
Towards Fault-Adaptive Control of

Complex Dynamic Systems
Gabor Karsai, Gautam Biswas, Sherif Abdelwahed, Sriram Narasimhan, Tal Pasternak,

and Tivadar Szemethy

Institute for Software Integrated Systems

Vanderbilt University

PO Box 1829 Station B

Nashville, TN 37235,USA

{gabor,biswas,nsriram,tal.pasternak,tivadar}@vuse.vanderbilt.edu

Gabor Peceli, Gyula Simon, and Tamas Kovacshazy

Department of Measurement and Information Systems

Technical University of Budapest, H-1521 Budapest, Hungary

{simon,khazy,peceli}@mit.bme.hu

 1

mailto:gabor@vuse.vanderbilt.edu

Editors’ Summary

An important problem in the control of complex systems, and one that inherently exhibits hybrid

dynamics, is fault management and recovery. If a component fails in a system, the continuous behavior

will suddenly change. In an autonomous system, the controller must be adaptive to ensure continued

useful operation when faults occur.

Fault-adaptive control encompasses a number of hard problems: the detection of a fault, its identification

and assessment, the selection of a new control algorithm, the reconfiguration of the plant to “disconnect”

the failed component, and the launching of the new control algorithm. The authors propose a model-based

approach for designing control systems that are capable of accommodating faults. This chapter focuses on

one aspect of this approach; however, an overview of the fault-adaptive control architecture is also given.

The authors model a plant as a hybrid bond graph. Bond graphs are energy-based models, and they are

extended for hybrid dynamics by representing mode transitions as controlled junctions. A hybrid observer

has been developed that uses this model to track the system behavior within and across modes.

Two complementary approaches to fault detection and isolation are outlined, one based on hybrid models,

the other on discrete-event models. The former makes use of the hybrid observer, qualitative reasoning

techniques, and real-time parameter estimation. The discrete approach uses failure propagation graphs.

Controller reconfiguration relies on a previously developed controller library—an appropriate controller is

selected based on current conditions. The authors discuss ideas for mitigating the large transients that can

arise during controller switching. A two-tank system is used as an example throughout the chapter.

 2

1. Introduction

Today’s complex systems, like high-performance aircraft require sophisticated control techniques to
support all aspects of operation: from flight controls through mission management to environmental
controls, just to give a few examples. All this, of course, is done using a multitude of computer systems,
all of which rely heavily on software technology. Software systems now play a dual role. Not only do
they implement system functionalities, but they are also becoming the primary vehicle for system
integration. One of the main goals of software is to implement control functions: open- and closed-loop
control, from low-level regulation to high-level supervisory control. However, software enables new
capabilities in control. It offers a framework that provides great flexibility for developing novel
algorithms that significantly improve the performance of the system. Furthermore, brand new
functionalities can be created that could not be implemented in any other way.
Any real-life system is prone to physical (hardware) and logical (software) failures. These systems also
require a high degree of reliability and safety, therefore, the effects of these failures must be mitigated and
control must be maintained under all fault scenarios. If systems are designed with redundancy, control
decisions have to be made about when and how backup systems should be activated, and how exactly the
reconfiguration should be executed. For instance, aircraft often have redundant actuators for control
surfaces. If one actuator fails then the second actuator can still drive the control surface, although larger
forces will be required. In order to manage the fault scenario described, we need to make a series of
decisions and take control actions, such as (i) the fault has to be detected, (ii) the fault source —the
actuator— has to be identified and the magnitude of failure estimated (e.g., is it a partial degradation or a
total failure), (iii) depending on the nature of failure, a new control algorithm has to be selected that can
compensate for the partial or complete loss of the actuator, (iv) the plant has to be reconfigured so that the
faulty actuator can be moved “off-line”, and (v) the new control algorithm has to be brought up with the
good actuator in a way that current operation is maintained. All these decisions must be made by a control
system that incorporates not only simple regulatory loops and the supervisory control logic, but also a set
of components that detect, isolate, and manage faults, in coordination with the control functions.
Traditional control theory gives very little guidance to the implementer of these systems. Mathematical
models and formal analysis techniques have been developed for specific fault scenarios, but there is no
general theory of control system design and analysis that encompasses all possible scenarios. Solutions
applied to existing systems tend to take a pragmatic approach. Potential fault situations are pre-
enumerated, and appropriate fault accommodation actions are built into the supervisory controller for
each case. The approach works well for these cases, but may break down in unforeseen situations.
Furthermore, most fault-adaptive control techniques are geared towards handling broken components. In
many realistic situations, the system suffers only partial degradation and failures. If we can build on line
capabilities to detect and estimate these partial failures, more sophisticated control algorithms can be
designed to keep the system operational under these conditions. Early references for these ideas can be
found in [31,32,33].
For the DARPA SEC project, we are developing a systematic model-based approach to the design and
implementation of control systems that can accommodate faults. We call this approach Fault-Adaptive
Control Technology (FACT, for short). Developing fault-adaptive control requires us to solve a number
of technical problems beyond the capabilities of traditional control approaches. First, faults must be
detected while the system is in operation. System dynamics is complex, and sensors can be noisy,
therefore, differentiating degraded faulty behavior from nominal behavior of the plant quickly is a non-
trivial problem. Fault detection must be followed by rapid fault isolation and estimation of the fault
magnitude. Then a decision has to be made online on how to reconfigure the control system to
accommodate the fault. Many alternatives may have to be evaluated, and metrics will have to be defined
that either (1) select an optimal configuration, if it can be computed in a feasible manner, or (2) the best
possible reconfiguration is derived under given time and resource constraints. Finally, the reconfiguration
must be executed, which means that set points and control parameters may have to be changed, or a

 3

different controller may have to be selected to continue system operation. The challenge is bring together
methodologies from fault diagnostics, control theory, signal processing, software engineering and systems
engineering to build the integrated online FACT system.
In this paper, our focus is on the model-based fault isolation schemes. Section 2 discusses a reference-
architecture for FACT systems. Section 3 presents our scheme for modeling hybrid systems, i.e.,
continuous physical systems with discrete supervisory controllers. Section 4 describes the hybrid observer
scheme for tracking nominal system behavior. Section 5 discusses the fault isolation methodologies.
Preliminary results that demonstrate the effectiveness of our approach are presented. Section 6 briefly
discusses fault-adaptive control and controller reconfiguration. The summary and conclusions appear in
Section 7 of the paper. We illustrate the basic modeling concepts and our diagnosis algorithms using a
two-tank system as the plant, with a supervisory controller. This system, while admittedly simple, has a
relationship to real-life systems, such as aircraft fuel systems, which have a similar structure. Therefore
this work may easily scale up to fault diagnosis and control of such real life systems.

