults are hypothesized, prediction and refinementThe method for predicting future system behavior is pre-
schemes are employed to converge on the true fault. A m&@nted as Algorithm 2. The algorithm propagates the effects
complete prediction module may be required to handle mod¥l a hypothesized fault to establish a qualitative value for
changes when faults cause structural changes in the system alfgneasured system variables. Forward propagation along
assume faults do not cause changes in system configuratiemporal edges implies an integral effect, therefore, the cause
and the system model remains valid even after faults ocawariable affects the derivative of the effect variable. All
in the system. deviation propagations start off as zeroth order effects, i.e., as

Assumption 2 (No Structural Changedfaults do not magnitude changes. When an integrating edge is traversed, the
cause the system model to undergo configuration changesmgnitude change becomes a first order change, i.e., the first
The prediction module uses the system model to compute therivative of the affected quantity changes. This is illustrated
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. . N . Fig. 11. Signal i ion.
by an7 (]) in the propagation example in Fig. 10. Similarly, 9 'gnal Interpretation

a first order change propagating across an integrating edge

produces a second order changd (|])), i.e., the second datioliiz
derivative of the affected variable changes. Second order @0+ -
changes propagate to third order changes, and so on. The @|+|+]| -
forward propagation algorithm operates breadth-first along the . @+ - |-

temporal causal graph. e @@ ot
The forward propagation algorithm terminates when a si

nature ofsufficientorder is generated. Bompletesignature for

an observation contains derivatives specified to its sufficient

order. The sufficient order of a signature depends on the getSensitivity to the Time Step

of chosen measurement variables and the desired level Ofl'he monitoring time step is critical to the success of the

dlagn9§§b|lltyfor_the systgrn. ) o . overall fault isolation scheme. The step size depends on the
Definition 6 (Diagnosability): Diagnosability is a function qigerant rates of response that the system exhibits. Too large
of the numper Of. possible faults that can be uniquely identifi time step may produce incorrect inferences as shown for the
byAaffatletdlsolatl_on syitem. . letelv di bléo signal (solid curve) at the left in Fig. 11. A large monitoring
(A Tault detection scheme isompletely diagnosabledr a e step(>¢,) gives the appearance that this signal undergoes
given se_t of measurements if it can isolate all possible S'n%ediscontinuous change (dashed curve). Decreasing the time
faults _W,'Fh the set of meas:urementg._ ) ) step helps in differentiating discontinuities (abrupt changes)
Definition 7 (Complete Diagnosability)A fault isolation from continuous effects but if the time step is too small, it

systgm is completgly diagnosable if it can uniquely isolate bpears that the signal does not change for a large number
poggble hyrt;(_?thesdlzed fgults. h | d ob . of steps (see plot on right of Fig. 11). Too small a time step
dmanos:ra] Hity egen Sf Or? the selecte 24ser|vat|ﬁn ?ﬁéy result in lack of sensitivity to changes and unnecessary
an .t € chosen order o t e S|gnatures_[ ) ] In t ec’r¥0mputational expense on the analysis task. If the variable cor-
consideration of higher order variable effects is likely to res”'}%sponding to a slowly changing measurement is prematurely
in greater Qiagnosa}bility. Therefore, the same diagnosat?ilpé( orted to be normal, or to have reached a new steady state
can be a_lch|_eved_W|th a small_er number of t(_)tal observatloo lue, this may result in elimination of true faults. To mitigate
but considering .hlgher.order S|gnatures,- or using a larger NUfR7s problem, fault refutation based on a given observation is
ber of observations with lower order signatures. In practic nly invoked after an initial deviation is detected. As discussed

using signatures of lower Qrder has advantages. Higher or flier, the sampling rate also determines whether the effect
effects take longer to manifest, and fault patterns take Ioana;}ra fault is observed to be discontinuous

