Compensating for Timing Jitter in Computing Systems with General-Purpose
Operating Systems

Abhishek Dubey’

Gabor Karsai'

Sherif Abdelwahed?

fInstitute for Software Integrated Systems, Vanderbilt University, Nashville, TN
tElectrical Engineering and Computer Science, Mississippi State University, Mississippi State, MS

Abstract

Fault-tolerant frameworks for large scale computing
clusters require sensor programs, which are executed pe-
riodically to facilitate performance and fault management.
By construction, these clusters use general purpose oper-
ating systems such as Linux that are built for best average
case performance and do not provide deterministic schedul-
ing guarantees. Consequently, periodic applications show
Jjitter in execution times relative to the expected execution
time. Obtaining a deterministic schedule for periodic tasks
in general purpose operating systems is difficult without us-
ing kernel-level modifications such as RTAI and RTLinux.
However, due to performance and administrative issues ker-
nel modification cannot be used in all scenarios. In this
paper, we address the problem of jitter compensation for
periodic tasks that cannot rely on modifying the operating
system kernel. ; Towards that, (a) we present motivating
examples; (b) we present a feedback controller based ap-
proach that runs in the user space and actively compen-
sates periodic schedule based on past jitter, This approach
is platform-agnostic i.e. it can be used in different operat-
ing systems without modification; and (c) we show through
analysis and experiments that this approach is platform-
agnostic i.e. it can be used in different operating systems
without modification and also that it maintains a stable sys-
tem with bounded total jitter.

1. Introduction

Distributed cluster computing has evolved as an attrac-
tive computing paradigm for solving a number of huge sci-
entific computation and discovery problems. These large
clusters are built using commodity hardware and general-
purpose operating systems such as Linux. They yield
the highest performance per dollar but exhibit intermittent
faults, which can result in systemic failures when operated
over a long continuous period for executing analysis cam-

paigns. Manual administration is necessary, but is generally
slow to respond to the intermittent faults. Therefore, we
need to supplement the administrative system with a control
system that can provide fault prediction, isolation and sub-
sequent mitigation. We are currently designing such a sys-
tem for LQCD computing clusters at Fermi National Labo-
ratory, Illinois, USA!.

Most commonly, digital implementations of controllers
operate in a periodic fashion, sampling control signals,
computing the current state of the system, and perform-
ing an actuation based on the computations. In distributed
setting, several distributed agents periodically execute on
worker nodes and provide sensory information that is then
fused centrally or hierarchically to provide a snapshot of the
global state of the system [7].

Periodic task execution can be achieved by either using
self-scheduling threads that use operating system primitives
such as sleep/alarm or register directly with operating sys-
tem kernels that have built-in support for periodic tasks.
Alternatively, a user space discrete event scheduler can be
used that arbitrates and wakes up several related sub-tasks
as shown in figure 1. This approach is similar to the re-
lease guard approach in that a guard-process releases sub-
task periodically [17]. Release guard protocol ensures that
the lower bound on the time-interval between two execu-
tions of the same task will be at least greater than the period.
However, it does not guarantee an upper bound on the task
release intervals.

Periodic task invocations suffer from jitter, defined as
the maximum deviation between start time and the release
time among all instances of a periodic task [5]. It ranges
on the order of microseconds even on hard real-time sys-
tems. However, on general-purpose operating systems such
as Linux that are designed for good average performance,
the typical jitter can range from a few milliseconds when
the system is not busy to a few seconds when the system
is busy. By construction, computing nodes in cluster use
Linux and not a hard real-time operating system. The jit-

Uhttp://www.usqcd.org/fnal/

Software Tasks

Kemel-Space | [User Space |

Periodic user- o
Reglr space task
= Scheduler
T

Figure 1. User space schedulers that main-
tain period by using periodic sleep cycles.

ter in sensor tasks is a cause of concern for a reliable sub-
system. The global controller expects information for all
sensors to arrive periodically according to the pre-arranged
schedule. However, deviations from that schedule due to
jitter can create false positives. For example, a sensor such
as heartbeat periodically sends a message to a recipient to
indicate that a computing node is alive. Delay of heartbeat
due to jitter can cause false positives.