2. FACT Architecture

Our overall approach, illustrated in Fig. 1, is centered on model-based approaches for fault detection, fault
isolation and estimation, and controller selection and reconfiguration for hybrid systems. The plant is
“connected” to the reconfigurable monitoring and control system block. We assume the systems that we
deal with combine continuous dynamics of the plant and PID controllers with supervisory control
implemented as computer programs. Hybrid models [2], derived from hybrid bond graphs [3]
systematically integrate continuous and discrete system dynamics and discrete events to establish the core
of the modeling framework. The supervisory controller, modeled as a generalized finite state automaton,
generates the discrete events that cause reconfigurations in the continuous energy-based bond graph
models of the plant. Fault detection involves comparison of the expected behavior of the system generated
from the hybrid models with actual system behavior, to determine when discrepancies occur. This
requires the design and implementation of hybrid observers that estimate the continuous dynamic states of
the system and detect mode transitions in the system operation. Sophisticated signal analysis and filtering
methods linked to the hybrid observers are used for detecting deviations from nominal behavior and
triggering the fault isolation schemes. Details of the signal analysis schemes are discussed elsewhere
[14].
Our diagnostic schemes integrate the use of failure-propagation graph based techniques for discrete-event
diagnosis [4] and combined qualitative reasoning and quantitative parameter estimation methods for
parameterized fault isolation [5] of degraded components (sensors, actuators, and plant components). The
dynamic system state accumulated from the observer (discrete system mode plus continuous state vector)
and fault isolation units (status of faulty and degraded sensors, actuators, and plant components) define
the active system state model. The tracking, fault detection, and fault isolation mechanisms, illustrated on
the left of Fig. 1, together constitute a bottom-up computational approach for estimating the dynamic
system state (nominal or faulty) by monitoring plant and controller variables.
The reconfiguration controller uses this information to select from the controller library the controller that
is most effective in maintaining desired system operation and performance. This requires the definition of
metrics and decision criteria that govern the controller selection process. The selection and
reconfiguration mechanisms operate in a top-down manner, using the dynamic state information to effect
changes in supervisory control mechanisms, such as selection (not synthesis) of feedback control
mechanisms, and re-tuning of low level regulators, such as PID or model-based controllers. The overall
computational architecture combines the bottom-up and top-down computational schemes in a seamless
manner, via the shared active model.

 4

Figure 1: Fault Adaptive Control Architecture
The implementation and support for the online FACT architecture is based on our model-integrated
computing paradigm [1]. To achieve this, we have created (1) a graphical modeling environment that
facilitates building hybrid models of the plant and controllers, and (2) a set of run-time components that
can execute the code synthesized from the models. This code, when integrated with the generic FACT
run-time components, instantiate the architecture for a specific application domain.

3. Modeling Hybrid Systems and Controllers

We assume the plant is made up of components, such as tanks and pipes that exhibit continuous
behaviors. Other components like valves and switches can be turned off and on at rates much faster than
the normal dynamics of the plant. There are also components, such as pumps and motors that exhibit
continuous behaviors, interspersed with more discrete on/off transitions. Plants that exhibit these mixed
continuous/discrete behaviors are modeled as hybrid systems. Some of the discrete changes can be
attributed to changes in system configuration imposed by the supervisory controller, and other changes
can be attributed to abstracting complex non-linear system behaviors into piecewise linear behaviors [28].
In this section, we first describe our hybrid bond graph modeling approach, and present the scheme for
modeling the supervisory controller.

3.1 Hybrid Bond Graphs

We use bond graphs as the modeling paradigm in the continuous domain [12]. Bond graphs represent
energy-based models of the system in terms of the effort and flow variables of the system. Bonds specify
interconnections between elements that exchange energy, which is given by the rate of flow of energy,
power = effort x flow. Bond graphs represent a generic modeling language that can be applied to a
multitude of physical systems, such as electrical, fluid, mechanical, and thermal systems. There exist
standard techniques to build bond graph models of systems based on physical principles. State equations
can be systematically derived from the bond graph representation of the system. We can systematically
derive temporal causal graphs, the models for qualitative diagnostic analysis, from bond graphs [15].
We use an enhanced form of bond graphs, called hybrid bond graphs (HBG) [3] that include controlled
junctions to facilitate the modeling of discrete mode transitions in system behavior. Consider the example
of a two-tank system shown in Fig. 2. The system consists of tanks, flow sources (simplified models of
pumps), connecting pipes, and outlet pipes. Some of the pipes contain valves that can be opened and

 5

closed by the supervisory controller. The flow source can also be turned on and off by the controller. Two
types of discrete events (or “jumps”) can occur in the system:

1. Controlled event: these are external controller actions that cause changes in the configuration of
the system. Opening or closing of the valve on the flow source, Sf1, pipe is determined by
supervisory controller signals. This represents a controlled event.

2. Autonomous events: these are changes that occur in the configuration of the system when its
internal variables go above and below pre-specified values. When the level of fluid in tank 1
reaches the height of pipe R2, fluid flow commences through pipe R2. This represents an
autonomous event, since the presence or absence of flow is determined by internal variables
(heights of tanks 1 and 2), and not by the controller.