to establish after failure occurs. During this time, feedbac
effects in the system may be superimposed on initial faLgt
behavior and change the nature of the patterns. This problem
is Compounded even further when Cascading faults occur. Transient characteristics at the time of failure tend to
The steady state causal graph derived from the bond gra§lange over time as other phenomena in the system affect
model of the system determines the final steady state valtie measured variables. The signatures for a candidate fault
for each observed variable under the faulty conditions. TIk&n change dynamically. For example, a fault in the system
predicted steady state value for each observed variable, ifBay have no effect on the initial magnitud#i( order value)
below the original, at the originalor above the originasteady ©f a variable, but it may affect itdst derivative, predicting

state, is attached to the signature and used in the monitorfhgt it will be above normal. Therefore, immediately after
stage. the fault occurs the variable value will be observed to be

normal (its deviation is within the 2-5% threshold), but as
time progresses, the derivative effect will cause the variable
value to go above normal. Fig. 12 depicts time stamps marked
1, 2, and 3, where a lower order predicted effect is replaced
The monitoring module compares predicted signatures lof a higher order effect. The notion of employing higher
the hypothesized faults to actual measurements as they chamgker derivatives in analyzing measured variables during the
dynamically. A number of issues of practical importancanonitoring process is referred to @sogressive monitoring
related to the quality and characteristics of the measuremem#hen as observed variable does not match a predicted normal
are incorporated into the monitoring scheme so dynamialue, the comparison is successively extended to predicted
effects can be realistically measured using local mechanisrhigher order derivatives in the variables signature. If the higher

lqig. 12. Progressive monitoring.

Progressive Monitoring

IV. MONITORING
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Fig. 13. Progressive monitoring forfauRzFZ. Fig. 14. Results of the diagnosis system wity faulty and discontinuity

detection is used.

order derivatives match the observed value, the hypothesized

fault is considered plausible, otherwise it is rejected.
To illustrate, Fig. 13 shows the predicted and monitoreg;

behavior for a sudden increase in outflow resistafge in

the bi-tank system in Fig_ 5, wherel, 0, 1 maps ontdow, Fig. 15. Typical signal transients in physical systems that exhibit different

normal, highand a period indicates that the valuauisknown dualitative behavior over time.

The two observed variables are the outflow of the left tank,

f3, and the pressure in the right tank, Not all monitoring s added to the actual observation; a value of 1 in this field
output is shown; the boxes depict the monitored values igiplies a positive discontinuous deviation occurred at the time
time steps where the set of hypothesized faults changesc@failure. Matching an initial discontinuous change produces
where the tracking of an observation’s transient behavior dsunique fault after the second time step. The discontinuous
terminated. The actual observations and the neWIy inferl’@ﬁange observed for measurementat step 2 imp”categ;

set of possible faults and their signatures are listed. TBfd the other hypothesized faults are eliminated. The fipis
values on the top of each box represent the measured sigstderved to have a positive deviation and positive sldpe)
magnitude (zeroth order), slope (first derivative), and second opposed td1,—1) for ¢;. Therefore, the change i is
derivativé’ expressed in qualitative terms. Below the reportagbt labeled discontinuous by our criteria. The discontinuity
measurements are the predicted signatures of the meas@@ction criteria is a necessary but not sufficient condition.
variables for each hypothesized fault. Consider fajf and  The diagnosis engine can correctly detect and isolate all
measuremenfs in Fig. 13. At step 9, the reported value ffy  single fault parameter deviations if the pressure in one tank
is still normal (its value has not exceeded the error thresholghd the outflow from the other or the flow between them
and this agrees with the signature 0, 0, 1 f)f,. At step 23, were measured and first order signatures are used. In this
the reported value foff; is 1, 0 (magnitude above normal),case, discontinuity detection is not required but steady state
which no longer appears to be consistent with falilt’'s detection is. If steady state detection is not feasible, three
signature. However, when progressive monitoring is appliegipservations and discontinuity detection have to be used, or
the second derivative, which is positive, makes an impagtsecond order signature without discontinuity detection can
on both the first derivative and magnitude of the signal, am& employed. The task of measurement selection to achieve
the prediction forR,, is changed to 1, 1, 1. Updating thecomplete diagnosability is discussed in greater detail elsewhere

prediction in this manner keeps the signature consistent wjtty]. Detailed results for two-tank and three-tank systems are
the observation, andz, is still a viable fault hypothesis. presented in [12].