Ensuring that jitter is bounded is a common requirement
in real-time operating systems. There exists prior work in
the field of jitter reduction and compensation. In [10], the
authors studied the degradation of performance in real-time
control systems interacting with actual physical systems due
to jitter. They compensated for jitter by changing the param-
eters to make the controller more robust to jitter. Baruah et
al. presented kernel space algorithms for reducing jitter in
[4]. In the same paper, they outlined a few properties that
any jitter control algorithm must have. Some of these prop-
erties are: (a) it should not buffer a job that is to be executed;
(b) CPU cannot be kept idle if some job has to be executed,
(c) when a job completes, it should release the CPU imme-
diately, and (d) the online scheduling overhead should not
be as small as EDF.

In this paper, we propose a user space scheme that ac-
tively compensates for jitter. This is essential so that the jit-
ter control mechanism can be implemented quickly on new
installations and on heterogeneous operating systems. We
model the jitter accumulated during each period as a distur-
bance and then use a discrete-time proportional and integral
(PI) feedback controller [11] to compensate for total jitter
before the next scheduled activity.

Figure 2 shows a plot of 99 samples of timing jitter ob-
tained for a task with 1 second period on Red Hat Linux
2.6.9-67. The regular pattern in uncompensated jitter sug-
gests a common origin. Figure 2 also shows the compen-
sated jitter profile for the same task when the periodicity
of 1 second was implemented using the approach outlined
in this paper with a smaller sleep cycle of 20 milliseconds.
Average CPU utilization during the whole test was less than
1 percent.

C d Jitter Vs L Jitter

Seconds Compensated Jitter ——Uncompensated Jitter

14 7 101316 19 22 25 28 31 38 37 40 43 46 49 52 55 38 G1 63 67 JO /3 /6 /9 B2 & B8 91 94 97 100

00005
teration Number

Figure 2. A plot of 99 samples of timing jitter
obtained for a task with 1 second period on
Red Hat Linux 2.6.9-67.

The outline of this paper is as follows: We describe the
problem and provide a formal problem statement in section
2. Section 4 introduces our approach. We analytically de-
rive the conditions necessary for controller stability by us-
ing discrete-time domain models for the controller and the
plant in section 4.3. Finally, we present experimental results
from two common operating systems, Linux and Windows
in section 5. Section 6 summarizes related research. Then,
we conclude with discussions for future work.

2. Problem Context

In this section, we mention two use-cases where timing
jitter in periodic task execution affects the quality of service.

2.1. Scheduler framework for Sensors

Our fault-tolerant framework contains a number of dis-
tributed periodic sensors. Sensors present on a comput-
ing node are executed by using a user space discrete event
scheduler [6] (Algorithm 1). Sensors are executed by sleep-
ing periodically for a time 7" which is equal to the earliest
periodic deadline. This sleep is achieved by alarm and sig-
nal handlers in Linux and a regular sleep in Microsoft Win-
dows. The precision of periodicity depends upon the accu-
racy of the sleep function provided by the operating system.
However, in many cases the standard Linux kernel provides
no upper bound on the difference between the actual times
of sleep compared to the requested time. Moreover, jitter
accrued in sleep increases as the CPU utilization increases.
This is often the case on a cluster which is being actively
used. In this case, we need to be able to reduce the jitter
accrued during each sleep cycle.