T a n k 2

C 2
R 3

T a n k 1
C 1

R 2R 1

S f 1

- V a lv e

C – T a n k C a p a c it y

R – P ip e R e s is ta n c e

S f – F lo w S o u r c e

S f

C 1 C 2

R 1 R 2

0 1 1 0 1 2

R 12

1 2 5 7

3

4

6 8

9

ON OFF
Source OFF

Source ON

FSM for junction 1 1

ON OFF

FSM for junction 1 2

e > 0.5

e <= 0.5

S f

C 1 C 2

R 1 R 2

0 1 1 0 1 2

R 12

1 2 5 7

3

4

6 8

9

S f

C 1 C 2

R 1 R 2

0 1 1 0 1 2

R 12

1 2 5 7

3

4

6 8

9

ON OFF
Source OFF

Source ON

FSM for junction 1 1

ON OFF ONON OFF OFF
Source OFF

Source ON

FSM for junction 1 1

ON OFF

FSM for junction 1 2

e > 0.5

e <= 0.5

ON OFF ONON OFF OFF

FSM for junction 1 2

e > 0.5

e <= 0.5

Figure 2: Two-tank system and its hybrid bond graph model

The hybrid bond graph model of the two-tank system of Fig. 2 is illustrated on the bottom part of the
figure. The two tanks are modeled as capacitors. The pipes in the system are modeled as simple
resistances. Fluid flow through the pipes are assumed to be at low velocities, therefore, the inertia of the
fluid is ignored. The inlet pipe is modeled as an idealized flow source, Sf1, with constant inflow rate. The
0- and 1- junctions are analogous to parallel and series junctions in electrical circuits. Fluid flow behavior
is defined in terms of the effort variable, pressure, and the flow variable, fluid flow rate. The switching 0-
and 1- junctions represent idealized discrete switching element that can turn the corresponding energy
connection on and off. The physical on/off state for each of these controlled junctions is determined by
external control signals and continuous variables crossing pre-specified thresholds. These can be specified
as finite state sequential automata. The sequential automata that control the on/off states for all the
controlled junctions are shown in Fig. 2. There are 4 possible modes of continuous operation of the two-
tank system. The valve connecting the source to tank 1 may be ON or OFF. This would correspond to the
switching junction 11 in the HBG. The flow between the tanks is a function of the level of fluid in the
tanks. This is captured by switching junction 12. Since each junction can be on or off, the system can have
four distinct modes of operation.

 6

3.2 Controller Models
In the FACT architecture, the reconfigurable monitoring and control component represents all the
traditional monitoring and control functions in an application. We envision that this component is
implemented mainly in software, although some components might utilize dedicated hardware
components. This component is also “reconfigurable”: its sub-components, their parameters, and their
interconnection can be changed during system operation.
To represent this reconfigurable monitoring and control component, we have developed a modeling
language, called Controller Modeling Language (CML). The approach followed here is that of Model-
Integrated Computing [1]. CML represents controllers on two levels:

• On the regulatory level, it represents controllers using computational blocks that form a signal
flow diagram. The signal flow diagram has process-network semantics: each block is a process
that is scheduled for execution upon arrival of data on its inputs. Then the process performs some
calculations and may generate output data that is sent to downstream blocks. After finishing
processing, the process terminates and waits for the next triggering data.

• On the supervisory level, it represents controllers using a hierarchical finite state machine
approach, in the style of Statecharts [22]. State machines are triggered by events, may perform
state transitions triggered by events or timers, and generate other events and actions.

The two levels are in a master-slave relationship. CML can also represent reconfigurable controllers:
actions executed by the supervisory controller may result in changes in the regulatory controllers.
Furthermore, CML has provisions for interfacing the supervisory control logic with the output of the fault
diagnostics system.

REGULATORY
CONTROLLERS

DISCRETE SENSOR VALUES

SAMPLED SENSOR VALUES

DISCRETE ACTUATOR SIGNALS

SAMPLED ACTUATOR SIGNALS

SUPERVISORY
CONTROLLER

sampled data values,
events

data values for parameters,
discrete control signals, actions

OPERATOR
GUI

(OPTIONAL)
RECONFIG.
MANAGER

Reconfig.
events

Figure 3: Relationship between the supervisory and regulatory controllers
The relationship between the two controller layers: supervisory and regulatory, is shown in Fig. 3. The
regulatory layer operates in a discrete-time fashion, i.e., it receives discrete (sporadic) and sampled data
from the plant, and it generates discrete (sporadic) and sampled data for the actuators. On the other hand,
the supervisory controller operates in a discrete-event mode, i.e., it has no explicit notion of time. It
receives sampled data values and discrete events generated in the regulatory layer, and sends new data
values for parameters, and events in the form of discrete control signals to the regulatory layer. The
supervisory controller can also trigger the execution of reconfiguration actions. As mentioned above,
during reconfiguration the design procedures associated with the regulatory blocks will be triggered to
recalculate parameter values.

4. The Hybrid Observer

The hybrid observer tracks the system behavior across different modes of operation. This involves two
steps:

• Tracking continuous system behavior in individual modes of operation, and

 7

• Identifying and executing all mode changes including controlled and autonomous jumps.
Transitioning from one mode to the other involves: (i) switching the state equation model that
defines continuous behavior in a mode, and (ii) applying the reset function to derive the initial
state in the new mode.

The observer uses the state equations models —derived by symbolic analysis from the hybrid bond graph
model— for tracking the continuous behavior in a particular mode of operation. The analysis also derives
the controlled and autonomous events that define mode transition conditions as the system behavior
evolves in time. Solving for the mode transitions requires access to controller signals for controlled
jumps, and predictions of state variable values for autonomous jumps. We rewrite all autonomous jump
conditions in terms of the state variables of the system. The state variable estimates are obtained from the
hybrid observer, and these values are used to determine if autonomous jumps have occurred. If a mode
change occurs in the system, the observer switches the tracking model (to a different set of state space
equations), initializes the state variables in the new mode (using a “reset” function, again derived from the
hybrid bond graph model), and continues to track system behavior with the new model [13]. Fig. 4
illustrates our approach to building a hybrid observer.