Hypothesized faults are dropped if their signatures do not

match observations. Note that in step 23 the slopeffors .

reported to be 0 whereas the magnitude deviates. This is%’nTemp_orél Behavior . _ _

artifact of our implementation as the deviation in a slope is Two distinct characteristics of signals in response to fault

computed using the first set of observations after an initilisturbances, transients and steady state, carry the most distinc-

magnitude deviation is detected. tive discriminative information for diagnosis. For monitoring
Fig. 14 illustrates progressive monitoring with discontinuitjt is important to know when, after a time of failutg, the

detection (see Section I-B). The changefirande; when the transient detection phase terminates, and the system moves

fault C; occurs in the bi-tank system is listed. A fourth fieldnto the steady state mode, requiring steady state detection to

be activated.
3As discussed earlier, second and higher order derivatives are not mea-

sured. This slot is retained to make it easier to match actual and predicteoPalOWitCh_ [16] reports th?-t Signals may ex.hibitcmm—
observations. pensatory[Fig. 15(a)] or aninverse responsgFig. 15(b)].

L—



562 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 29, NO. 6, NOVEMBER 1999

A compensatory response exhibits a decreasing slope and ) sodiuin flow stopping valve
gradually moves toward a new steady state value. For an R ) _(mily opene)
inverse response, after an initial increase or decrease, the signal
may reverse direction. An additional phenomenon resulting
from abrupt faults can be categorized aseserse response p
[Fig. 15(c)]. A reverse response occurs if a discontinuoqigy:ﬁ

signal overshoots, and, consequently, its qualitative magnitutfe -\
reverses sign (i.e., goes from above normal to below normalinemcsie

main o
motor Cy

evaporator

sodium
overtlow

or vice vers exchianger
In the qualitative analysis framework, the transition to @ (:'Q?nélyvfmd)
steady state analysis is detected from an initial magnitude
deviation by noting the following. Fig. 16. Secondary sodium cooling loop.
* For a compensatory response, the slope eventually be-
comes 0. suspended, and steady state analysis is activated. This
* For an inverse response no discontinuous change of s pased on the three characteristic qualitative signal
magnitude is associated with. The switch from transient behaviors discussed earlier in this section. Suspension

to steady state detection occurs when the magnitude and  of transient analysis and steady state detection are non

slope deviations take on opposing signs. Eventually the  jyjal tasks in the monitoring and fault isolation scheme.

slope may become 0. 4) An off-line measurement selection algorithm [14] iden-

« For a reverse response the signal has a discontinuous tifies the sufficient order of predictions for fault isolation

initial magnitude deviation with sign that is opposite of to achieve a degree of diagnosability.

the current magnitude deviation. The switch to steady

state detection occurs when the magnitude changes sign. V. LIQUID SODIUM COOLING SYSTEM
When any of these situations are detected, transient verificatio
for that particular signal is suspended (stagen Fig. 15),
and steady state detection is activated (staga Fig. 15).