Algorithm 1 Sensor Scheduler

Input: S {Set of periodic sensors. Each sensor has two
variables: P(Time period), C (current clock Value)}
Pre Condition: (Vs € S)(s.C = P)

1: loop

2. SetT = minimum((Vs € S)(s.C)

3: Set Alarm for 7' {Alarm can be implemented by
sleep or using signals in both Linux and Windows}
(Vs € 8)(s.C <~ s.C—T)

(Vs € S)(s.C =0 = Ezecute(s))

(Vs € 9)(s.C =0 = (s.C < s.P))

Run any aperiodic sensors if present.
end loop

® Nk

2.2. General Purpose Time Triggered Exe-
cution Platform: Frodo

Frodo [18] is an abstract virtual machine, for execut-
ing time triggered control tasks of high-confidence sys-
tems coupled with a message controller that provides the
time triggered [8] transmission of data message across net-
worked nodes, all of which is implemented using readily
available infrastructure. The current platform implementa-
tion uses embedded PC-s running on Linux 2.6.x kernels
and standard Ethernet UDP network for communication.

The current implementation of FRODO does not allow
the preemption of tasks, i.e. only one periodic control task
is released for execution at any given time. In order to main-
tain the timely execution of the control tasks according to
the schedule, FRODO is also responsible for terminating
executing tasks that have yet to finish prior to reaching their
worst-case execution time (WCET). In a time-triggered sys-
tem, the schedules for tasks are statically decided. Frodo
implements the schedule by using sleep cycles on all nodes.
Jitter in sleep cycles affect the number of tasks that can be
executed to completion on all the nodes.

3. Problem Description

Consider a generic periodic task 7 with a time period 7.
The ideal release time of such a task would be a sequence
< kT >F=%° relative to some time, t4. Let s(kT) be the
start time of Ek*" instance of this task such that the start is
delayed by tj(kT') with respect to the expected start time,
ty + kT Then total jitter, tj(kT) = s(kT) — kT — t4.

Now, consider the k + 1" instance of the same task. If
the schedule is set by using sleep for T" time, then it can be
seen that the relative time difference between the two start
times, s((k + 1)T) — s(kT) > T. Total jitter will keep on
increasing in such a case. The proof is as follows:

ti((k+1)T) = s((k + 1)T) — (k+1)T — ty
2 s(kT) +T = (k+ 1T —ty
> s(kT) — kT —ty +T T
> tj(KT) M

Equation 1 implies that total jitter will keep increasing if
at each instance we set the time for next instance by using
the fixed interval T'. At any point, ¢j(kT') will represent all
the delays accumulated over time till that point and will be
equal to the absolute relative jitter until that instance.

4. Controller Design
4.1. Plant and Controller Model

The discrete-time plant model is given in equation 2. The
state variable in this equation is the total jitter at any time
sample, tj(kT). d(kT) is the finite jitter accrued during
that sleep iteration. For brevity, we will drop the term k7T
and only use k.

ik + 1) = (k) + d(k) @)

Empirically, we have observed that the disturbance dur-
ing each sleep cycle is proportional to the average CPU uti-
lization and the current priority of the process.

4.2. Feedback Controller

Feedback control has been successfully employed for a
long time in analog systems. One of the basic feedback con-
figurations is the proportional, integral and derivate (PID)
scheme. Basic principle of the PID control scheme is to
act on the control variable through a combination of pro-
portional action, integral action and the derivative action.
The proportional action is proportional to the error signal,
which is the difference between reference input and the
feedback signal. Integral action is proportional to integral
of error signal and the derivative action is proportional to
the derivative of the error signal [12]. In discrete time sys-
tems, the integral and derivative components are approx-
imated by trapezoidal summation and difference equation
respectively. Discrete-time PID controller equation is given
as:

Jj=k
(k) = %Ze]_l +e(j)+
Tq
Tt1e(h) — ek~)] ®

Where, T is the sampling time period, e is the error sig-
nal, c is the controller output, K is the proportional gain,
Ty is the derivative time constant and 7; is the integral reset
time constant.

r: reference =0

J d(k)
e(k) c(k) tj: total jitter

r(k)=0 ' 9 ti(k) e: error signal
&“ - »“ c: Controller output

H(Z)=PID controller
G(2Z)=forward gain=1

d: disturbance

Figure 3. The feedback control loop for the
sensor scheduler

Figure 3 shows the control loop for plant specified in
equation 2. We implemented the controller using a first or-
der system (PI controller) because we found that quick, sud-
den changes in current jitter values were causing instability
in the derivative term.