 Hybrid
Bond-graph

Model

Generate Current
State-Space Model

(A,B,C,D)

Recalculate
Kalman Filter

Kalman
Filter

uk,yk Xk

Calculate transition
conditions, next

states

Autonomous
Mode

Detector

Controlled
Switches

Figure 4: The Hybrid Observer Scheme

Since the input and output of the system may be affected by processor disturbances and measurement
noise, we use a Kalman filter [23] to track system behavior in a single mode of operation. For a given
state space model the Kalman gain matrix can be computed from the covariance matrices, as usual.

Fig. 5 illustrates a sample run of our hybrid observer as it tracks the pressure values at the bottom of the
tanks in the two-tank system. (The horizontal axis shows time in seconds, and the vertical axis shows
pressure values.) The crosses show the ideal behavior, the circles are the noisy measurement values
obtained by adding noise to the ideal values, and the continuous black line represents the hybrid
observer's estimate. The system goes through a set of modes, starting from the initial mode when both
valves are closed, to the second mode, where the source valve is open, to the third mode, when source
valve and connecting valve are open, and the last mode, where the source valve is closed. This sequence
is repeated many times but the figure shows tracking for one cycle only.

 8

Figure 5: Sample run of the Hybrid Observer

5. Approaches to Fault Detection and Isolation

A primary component of our system is the model-based fault detection and isolation (FDI) subsystem that
can deal with sensor, actuator, and parametric faults in the system. Traditional FDI methods [6,24,25,26]
are primarily directed toward additive faults that include failures in sensors and actuators. Isolation of
parametric component faults, which are multiplicative, requires the use of sophisticated parameter
estimation techniques [26]. Numerical techniques for state and parameter estimation often face
convergence and accuracy problems when dealing with high-order models that may contain non-
linearities [7,26]. Parameter estimation techniques are often biased by measurement noise, and may need
specialized approaches to compensate for these situations [26,29]. Accurate parameter estimation also
requires persistent excitation of the input, and this may not always be true during system operation.
Furthermore, these schemes are applicable in continuous real-valued spaces, and they do not easily extend
to situations where mode transitions cause discontinuous changes in the system models and system
variables. Discrete-event based diagnosis techniques have been proposed, but they require the pre-
compiling of the fault models and fault trajectories into Finite State Machines (FSM-s) for tracking
nominal and faulty system behavior [8,9]. In the section below we will show how an alternative
representation form can be used which does not require the explicit construction of FSM-s.
When one deals with hybrid systems that include discrete transitions, extending these continuous
methodologies becomes intractable, because the residual transformation functions have to be pre-
computed for all modes of operation. Further, when faults occur, predicting the true system mode in itself
becomes a challenging task. The fault isolation problem becomes even more complex, when the fault
occurs in an earlier mode, but is detected in a later mode of operation. The predicted mode sequence may
no longer be the true mode sequence the system goes through after the occurrence of the fault. Additional
methods have to be introduced for detecting mode transitions, switching the system model when such
transitions occur, and correctly initializing the system state, so that the fault observers perform correctly.

 9

Typically mode changes introduce discrete effects that cause transients, and it may be difficult to separate
the fault transients from the transients caused by mode changes. Therefore, extending continuous FDI
schemes to hybrid systems is a non-trivial task.
We use two approaches to the FDI problem that generalize traditional approaches: (i) the use of a robust
qualitative fault isolation scheme based on tracking fault transients combined with a parameter estimation
scheme for refining fault hypotheses, and (ii) fault diagnostics based on discrete event models represented
as fault propagation graphs. We discuss each of these methodologies in greater detail next.

5.1 Diagnosis using Hybrid Models
Our diagnosis methodology consists of three mains steps, (i) using a hybrid observer to track system
behavior, (ii) detecting fault occurrences, and (iii) isolating faults in the system. The hybrid observer,
discussed in the last section, uses the models of the system to track system behavior. The fault detection
schemes that compare the measurements made on the system and the predictions from the observer to
look for significant deviations in the observed signals are discussed elsewhere [14]. Our fault detectors for
continuous systems have to be modified to signal faults only when abrupt changes cannot be attributed to
mode changes [11,13].
The overall scheme for hybrid diagnosis is illustrated in Fig. 6. We overcome limitations of quantitative
schemes by combining robust qualitative reasoning mechanisms with quantitative parameter estimation
schemes for parametric fault isolation [5]. Hybrid bond graphs models discussed in Section 3 form the
basis for generating parameterized Timed Causal Graphs (TCG-s), a representation that captures system
dynamics as causal links between system variables, annotated by temporal relations, such as
instantaneous effects and integral relationships [9]. The bond graph representation explicitly includes
component parameters that govern system dynamics as resistive, capacitive, inertial, transformation, and
signal propagation elements. The TCG representation makes explicit the effect of changes in parameter
values on the dynamics of system variables. The fault isolation methodology for hybrid systems is broken
down into three steps. It includes

1. A fast roll back process using qualitative reasoning techniques to generate possible fault
hypotheses. Since the fault could have occurred in a mode earlier than the current mode, fault
hypotheses need to be characterized as a two-tuple <mode, fault parameter>, where mode
indicates the mode in which the fault occurs, and fault parameter is parameter of the implicated
component whose deviation possibly explains the observed discrepancies in behavior.

2. A quick roll forward process using progressive monitoring techniques to refine the possible fault
candidates. The goal is to retain only those candidates whose fault signatures are consistent with
the current sequence of measurements. After the occurrence of a fault, the observer’s predictions
of autonomous mode transitions may no longer be correct, therefore, determining the consistency
of fault hypotheses also requires the fault isolation unit to roll forward to the correct current mode
of system operation.

3. A real-time parameter estimation process using quantitative parameter estimation schemes. The
qualitative reasoning schemes are inherently imprecise. As a result a number of fault hypotheses
may still be active after Step 2. We employ a least squares estimation technique on the input-
output form of the system model to estimate consistent values of the fault parameter that is
consistent with the sequence of measurements made on the system.

Each of these steps is explained in greater detail next.