Yhe scalability of our FDI methodology was tested by con-
ducting experiments on the simulation model of the secondary

. . . " liquid sodium cooling loop in a fast breeder nuclear reactor.
After a period of time, some signals may be processed in tlﬂ% g ‘oop

transient mode, whereas others are processed in the steady Bta(te need for a qualitative approach in this system is motivated

. , . fhe fact that it is modeled as a nonlinear sixth order,
mode. Steady state is detected when a first order derivatiye . . :

- . . - . system. This makes it hard to develop accurate numeric models
becomes 0 for a sufficient period of time. The sufficient peri

) . L . r generatin m behavior in different m . Moreover
of time is usually based on design information. The S Or generating system behavior in different modes. Moreover,

in Fig. 13 illustrates that transient detection was suspen thg precision of the sodium flow sensors used in the system
9. PENG&Llimited and hardware redundancy is difficult to achieve

for e7 from time step 10. At this point in time, steady stat . . .
detection is activated for this signal only. At step 26 transie%’?cause of the expense involved in adding flow sensors.

detection for f3 is suspended and steady state detection As Secondary Sodium Cooling Loop
initiated. Both these are examples of a compensatory response.
However, the difficulty in detecting the final steady state value In @ nuclear reactor, heat from the reactor core is transported
results in it not being used as a verification mechanism het@ the turbine by a primary and secondary cooling system. The
and, the diagnosis process ends at time step 26. In Fig. PAmary cooling sub-system connects directly to the reactor
the diagnosis process terminates at step 7. As part of fut@fed transfers heat to the secondary cooling sub-system which

research, more sophisticated steady state detection technid0ies transfers heat carried by the liquid sodium to the steam in
will be investigated. the generator (Fig. 16). Heat transfer from the primary cooling

loop to the liquid sodium in the secondary loop happens
through an intermediate heat exchanger. The heated sodium
is then pumped through two stages: the super heater and the

Monitoring plays a key role in the robustness of the faulivaporator vessel, both of which heat up the water and steam

analysis scheme. The following issues summarize the mop-the steam—water loop that then drives the turbine.
toring and measurement selection process. 1) Bond Graph Model: The model used for diagnosis ap-

1) Only deviating signals play a role in transient faulplies energy and mass balance of the system in the hydraulics
analysis. This circumvents the problem of insensitivitdomain combined with the mechanical characteristics of the
to small time steps. main motor and pump. The bond graph that captures system

2) During this transient monitoring stage a progressiveehavior in these domains is a nonlinear, sixth order model
monitoring scheme defines the dynamic characteristi(iSig. 17). The main motor driver (Fig. 18) is a synchronous
of the initial fault transients. ac motor. As a simplification the electrical subsystem is not

3) After a period of time, signal behavior may deviatenodeled. The electrical part of the motor system can be
significantly from transient behavior at the time ofepresented as a source of mechanical energy with a given
failure (e.g., it may reverse its slope). In this situatorque/angular velocity characteristic. The inertia of the rotor
tion, the transient prediction and verification process &nd the mass of the transmission gear is modele¢ghbyand

D. Summary
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Fig. 17. Bond graph model for the secondary sodium cooling system. [24—> 122420 —» {19416

Fig. 19. Temporal causal graph of dynamic behavior.

a b
1 }""'é"’ MGY";J""l 1
f8 9
g = a*f8 - b*f9
Fig. 18. Synchronous ac motor that drives a pump.
z = - -8 = _ —

‘l_eggusr‘)) éeg:]fgﬁ g>0 41—«:84—?—1“94_—
the transmission ratio between motor and pumprbyPump E> o :> o
losses in the fluid connection between the motor and pump are- f8 —c0 —» — f8 ?w —- —> 8 —» 9 —>

modeled by a dissipation elemert;, and the pump inertia
is represented asi;. The model of a centrifugal pump canFig. 20. Temporal causal graph of a modulated gyrator.
be derived using conservation of power and momentum [23].
Given that the amount of mass moved by the pump depends
on the total area of its veins, minus the effective loss in
moved mass due to the curvature of the velnghis yields the
constituent relations = (a6 — bpout )Pour ANA Poyy = (ab —
bpout )0. This describes a modulated gyrator with modulus
al — by, Whereb = 0 if the pump veins are not curved.