The state space variable as mentioned in equation 2 is
total jitter, ¢j(k). The reference or the ideal value for total
jitter is zero. Therefore, from figure 3 we can deduce that
the error signal is given by e(k) = —tj(k). The plant and
controller equations are:

tj(k+1) =tj(k) + d(k) + c(k), where 4)

j=Fk
c(k)=—-K Zzw] (5)

T

In Z-domain the equations become:

C(z) = —[K, + |TJ (%), where (6)

K;
(1—-271)
K,=K — 5 is the effective proportional gain (7)

KT
K; = T is the integral gain (8)
i

4.3. Transfer Function of the Control Loop

Figure 3 shows that C'(z) =
tion 6 we can write

—H(z)TJ(2). From equa-

K;
(==

Further, we can write the transfer function, TF(z) =
as:

] (€))

1
1+ H(z)

1
TF = 10
S o (o

For stability, poles of T'F' must lie within the unit circle
in z-domain or |z| < 1. From equation 10, the characteristic
equation for finding the poles is 1 + [K, + m] 0.

Therefore, the pole is at z = % Since K, and K;

are real, the stability criterion implies:

—14+K,+K)<(1+K,) <(1+K,+K;)
e. (1+ Kp+K;)+(1+ Kp) >0,
and (1+ Ky+K;) — (1+ K,) >0
t.e K; >0, and K, > 0 (11

Equation 11 implies that the effective proportional constant
can be zero. But the integral constant should be chosen to
be a positive real number. To rephrase, we need to main-
tain a history of previous values of total jitter to be able to
compensate for current jitter in a stable fashion.

Algorithm 2 Compensated Sleep Implementation

Input: Expected Sleep period T'. Maximum number of It-
erations C'ount
1: Initialize T1 <« CurrentTime(),lterm <+ 0
{Integral Term}, ¢(1) < 0,k + 1,tj(1) + 0
2: repeat
3: sleep(T + c(k))
4 T2 <+ CurrentTime()
55 dk)«<T2-T1-T
6 tj(k+1) « tj(k) + d(k)
7. Iterm < Iterm + (tj(k + 1) +tj(k))/2
8 clk+1)«
9: k+—k+1
10: until £ = Count

—(min(T, K; * Iterm+ K xtj(k+1)))

Algorithm 2 is the modified algorithm for implementing
sleep with feedback controller. The maximum correction
that can be applied is equal to the minimum time period 7.
There can be two approaches to using this algorithm:

A1 Pass a value of period A to the subroutine i.e. 7' = A.
Set C'ount to the total number of periods. In this ap-
proach, a task scheduled to be executed will be re-
leased just after step 3 of the algorithm i.e. sleep step.

A2 TImplement a period of A as a number of small periods
d < A. Pass ¢ to the algorithm. Set Count = A/J.
Task will be released after step 10 i.e. when the sleep
algorithm returns in this approach.

Approach A2 is preferable when we want to use the con-
trol algorithm as just a single instance high resolution sleep

timer. Approach Al is preferable when there are a number
of consecutive sleeps to be implemented. One can also im-
plement approach Al by using approach A2 in a loop and
preserving the state variables Iterm and tj between subse-
quent invocations of approach A2. We used approach Al in
experiments described in section 5.

In case of multiple schedulers, we can use independent
controllers. Independence here implies the control loop in-
dependence. We will show some results in this regard in
Section 5.3.