5.1.1 Fast Roll Back Process using Back Propagation
We use qualitative reasoning mechanism to identify an initial candidate set to explain the discrepancy in
the observations and predictions. This is achieved by back propagating the qualitative value of the
discrepancy (−, 0 or +) through the temporal causal graph of the system. Back propagation for initial
hypotheses generation has to be performed across modes the system has traversed through because the
fault may have occurred in a previous mode but the manifestations are not seen until a later mode. For

 10

example, this happens when none of the observed variables are affected in the mode in which the fault
occurs. The problem is that once a fault occurs the predicted mode sequence of the observer may no
longer be correct, and a worst-case analysis may require considering all possible modes of the system in
generating fault hypotheses. However, we make that the assumption that the controller model is correct;
therefore, the observer must have predicted the correct mode sequence till the fault occurred. As a
consequence, the mode in which the fault occurred must be in the predicted trajectory of the observer.

Res

M

iduals,

ode, m Progressive
Monitoring

Parameter
Estimation

Symbol
Generation

Hypothesis
Refinement

Hypothesis
Generation

Fault
Detection

TCG
Models

Measurements, y

ŷ

Parameterized Component Faults

State
Equations

Models

Mode, m

1. Roll Back 3. Real-time
Parameter Estimation

2. Fast Roll Forward Fault Isolation
System

Figure 6:Hybrid diagnosis scheme

The back propagation algorithm, determines all possible component parameter deviations that are
consistent with observed discrepancies in each of the modes in the mode trajectory up to the current
mode. This ensures that the true fault hypothesis, which includes the fault and the mode in which the fault
occurred (<mode, fault parameter>) will be included in our initial hypothesis set. As a reasonable
heuristic, we limit our search by looking back only k modes. k is determined by measurement selection
analyses [27], which verifies that the effects of any fault must manifest within k mode changes.
As an example scenario, we introduce a R1+ fault (this corresponds to a partial block in outlet pipe1,
causing an increase in its resistance) into the system in mode 10, when the level of fluid in the tank 1 is
very close to the height of the connecting pipe. This causes the autonomous transition, where flow occurs
in the connecting pipe but the observer does not predict this transition. However, the fault causes the level
of fluid in tank 2 to start increasing from a 0 value. The observer still works with the model where the
second tank is isolated; therefore, the predicted pressure value in tank 2 is 0. At some point this leads to
Tank2Pressure + (above nominal) discrepancy. The back propagation algorithm triggered by this
discrepancy generates candidates, in what the algorithm thinks is the current mode (source flow on, tanks
disconnected), but the actual mode is source flow on and tanks connected. The mode produces C1- and
R1+ as candidates. The system also backtracks to the previous mode (source off and tanks disconnected),
but that mode does not generate any new candidates.

5.1.2 Quick Roll Forward Process using Progressive Monitoring
The quick roll forward process is initiated by applying a progressive monitoring scheme [15] to compare
signatures for the hypothesized faults against observations within a mode of system behavior. Typically a

 11

mismatch would indicate that the hypothesized fault is not consistent with the observations, and the
hypothesis would be dropped. In the hybrid system case, it may also imply that the hypothesized mode is
not the current mode the system is operating in. In that case, we hypothesize potential autonomous mode
changes that could have taken place but were not hypothesized by the observer after the occurrence of the
fault. Therefore, the goal of the quick roll forward process is to arrive at situations where the system
measurements are consistent with the hypothesized fault and predicted mode.
We can qualitatively predict future behavior of the system under each of the hypothesized fault conditions
by forward propagating through the TCG [5,15]. These predictions include magnitude and higher order
derivatives of the variables of the system in the mode that the fault occurred. If the qualitative predictions
do not match the observations in the mode, we consider possible autonomous mode changes from the
current mode using the model of the controller plus additional information from the system to limit the
number of possible mode transitions. For each of the hypothesized modes, the new TCG is used to derive
a new set of qualitative predictions. If the predictions still do not match the observations, then the
candidate mode is dropped. For a fault hypothesis, if all mode candidates are dropped, then the fault
candidate is dropped since none of the possible mode change sequences could make the predictions for
the fault candidate and the observations consistent. To limit the search in the quick Roll Forward phase,
the parameter k is again invoked to limit the number of autonomous mode transitions that have to be
considered.
Going back to our example fault scenario, the signature for C1− implies that there should be a
discontinuous change in Tank1Pressure. Since a discontinuous change in pressure was not observed, we
eliminate C1− as a candidate. The signature for R1+ in the current mode indicates that the Tank2Pressure
is unaffected. This does not agree with the observations, so we hypothesize a possible autonomous
transition, apply this transition, and generate fault signatures for candidate R1+ in this new mode. In this
mode, the signatures for Tank1Pressure and Tank2Pressure match the actual observations and so R1+ is
still considered to be a possible candidate.

5.1.3 Real Time Parameter Estimation
For the quantitative analysis, we estimate the deviated parameter values for each of the remaining fault
candidates. To do this, we rewrite the state space equations in terms of the parameter associated with the
fault candidate, and use least squares estimation techniques to derive the faulty parameter value [5]. First,
the input output transfer function model of the system is derived as:
The input output model is expressed in terms of the component parameters by applying the Mason’s gain

rule to the TCG model of the system. Note that the above formula works only for linear systems. For non-
linear systems (which are approximated by piecewise linear models), a separate formula has to be
developed for each region, and the parameter estimation procedure has to take these regions into account.
For each hypothesis, we start a new parameter estimator. To make the computation simpler and achieve
convergence faster, the parameter estimator estimates only those g and h coefficients that include the
hypothesized fault parameter. All other coefficients are fixed using nominal values of the remaining
parameters. If the computed g and h coefficients converge, we can invert the relation between the
coefficients and the parameter to estimate the parameter value. If a controlled transition occurs during the
estimation process, we calculate the new input output model and continue the estimation process using the
new model. We have demonstrated by empirical analysis that the estimator corresponding to the true fault
parameter converges, whereas the estimators for the other parameters diverge.