The hydraulics of the sodium loop are modeled by a closed
power loop (Fig. 17). The coil in the intermediate heat %9, 21, Detailed sensitivity analysis ok /0.
changer accounts for flow momentum build-up, represented by '

a fluid inertia, Itrx. The piping from the main pump through .

the heat exchanger to the evaporator vessel is represedfidfiéled by edges between these variables and the affected
by resistanceR.. The two sodium vessels are modeled byariables. The bond graph indicates ttfatand /o affect cs
capacitancesCry and Csy and the connecting pipe byan_deg. The correspon_dlng edges are add_ed to the _causal_graph
its resistanceRs. An overflow column,Cope, maintains a _(Flg. 20). The added_lnfluences t_aglresult in ambiguity. This
desired sodium level in the main motor, and the piping betwelhr€vealed by studying the relation betwegnanQd fo. From

the evaporator and this column is represented by resistalfe Pond graples = (afs —bfo)fo = afsfo —bfs. The plot

R.. This storage facility is connected to a sunsp, by a pipe " Fig. 21 reveals that thegl to fy link can have a positive
with resistance Rs. or negative value depending on the values fgf and fy.

Solving the algebraic equations in the steady state modd&Pm nominal steady state values, the link sign can be pre-
(i.e., all C elements in Fig. 17 are replaced By : 0 and all/ computed. However, once a fault occurs, changes in the values
elements bys. : 0) results in a third order equation because & /s and fo may cause a change in the sign. Since the exact
the quadratic modulus of the gyrator. A closed form symbol}j¢2lues of the two variables are not known at monitoring time,
solution was derived using Mathematica. This solution hd3€ Sign on the link may or may not reverse. The reversal

one real root that represents the steady state solution, &GGurs only wheres is predicted to be high based on the
symbolically provides the values for nominal operation. proportional influence{1 or 1). Since a predicted decrease

2) The Temporal Causal GraphThe temporal  causal ?n s ig unambiguous it is propagated, but a predicted increase
graph (Fig. 19) of the system is derived from the bonff ¢s IS Propagated asnknown The two pump parameters
graph in Fig. 17. Because of its nonlinear characterMi@y ¢ @ndb are represented by one positive paramegethat is

requires more detailed analysis. The derivation of the caudgked to pump fault.

relations of the modulated gyrator is shown in Fig. 20. First i

it is observed that the modulation factgr = afs — bf, B+ Simulation Results

is directly proportional tofs and inversely proportional to The numerical simulation model for the secondary cooling
fo. The dependency of on fs and —fy can be explicitly loop utilizes the forward Euler integration;+; = At + xy.
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TaBLE | TasLE |l
SECONDARY SobDIUM COOLING LooOP PARAMETER VALUES FAULT DETECTION FOR{ f2, f7, fi1, €14, €19, €22, €33}
e - T 5 " — . _— WITH At = 0.001, order= 3, gmargin = 2%
22 0-1143 CCOI:‘;:V(V 1z(()3 Iln;lzx ois 2 0%1 Fn:lt |  Diagnosis | Samples || an:lt I Diignoiis I Sam'ples
R, T 0250 R] wtonF 58 R} nTUR] 43
Ry 1 C=n 7] [Czamp 727 [(EVies | 22 ] R RY 27 N Ry 16
n;f rE 1255 Ry (“q:;) (ggg)
R4+ (1{4{2‘;;1+) (3347289) R; R; 48
To ensure stability, the numerical time stég was chosen PRy m‘,iz;‘;{;, 2 i, r, R, 687
to be <7y, wherer,,, is the smallest time constant of the __ H?RE-R? _ #y
model [23]. iiH 2+H ZZ zin c?” 176
From system specification documents and by consulting:#* S 5 el o 3
domain experts, the parameter values listed in Table | were.f- e 5 T e >
chosen. Those values do not represent actual system parameter;. my 2 ™5 ma 2
values, but their relative magnitudes are such that the generateldux i 1 D 1 linx :

qualitative characteristics of the behavior are correct. The

EV...x parameter indicates the maximum level of the liquid

sodium in the evaporator vessel. The overflow mechanism wasy of required measurements, or certain predicted deviations
modeled but not included in the temporal causal graph to avaieh 150 small to be observed.