4.4. Steady State Error Analysis

For steady state error, we assume that the system is sta-
ble and then use the final value theorem. The final value
theorem states that if the system error is given by e(k), with
E(z) = Zle(k)], then the steady state value of the error,
€ss, 1S:

ess = lim e(k) = lim[(1 — 27 1) E(2)] (12)
k—o0 z—1

Since E(z) = —T'J(z) (see figure 3), from equation 10
we can write F(z) = —T'F(z)D(z). Hence, from equation
12 we can conclude that the steady state error is given by

1— —1
ess = — lim (:)DI((Z)
U1+ [Kp + g2

eos = — lim| (1—2712D(z)
88 z—1 (1+Kp>(1—2_1)+KZ

], or

] a3

Note: Arguably, we can achieve jitter control by setting
the next sleep duration as the difference between the next
expected release time and the current time. However, this
will be same as setting the sleep duration based on the cur-
rent jitter i.e. the last expected release time and the current
time. This scheme is equivalent to a proportional control. It
is a well known fact that proportional control cannot achieve
anon-zero steady state error. Therefore, if we do not use the
integral controller we will never be able to achieve a steady-
state of zero jitter.

For a unit-step disturbance, d(kT) = 1, we know
D(Z) = Z[d(kT)] = —=. Plugging this value into

equation 13, we see that the steady state error for a unit-
step disturbance will be 0 only if K; # 0.

5. Experiments on Linux and Windows OS

In this section, we will present results obtained by imple-
menting the sensor scheduler with feedback loop i.e. algo-
rithm 2 for controlling the total jitter. All these experiments
use a value of K}, = 1.0 and K; = 1.2. We chose these
values empirically.

Total Jitter after running for over 9 hours
T T

—Total Jitter

4l il
RMS Value after steady state=0.2243

)
L

)
I

Total Jitter in Seconds
o
L

A
I

p 1 I I I I I
ol 05 1 15 2 25 3 35
Time elapsed in seconds x10*

Figure 4. Total Jitter accumulated in last 9
hours.

These experiments were carried out on Linux, since it
is the operating system of choice in our computing cluster.
Figure 4 shows the total jitter accumulated by the sensor
scheduler over a period of 9 hours. As can be seen in the
figure, the root mean square (RMS) value of the jitter was
0.2243, only a 4.4% of the sampling time period of 5 sec-
onds.

Next, we present results from specific experiments that
we conducted for judging the effects of various parameters
such as CPU load, the priority under which the framework
is running and controlling the jitter of more than one peri-
odic scheduler. Lastly, we show that the feedback controller
we have presented in this paper works on other commercial
operating systems as well, in this case, Windows XP.

5.1. Experimentl: Step Response: Varying
CPU Load in Linux

Plot of Total Jitter with varying CPU Load. The controller was switched on at 155th second
T T T T T T T

— Total Jitter in seconds
---CPU Utilization, Scale 1:50

RMS of Total Jitter after reaching steady state
around 225th second=0.209041

-4 “ ‘RMS of Total Jitter Before Controller=3.946668 —

6 . . | i

Figure 5. Plot of Total Jitter with varying CPU
Load. The controller was switched on at
155th second (dotted line).

Emulating a step response is difficult in an actual oper-
ating system since the disturbance depends on a number of

Total jitter plotted over time for three different priorities.
Note priority 0 is the highest priority among the three
15 r

RMS of Total Jitter for Pribrity 19=0.732845 —Priority 0
: RMS of Total Jitter for Priority 10=0.429256 * Priority 10
- RMS of Total Jitter for Priority 0=0.213183 Priority 19

Total Jitter in seconds

Figure 6. Total jitter plotted over time for three
different priorities. Note priority 0 is the high-
est priority among the three.

parameters such as the time taken by sensors for execution
and the scheduling delay, which itself is dependent on the
CPU load. The closest we could hope to achieve a step dis-
turbance was to load the CPU in steps to the 100% capacity
manually. For this purpose, we used a number of prime
number generators freely available over the internet to load
the CPU. Furthermore, to emulate the step response, we ini-
tially started the framework without the controller, and then
started the controller at a predefined time, in this case the
21%¢ iteration of the sensor scheduler.