)(
)(
)()(1

1
tu

qh
qgty

−

−

=

In our example system, we note that the R1 fault parameter affects only two of the h coefficients.
Computing the R1 value from these two coefficients we get R1 = 9.87 and R1 = 10.08, respectively.

 12

Since these values are close, we make the determination that this is the true fault parameter, and use a
simple average to estimate the faulty value of R1 to be 9.98.

5.2 The discrete approach
The discrete approach uses a discrete model of the dynamic system. Discrete models can offer an
effective abstraction for diagnosis of large systems [8]. We employ a graphic modeling paradigm based
on Failure Propagation Graphs (FPG), a set-relational model that can easily represent non-determinism.
Non-determinism is a characteristic of discrete event models that are derived as an abstraction of
deterministic hybrid dynamical systems. We have implemented the discrete diagnosis algorithm using
Ordered Binary Decision Diagrams [16] (OBDD-s), which are used to manipulate sets and relations
symbolically, thus enabling the representation of very large state-spaces.

5.2.1 Failure Propagation Model
Failure propagation graphs [4] capture the relation between failure modes of physical components and
discrepancies (functional failures) that can be attributed to these failures. Discrepancies may have
associated alarms that indicate the presence or absence of the discrepancy. Failures propagate to
discrepancies and discrepancies can cascade as well. The result is a directed graph, which leads from
failure modes to observed alarms in the system. Figure 7 illustrates a failure propagation graph for the
two-tank system.
The Failure Propagation Graph represents trajectories that link the set of failures that can occur in the
system to possible alarms. This modeling approach has the advantage of being intuitive, and it captures
knowledge about the system at a high level. At the same time, it is important to assign precise meaning to
the graph with relation to discrete abstractions of a hybrid dynamical system.

Leak

Flow
Low

Clog

Leak

Pressure
High

Pressure
Low

Pressure
Low

Pressure
High

Tank1 Pipe Tank2

Alarm Alarm

Alarm

Alarm

Failure Mode

Failure Mode

Failure Mode

Figure 7: Example Failure Propagation Graph for the Two-Tank System

Starting from a closed-loop model of a hybrid dynamical system, a discrete-event model of the closed-
loop system can be obtained by defining events that correspond to region crossings defined by
hypersurfaces in the hybrid state-space [9,30]. The set of discrepancies in the Failure Propagation Graph
are interpreted as a distinguished set of events that correspond to the occurrence of faults in system
components. The Failure Propagation Graph describes the order of discrepancies in time, following the
failure occurrence.
The Failure Propagation Graph is expressed as a six tuple: (V, E, A, F, Q, T), where (V,E) is the graph
(vertices and edges), A is a set of alarms, F is a set of failure modes, Q is a relation Q ⊆ V × A, and T is a
relation T ⊆ V × F. To fully represent non-determinism in the model, which allows for diagnosis of

 13

multiple simultaneous faults, it is useful to define Q and T as relations between the nodes of the graph and
the powerset of the alarms and failures, respectively. This approach is detailed in [16]. For computational
efficiency, the FPG model can be represented symbolically using OBDD-s.

5.2.2 Diagnosis Algorithm for Single Fault scenario
The diagnosis algorithm, which makes the single fault assumption, starts by parsing the FPG model into
two relations, Ancestors ⊆ A × A and Descendants ⊆ F × A, representing the relation between failures and
alarms. The diagnosis module is initialized with three sets: Hypothesis ⊆ F, AlreadyRinging ⊆ A, and
MissingUpstream ⊆ A, all initialized to empty sets. A hypothesis data structure is maintained, which
includes possible failure modes matched with a ranking, designating their plausibility. The plausibility is
a function of the alarms that occur downstream from a failure mode and are considered supporting alarms
versus alarms that occur upstream from supporting alarms and are considered to be missing alarms.
Whenever new alarms are reported, the hypothesis set is refined based on the set-relational computation
algorithm that appears in Figure 8.

 global set Hypothesis, AlreadyRinging, MissingUpstream;
global const set Ancestors, Descendants;

procedure RefineHypothesis (in set Alarms)
local set NewFailureModes, NewMissingUpstream, MissingAncestor,

 PromotedNewFailureModes;
begin
(* Calculate new failure modes that have descendants in the current set
 of alarms but are not in the hypothesis set yet*)
NewFailureModes := relationalproduct(Descendants,Alarms) intersect
 complement(Hypothesis);
(* Add new failure modes to the hypothesis set *)
Hypothesis := hypothesis union NewFailureModes;
(* Calculate missing ancestor alarms: the ancestors of the current
 alarms, which are not in the set of missing upstream alarms and are
 not ringing yet *)
MissingAncecstors := relationalproduct(Ancestors,Alarms) intersect
 complement(MissingUpstream) intersect

 complement(AlreadyRinging);
(* Calculate new missing upstream alarms: all the descendant alarms of
 the current hypothesis set, which are also in the missing ancestor
 alarm set *)
NewMissingUpstream := relationalproduct(Descendants,Hypothesis)

 intersect MissingAncestors;
(* Update set of missing upstream alarms *)
MissingUpstream := MissingUpstream union NewMissingUpstream;
(* Update set of already ringing alarms *)
AlreadyRinging := AlreadyRinging union Alarms;
(* Increment rank of faults which have new supporting alarms and no new
 missing upstream alarms *)
PromotedNewFailureModes := relationalproduct(DescendantAlarms,Alarms)

 intersect
 complement(relationaproduct(Descendants,

NewMissingUpstream));
end

Figure 8:Discrete Diagnosis Hypothesis Refinement Algorithm

5.2.3 Example – Two Tank System
The two-tank system is operated with fluid flowing from Tank 1 to Tank 2 through the connecting pipe.
For a fault scenario in which a decrease in pressure in Tank 2 is detected, followed by an increase in
pressure in Tank 1, the results of the diagnosis using the algorithm in Figure 8 are: “Pipe.Clog” with rank
2 and “Tank1.Leak” with rank 1 and “Tank2.Leak” with rank 1.