model configuration changes. The simulation used a numerical

time step ofAt = 0.001, which produced numerically stable

simulations in both normal and failure situations. Thus, < VI. CONCLUSIONS

0.003 for Fhe model, which. is equivalent to a minimal time. This paper presents an effective mechanism for fault iso-
constant in the order of minutes for the actual system. Thigion in complex dynamic systems by analysis of qualitative
was also chosen as the monitoring time step, which resultsyfnsients and progressive monitoring of the evolving behavior
a sampling rate of about 20 s for the actual system. of the system after initial fault occurrences. The work makes
Failure was simulated in the system by changing the modgl, ,mber of important contributions:

parameters by a factor of five. Conservation of state [13] wasl) use of the bond graph language to develop a systematic
applied when capacitance and inductance failures occurred. framework for dynamic and steady state analysis of
Keeping the stored momentum or the amount of liquid constant physical systems;

resulted in an abrupt change of angular velocity/flow or 2) use of qualitativé signatures defined by higher order

pressure, respectively. Simulation was stopped when either the derivatives for tracking system behavior based on hy-
transients of all observations were detected or 3913 samples . .
pothesized faults;

had been processéd. ; o . .
: .. 3) progressive monitoring scheme for comparing evolving
The quality of the results depended on the parameter dif- temporal system behavior to the signatures for fault

ferences in the model and unmodeled configuration changes. refinement.

For detection of high and low values for signals, a qualitative ‘ ) ith K h K
margin of error of 2% was used to avoid spurious deviations”* NUMPer of experiments with two-tank and three-tank sys-

due to noise. tems have produced excellent results. To demonstrate the value

Table Il summarizes the results. Columns 1 and 4 are tRk (he system in more realistic situations, we have applied

introduced faults, column 2 and 5 list the faults reported Sé/to a complex, sixth order model of a secondary sodium
TRANSCEND and columns 3 and 6 indicate the number df°

oling loop system for a fast breeder reactor. Results obtained
measurement samples required to arrive at the result. ThigE encouraging, and the difficulties .e'ncountered are not an
faults, Ry, Rf, and Cg,, were not accurately detected ofSsue of §palablllty, 'but more the apﬂny to model complex
isolated. Because of the overflow mechanism in the evaporagghnlinearities, the time-scales of different subsystems, and
vessel, a decrease in capacityy,,, does not result in an processing the effect of structural changes in the system.

increase in level and this is not detected. To detect thisCurrently we are focusing on improving the analysis of

failure, flow of sodium through the overflow mechanism hata’he dynamic transients in the fault isolation mechanisms by

to be monitored. The two other fault®; and R}, were incorporating order of magnitude relations of the temporal

detected but not correctly isolated, again because the overflﬁwcésdpf mtggrgtmg edges a?d QEVE"lOp'ng mor((je Solph'_St"
mechanism was not modeled in the temporal causal graﬁﬁte iscontinuity detection algorithms. We are developing

If this phenomenon is included by tagging a predicted Va|l§é(étematic methods for handling structural faults like leaking
unknowninstead ofhigh when it would have predicted anPPeS that cause changes in system configuration. We are also

evaporator level that ikigh, the faults would be accuratelydeSIgnIng and implementing an environment for monitoring

isolated as indicated by the entries in parentheses in Tabledid @nalyzing real data from an operating automobile engine.

Not all faults can be uniquely isolatédin, R, }) because of the | IS Presents interesting challenges for developing signal
interpretation techniques that are robust to noise, and the

4This number is derived from the time it takes a signal with time consta_ﬂevelppmem Qf real time monitoring, predlctlon, and fault
1 to reach its steady state value within 2%. isolation algorithms.
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