Figure 5 shows the result of this experiment. Notice
that the total jitter is initially rising, and then after the con-
troller is switched on, exhibits a traditional first order step
response. In steady state, the RMS value of total jitter was
0.209. This shows that even when the system was heavily
loaded, the total jitter was bounded.

5.2. Experiment2: Effect of Current Prior-
ity on Total Jitter

The performance of controller also depends on its oper-
ating system priority. All processes executing under Linux
have a concept of niceness number. This number can be
altered by nice and renice commands [14]. A niceness of
-20 is the highest priority, while the priority of +19 is the
lowest. By default, unless specifically altered, all processes
start with a niceness of 0.

Figure 6 plots the total jitter accumulated when sched-
uler and controller were executed thrice, with three differ-
ent priorities 0, 10, 19. As expected, even though the con-
trol loop stabilized in all three cases, the RMS value of total
jitter increased as we lowered the priority. We can attribute
this observation to the fact that a lower priority process will
have to wait longer for the CPU time, which will increase
the disturbance.

5.3. Experiment3: Controlling Jitter of
Multiple Periodic Processes

In this experiment, we invoked eight different instances
of the sensor scheduler to show that we can compensate
the jitter of different applications with different controllers.
Each scheduler had its own feedback controller built-in. All
interactions between any pair of periodic applications can
be attributed to their own random disturbance pattern. Thus,
allowing the control loop design to work as it is.

Table 1. Mean, Variance and Root Mean
Square values of Total Jitter in seconds for
8 processes referred in figure 7.

Process | Mean | Variance | RMS
1 0.0002 0.0001 0.0116
2 0.0002 0.0001 0.0118
3 0.0002 0.0001 0.0113
4 0.0002 0.0002 0.0127
5 0.0002 0.0002 0.0134
6 0.0003 0.0003 0.0159
7 0.0002 0.0002 0.0155
8 0.0002 0.0002 0.0143

Figure 7 shows the total jitter variation for each of the 8
processes. All processes have a period of 5 seconds. Table
1 provides the mean, variance and RMS value of all the pro-
cesses. We can notice that all instances have similar mean
and RMS value. The implication of this result is the con-
clusion that different controllers running together did not
introduce any undue behavior in the control loop that would
degrade the total jitter value.

5.4. Experiment4: Controlling Jitter of a
Periodic Application in Windows XP

This experiment highlights the ability of the controller
algorithm to work on an operating system other than Linux,
in this case Windows XP. Since the sensors we had were
specific to Linux, we created pseudo sensors that slept for a
random period of time, uniformly distributed between [0, 1]
seconds. This helped us to emulate the part of disturbance
due to time required for sensor execution. Figure 8 show the
result under 100% CPU utilization and regular CPU load
(around 10-20%). The 100% load was emulated by using
a prime number generator. The system was initially started
without the controller to check the transient response. The
controller was switched on 95 seconds after the scheduler
was started. It can be seen that the response is similar for
both load conditions, however, the steady state RMS value
of total jitter is more when the system was under a heavier
load.

Process 1 Process 2

Process 3 Process 4

0.05 0.05 0.05 0.05

s 2 8 H

c £ £ H

o -] o

b1 =1 e @

D o v

“ @ bl c

; 3

5 5 5 =

s = = E |

e s s e |

= =4 F .

g0l PR 005 s R 0.05 RN 005t i
0 200 400 200 400 200 400 200 400

Time in Seconds. Time in Seconds Time in Seconds Time in Seconds
Process 5 Process 6 Process 7 Process 8
0.05 - -

Total Jitter in seconds

Total Jitter in seconds

s
=
o

e
=
o

0 200 400 et 200 400

Time in Seconds Time in Seconds

200 400
Time in Seconds

0 200 400
Time in Seconds

Figure 7. Plot of Total Jitter for 8 different periodic processes with the same time period of 5 seconds.
Each process is being controlled by its own controller

Plot of Total Jitter with 100% and regular CPU load on a windows machine.
The contraller was switched on at 95th second

Hi T T T T T T T

4 — Total Jitter with regular load
4t »w/ 5 ~—-Total Jitter with 100 % load -

Total Jitter in seconds

2k E Steady state RMS for full load=0.305407

-4 H Steady state RMS for regular load=0.239436

s

r L HI I I i I | L I
0 50 100 150 200 250 300 350 400 450 500
Time in Seconds. Time sample=5 seconds.