 14

6. Controller selection

Our approach is to develop a library of controllers, which is indexed by sets of characteristics. The goal is
to use the information about current system state, i.e., the current mode of operation and system state
vector along with failed and degraded states of components and subsystems to select a controller that best
suits current and long term performance objectives.
We address the controller reconfiguration task on two levels. At the supervisory (discrete) level,
reconfiguration implies modification of high-level control actions. This can take the form of replacing a
current action sequence by a new sequence, or altering the sequence of actions in the current set. This
type of reconfiguration requires that the supervisory control logic be explicitly represented as a data
structure. Our challenge is to adopt model-based approaches to representing supervisory control
programs, and to develop reconfiguration procedures governed by different kinds of fault conditions. At
the lower (continuous) level of control, the system relies on regulators, which can range from simple
switching controllers, to PID mechanisms, and then model-based controllers. Reconfiguration at this level
can take on three different forms.

1. Set point changes for handling simple fault situations, such as a partially degraded component.
2. Controller tuning for handling cases where the fault changes the plant dynamics (e.g., changes in

the capacitive and inertial parameters in the plant), and the re-tuning of the controller is a viable
solution.

3. Structural changes (i.e., rewiring or replacing the regulators) may compensate for complex faults
where the current controller architecture is unable to maintain the desired control because of a
significant fault (e.g., sensor faults, actuator faults, and major structural changes in the plant, such
as pump failures or valves stuck at closed).

All of the above cases may lead to the introduction of large switching transients into the system. We are
investigating a number two ways to manage the reconfiguration. Two examples are as follows.
• The Blender approach. In this technique, a “new” controller gradually replaces the “old” controller.

The reconfiguration starts with the old and new controllers connected to a tapered switch. Initially the
output of the "old" controller is fully connected to the plant. As time proceeds, the switch setting is
gradually moved from the old to the new controller setting. At the end of the process, the new
controller completely replaces the old one. Interesting research issues that we have to deal with
include design of the blending function for control signals at intermediate stages of the tapered
switching process and the speed (and thus the dynamics) at which the switching is accomplished to
avoid unnecessary transients in the plant dynamics during the reconfiguration process.

• The State Initialization approach. If rapid reconfiguration is required, the tapered switch approach
may not be fast enough. In this case, the new controller should replace the old one, possibly within
the sampling interval set for the system. To avoid large bumps, the internal state of the new controller
should be initialized in such a way that it generates a control signal after reconfiguration that is
minimally different from the last signal generated by the old controller.

There is an interesting and highly relevant aspect of controller reconfiguration that is also being
addressed: the explicit management of reconfiguration transients. Early results [24,25] show that there are
a number of techniques available for mitigating reconfiguration transients in control systems. If the
selected approach of controller re-initialization and/or blending does not meet the requirements for the
reconfiguration dynamics other, more explicit transient suppression techniques can be applied to mitigate
the effects of switching.

7. Conclusions and Future Work

We have applied our continuous and discrete FDI methodology to diagnosing faults in a two-tank system
with a number of valves. A simple supervisory controller model took the system through a number of
filling, emptying, and mixing cycles. We were successful in tracking continuous system behavior through
discrete mode changes, and isolating faults when they occurred, with the discrete and continuous

 15

diagnostics algorithms. As a next step, we would like to extend the two diagnostic algorithms to work in a
more cohesive fashion, and inform each other as they come up with fault hypotheses. Once this step is
completed, we will introduce the controller selection mechanisms to have a comprehensive
implementation of the FACT architecture that has been presented in this paper.
We are also looking at applying this technology to more real-world applications, such as the fuel transfer
system in modern aircraft. The physical components of the fuel system include a number of tanks,
interconnecting pipes, valves, and pumps. In addition, the system is equipped with sophisticated controls
to support reliable and robust fuel delivery under a variety of flight conditions, at the same time ensuring
that the gravity of aircraft center of gravity is not compromised. In addition, the controllers have to deal
with a number of fault scenarios, such as pump failure and pipe leaks. The goal under such conditions is
not to compromise aircraft safety, but to save as much fuel as one can to continue the current mission. To
achieve this the system should utilize built-in redundancy mechanisms to compensate for the failure, and
at the same time, maintain control. We are currently developing models of a generic aircraft fuel system,
and testing and validating the FACT tools and techniques on a number of example scenarios that have
been generated using a high fidelity simulator.

Acknowledgements

The DARPA/ITO SEC program (F33615-99-C-3611), and The Boeing Company have supported the
activities described in this paper. We would like to thank Dr Kirby Keller and Mr. Mark Kay for their
help.

References

[1] Sztipanovits, J., Karsai, G.: “Model-Integrated Computing”, IEEE Computer, pp. 110-112, April,
1997.
[2] Branicky, M.S., V. Borkar, S. Mitter, 1994. “A Unified Framework for Hybrid Control: Background,
Model, and Theory,” Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena
Vista, FL, Paper No. LIDS-P-2239.
[3] Mosterman P.J. and G. Biswas, 1998. “A theory of discontinuities in physical system models,”
Journal of the Franklin Institute:335B, pp. 401-439.
[4] Misra A., Sztipanovits J., and Carnes J., 1994. “Robust Diagnostics: Structural Redundancy
Approach,” Knowledge Based Artificial Intelligence Systems in Aerospace and Industry, SPIE's
Symposium on Intelligent Systems, Orlando.
[5] Manders E.J., S. Narasimhan, G. Biswas, and P.J. Mosterman, 2000. A combined
qualitative/quantitative approach for efficient fault isolation in complex dynamic systems. 4th
Symposium on Fault Detection, Supervision and Safety Processes, pp. 512-517.
[6] Patton, R.J., Frank, P.M., and Clark, R.N. (eds.), 2000. Issues of Fault Diagnosis for Dynamic
Systems, Springer-Verlag, London, U.K.
[7] Chen, J. and Patton, R.J. 1999. Robust Model-Based fault Diagnosis for Dynamic Systems, Kluwer
Academic, Boston, MA.
[8] Sampath, M. et al., 1996. “Fault Diagnosis using Discrete-Event Models,” IEEE Trans. On Control
Systems Technology: 4(2), pp. 105-124.
[9] Lunze, J. 1999. “A Timed Discrete Event Abstraction of Continuous Dynamic Systems,” Intl. Journal
of Control: 72, pp. 1147-1164.
[10] Alur, R. et al., 1993. Hybrid Automata: an algorithmic approach to the specification and verification
of hybrid systems, in, R.L. Grossman, et al., eds., Lecture Notes in Computer Science, Springer, Berlin,
736, pp. 209-229.
[11] Narasimhan, S. and Biswas, G. 2000. Using Supervisory Controller Models for more Efficient
Diagnosis of Hybrid Systems. Submitted to Hybrid Systems: Control and Computation, Intl. Workshop,
Rome, Italy.

 16

[12] Rosenberg, R.C. and Karnopp, D.C. 1983. Introduction to Physical System Dynamics, McGraw Hill,
NY.
[13] Narasimhan, S., Biswas, G., Karsai, G., Pasternak, T., and Zhao, F., 2000. “Building Observers to
Handle Fault Isolation and Control Problems in Hybrid Systems,” Proc. 2000 IEEE Intl. Conference on
Systems, Man, and Cybernetics, Nashville, TN, pp. 2393-2398.
[14] Manders E.J., Mosterman, P.J., and Biswas, G., 1999. Signal to symbol transformation techniques
for robust diagnosis in TRANSCEND, Tenth International Workshop on Principles of Diagnosis, Loch
Awe, Scotland, pp. 155-165.
[15] Mosterman P.J. and Biswas G., 1999. Diagnosis of Continuous Valued Systems in Transient
Operating Regions, IEEE Trans. on Systems, Man and Cybernetics:29, pp. 554-565.
 [16] Pasternak, T. Extended Relational Models for Diagnosis, Masters Thesis, Vanderbilt University,
August 2000.
 [17] Lunze, J., Diagnosis of Quantized Systems by Means of Timed Discrete-Event Representation, in
Proc. Of Thirds International Workshop on Hybrid Systems, Computation and Control, Lecture Notes in
Computer Science, volume 1790, pages 258-271, March 2000.
[18] Simon, G., Kovácsházy, T., and Péceli, G., 2000. “Transients in Reconfigurable Control Loops,”
IEEE Instrumentation and Measurement Technology Conference, IMTC/2000, Baltimore, Maryland,
USA.
[19] Simon, G., Kovácsházy, T., and Péceli, G., 2000. “Transient Management in Reconfigurable
Systems,” International Workshop on Self Adaptive Software, Oxford University, England.
 [20] Pierce, C. S. "Note B: The Logic of Relatives." In Studies in Logic by Members of the Johns
Hopkins University Boston: Little Brown and Co. 1883
[21] Ledeczi A., Bakay A., Maroti M.: Model-Integrated Embedded Systems, in Robertson, Shrobe,
Laddaga (eds) Self Adaptive Software, Springer-Verlag Lecture Notes in CS, #1936, February, 2001.
[22] David Harel, Michal Politi: Modeling Reactive Systems with Statecharts: The Statemate Approach,
McGraw-Hill, 1998.
[23] A. Gelb, Applied Optimal Estimation, MIT Press, Cambridge, MA, 1979.
[24] H.L. Jones, Fault Detection in Linear Systems, Ph.D. thesis, Massachusetts Inst. of Technology,
1973.
[25] R. Mangoubi, Robust Estimation and failure Detection, A Concise treatment, Springer Verlag, New
York, NY, 1998.
[26] J.J. Gertler, Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, Inc., 1998.
[27] S. Narasimhan, P.J. Mosterman, and G. Biswas, “A Systematic Analysis of Measurement Selection
Algorithms for Fault Isolation in Dynamic Systems,” 9th Intl. Workshop on Principles of Diagnosis, Cape
Cod, MA, pp. 94-101, May 1998.
[28] P.J. Mosterman and G. Biswas, “Towards procedures for systematically deriving hybrid models of
complex systems,” Hybrid Systems: Computation and Control, Third Intl. Workshop, Lecture Notes in
Computer Science, vol. 1790, N. Lynch and B. Krogh, eds., Springer Verlag, Berlin, Germany, pp. 324-
337, March 2000.
[29] L. Ljung, System Identification: Theory for the user, Prentics Hall, Englewood Cliffs, NJ, 1987.
[30] X.D. Koutsoukos, P.J. Antsaklis, J.A. Stiver, and M.D. Lemmon, “Supervisory Control of Hybrid
Systems,” Proceedings of the IEEE: Special Issue on Hybrid Systems, P.J. Antsaklis, ed., pp. 1026-1049,
2000.
[31] P. J. Antsaklis and K. M. Passino, "Introduction to Intelligent Control Systems with High Degree of
Autonomy,” Introduction to Intelligent and Autonomous Control, P.J.Antsaklis and K.M.Passino, Eds.,
Chapter 1, pp. 1-26, Kluwer Academic Publishers, 1993.
[32] P. J. Antsaklis, "Defining Intelligent Control,” Report of the Task Force on Intelligent Control, P.J
Antsaklis, Chair. In IEEE Control Systems Magazine, pp. 4-5 & 58-66, June 1994.
[33] P.J.Antsaklis, K.M.Passino and S.J.Wang, "An Introduction to Autonomous Control Systems,” IEEE
Control Systems, Vol 11, No 4, pp 5-13, June 1991.

 17

	Introduction
	FACT Architecture
	Modeling Hybrid Systems and Controllers
	Hybrid Bond Graphs
	Controller Models

	The Hybrid Observer
	Approaches to Fault Detection and Isolation
	5.1 Diagnosis using Hybrid Models
	Fast Roll Back Process using Back Propagation
	Quick Roll Forward Process using Progressive Monitoring
	Real Time Parameter Estimation

	The discrete approach
	Failure Propagation Model
	Diagnosis Algorithm for Single Fault scenario
	Example – Two Tank System

	Controller selection
	Conclusions and Future Work
	Acknowledgements
	References