Figure 8. Plot of Total Jitter with 100% and
regular CPU load on a windows machine. The
controller was switched on at 95th second
(dotted line).

6. Related Research

Feedback control based approaches are a common tool
for solving a number of engineering problems. A re-
cent roadmap provided by European Network of Excellence
ARTIST2 on Embedded System Design focuses on achiev-
ing performance and adaptivity in real-time computing sys-
tems by using control theory, see [3] and references therein.
The roadmap identifies six different research areas includ-
ing CPU resource control and feedback-based scheduling.
Our work in this paper relates closely to feedback schedul-
ing. A state-of-the-art survey is given in [2].

One of the early results in the case for feedback con-
trol based scheduling algorithms was presented in [15] by
Stankovic et al. In their approach, they used a PID con-
troller to regulate deadline-miss ratio for a set of soft real-
time tasks, by using CPU utilization as a control vari-
able. They provided an extended version of their work in
[9]. In that, they described their feedback control real-time
scheduling framework for adaptive real-time systems and
provided general guidelines for designing feedback loop for
different quality of service (QoS) parameters. Implementa-
tion of this framework requires kernel level modification to
an operating system. However, we require a user space so-
lution to the problem to maintain flexibility of choosing any
general purpose operating system.

In [13], Sha et al. presented a queuing model based
feedback controller to keep the performance of a network
server to desired levels. In the same spirit, the authors of
[1] provided various models for a web server and designed
feedback controller for QoS adaptation. Feedback control
theory has also been applied in controlling CPU utilization
in real-time systems [19]. Steere et al. introduced a new
scheduling scheme based on periodicity of tasks in [16].
Their scheme was to allocate each thread a percentage of
CPU cycles over a period, and then use a feedback loop to
control both proportion and period.

These approaches depend on the ability to implement an
algorithm at the kernel level of the operating system. Our
approach presented in this paper uses a generic user space

approach that can be implemented on different operating
systems readily.

7. Conclusions and Future Research

In this paper, we presented a feedback controller to com-
pensate for jitter in periodic tasks. From the experiments
presented in the paper, we can suggest the generality of the
control algorithm. By applying it to either, the periodic ap-
plication or the scheduler responsible for releasing the ap-
plication periodically, we can obtain a stable steady state
value for total jitter even from a general purpose operating
system. During all the experiments we noticed that the over-
head induced due to the controller was very small. We have
started using this controller in the Fermi Lab LQCD clus-
ter reliability subsystem and have seen considerable jitter
improvement.

Our approach does not buffer a ready job and does not
hold the CPU resources when the job is completed. Further-
more, its scheduling overhead is more than the simple EDF
algorithm as it maintains a history and actively compensates
for jitter. We conclude that it satisfies the guidelines set by
Baruah et al. in [4] for jitter control algorithms.

In the future, we will extend this work so that we can
use a single controller for controlling jitter in multiple peri-
odic applications. Moreover, we are working on extending
this work to include model predictive controller. Such con-
trollers will prove effective if we do not have a linear plant
model.

8. Acknowledgments

This work was supported in part by DoE SciDAC pro-
gram under the contract No. DOE DE-FC02-06 ER41442.
Sherif Abdelwahed also acknowledges support from the
NSF SOD Program, contact number CNS-0613971. Lastly,
we will also like to mention our gratitude to Dr Aniruddha
Gokhale of Vanderbilt University for his advise and help.

References

[1] T. Abdelzaher, K. G. Shin, and N. Bhatti. Performance guar-
antees for web server end-systems: A control-theoretical ap-
proach. IEEE Trans. Parallel Distrib. Syst., 13(1):80-96,

January 2002.
[2] K.-E. Arzén, B. Bernhardsson, J. Eker, A. Cervin, K. Nils-

son, P. Persson, and L. Sha. Integrated control and schedul-
ing. Technical Report ISRN LUTFD2/TFRT--7586--SE,
Department of Automatic Control, Lund Institute of Tech-

nology, Sweden, aug 1999.
[3] K.-E. Arzén, A. Robertsson, D. Henriksson, M. Johansson,

H. Hjalmarsson, and K. H. Johansson. Conclusions of the
artist2 roadmap on control of computing systems. SIGBED
Rev., 3(3):11-20, 2006.

[4] S.Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari. Schedul-
ing periodic task systems to minimize output jitter. In RTCSA
"99: Proceedings of the Sixth International Conference on
Real-Time Computing Systems and Applications, page 62,

Washington, DC, USA, 1999. IEEE Computer Society.
G. C. Buttazzo. Hard Real-Time Computing Systems: Pre-

dictable Scheduling Algorithms and Applications. Kluwer

Academic Publishers, Norwell, MA, USA, 2005.
[6] C.G. Cassandras and S. Lafortune. Introduction to Discrete

Event Systems. Kluwer Academic Publishers, Norwell, MA,

USA, 1999.
[7] A.Dubey, S. Nordstrom, T. Keskinpala, S. Neema, T. Bapty,

and G. Karsai. Towards a verifiable real-time, autonomic,
fault mitigation framework for large scale real-time systems.
Innovations in Systems and Software Engineering, 3:33-52,

March 2007.
[8] H. Kopetz, M. Holzmann, and W. Elmenreich. A univer-

sal smart transducer interface: Ttp/a. International Journal
of Computer System, Science, and Engineering, 16(2), Mar.

2001.
[9] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao. Feedback

control real-time scheduling: Framework, modeling, and al-
gorithms*. Real-Time Systems, 23(1-2):85-126, 2002.

[10] P. Marti, J. M. Fuertes, K. Ramamritham, and G. Fohler.
Jitter compensation for real-time control systems. In RTSS
'01: Proceedings of the 22nd IEEE Real-Time Systems Sym-
posium (RTSS’01), page 39, Washington, DC, USA, 2001.
IEEE Computer Society.

[11] K. Ogata. Discrete-time control systems (2nd ed.). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1995.
[12] K. Ogata. Modern control engineering (3rd ed.). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1997.
[13] L. Sha, X. Liu, Y. Lu, and T. Abdelzaher. Queueing model

based network server performance control. In RTSS ’02:
Proceedings of the 23rd IEEE Real-Time Systems Sympo-
sium (RTSS’02), pages 81-90, Washington, DC, USA, 2002.

IEEE Computer Society.
[14] A. Silberschatz and P. B. Galvin. Operating System Con-

cepts. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1997.
[15] J. A. Stankovic, C. Lu, and S. H. Son. The case for feed-

back control real-time scheduling. Technical report, Char-

lottesville, VA, USA, 1998.
[16] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,

and J. Walpole. A feedback-driven proportion allocator for
real-rate scheduling. In OSDI ’99: Proceedings of the third
symposium on Operating systems design and implementa-
tion, pages 145-158, Berkeley, CA, USA, 1999. USENIX

Association.
[17] J. Sun and J. Liu. Synchronization protocols in distributed

real-time systems. Distributed Computing Systems, Interna-

tional Conference on, 0:38, 1996.
[18] R. Thibodeaux. The specification and implementation of a

model of computation. Master’s thesis, Vanderbilt Univer-

sity, February 2008.
[19] X. Wang, C. Lu, and X. Koutsoukos. Feedback utiliza-

tion control in distributed real-time systems with end-to-end
tasks. IEEE Trans. Parallel Distrib. Syst., 16(6):550-561,
2005.

[5

—

