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Editors’ Summary 

An important problem in the control of complex systems, and one that inherently exhibits hybrid 

dynamics, is fault management and recovery.  If a component fails in a system, the continuous behavior 

will suddenly change.  In an autonomous system, the controller must be adaptive to ensure continued 

useful operation when faults occur. 

 

Fault-adaptive control encompasses a number of hard problems:  the detection of a fault, its identification 

and assessment, the selection of a new control algorithm, the reconfiguration of the plant to “disconnect” 

the failed component, and the launching of the new control algorithm.  The authors propose a model-based 

approach for designing control systems that are capable of accommodating faults.  This chapter focuses on 

one aspect of this approach; however, an overview of the fault-adaptive control architecture is also given. 

 

The authors model a plant as a hybrid bond graph.  Bond graphs are energy-based models, and they are 

extended for hybrid dynamics by representing mode transitions as controlled junctions.  A hybrid observer 

has been developed that uses this model to track the system behavior within and across modes.   

 

Two complementary approaches to fault detection and isolation are outlined, one based on hybrid models, 

the other on discrete-event models.  The former makes use of the hybrid observer, qualitative reasoning 

techniques, and real-time parameter estimation.  The discrete approach uses failure propagation graphs.   

Controller reconfiguration relies on a previously developed controller library—an appropriate controller is 

selected based on current conditions.  The authors discuss ideas for mitigating the large transients that can 

arise during controller switching.  A two-tank system is used as an example throughout the chapter.
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1. Introduction 

Today’s complex systems, like high-performance aircraft require sophisticated control techniques to 
support all aspects of operation: from flight controls through mission management to environmental 
controls, just to give a few examples. All this, of course, is done using a multitude of computer systems, 
all of which rely heavily on software technology. Software systems now play a dual role. Not only do 
they implement system functionalities, but they are also becoming the primary vehicle for system 
integration.  One of the main goals of software is to implement control functions: open- and closed-loop 
control, from low-level regulation to high-level supervisory control. However, software enables new 
capabilities in control. It offers a framework that provides great flexibility for developing novel 
algorithms that significantly improve the performance of the system. Furthermore, brand new 
functionalities can be created that could not be implemented in any other way.  
Any real-life system is prone to physical (hardware) and logical (software) failures. These systems also 
require a high degree of reliability and safety, therefore, the effects of these failures must be mitigated and 
control must be maintained under all fault scenarios. If systems are designed with redundancy, control 
decisions have to be made about when and how backup systems should be activated, and how exactly the 
reconfiguration should be executed. For instance, aircraft often have redundant actuators for control 
surfaces. If one actuator fails then the second actuator can still drive the control surface, although larger 
forces will be required. In order to manage the fault scenario described, we need to make a series of 
decisions and take control actions, such as (i) the fault has to be detected, (ii) the fault source —the 
actuator— has to be identified and the magnitude of failure estimated (e.g., is it a partial degradation or a 
total failure), (iii) depending on the nature of failure, a new control algorithm has to be selected that can 
compensate for the partial or complete loss of the actuator, (iv) the plant has to be reconfigured so that the 
faulty actuator can be moved “off-line”, and (v) the new control algorithm has to be brought up with the 
good actuator in a way that current operation is maintained. All these decisions must be made by a control 
system that incorporates not only simple regulatory loops and the supervisory control logic, but also a set 
of components that detect, isolate, and manage faults, in coordination with the control functions.  
Traditional control theory gives very little guidance to the implementer of these systems. Mathematical 
models and formal analysis techniques have been developed for specific fault scenarios, but there is no 
general theory of control system design and analysis that encompasses all possible scenarios. Solutions 
applied to existing systems tend to take a pragmatic approach. Potential fault situations are pre-
enumerated, and appropriate fault accommodation actions are built into the supervisory controller for 
each case. The approach works well for these cases, but may break down in unforeseen situations. 
Furthermore, most fault-adaptive control techniques are geared towards handling broken components.  In 
many realistic situations, the system suffers only partial degradation and failures. If we can build on line 
capabilities to detect and estimate these partial failures, more sophisticated control algorithms can be 
designed to keep the system operational under these conditions. Early references for these ideas can be 
found in [31,32,33]. 
For the DARPA SEC project, we are developing a systematic model-based approach to the design and 
implementation of control systems that can accommodate faults. We call this approach Fault-Adaptive 
Control Technology (FACT, for short). Developing fault-adaptive control requires us to solve a number 
of technical problems beyond the capabilities of traditional control approaches. First, faults must be 
detected while the system is in operation. System dynamics is complex, and sensors can be noisy, 
therefore, differentiating degraded faulty behavior from nominal behavior of the plant quickly is a non-
trivial problem. Fault detection must be followed by rapid fault isolation and estimation of the fault 
magnitude. Then a decision has to be made online on how to reconfigure the control system to 
accommodate the fault. Many alternatives may have to be evaluated, and metrics will have to be defined 
that either (1) select an optimal configuration, if it can be computed in a feasible manner, or (2) the best 
possible reconfiguration is derived under given time and resource constraints. Finally, the reconfiguration 
must be executed, which means that set points and control parameters may have to be changed, or a 
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different controller may have to be selected to continue system operation. The challenge is bring together 
methodologies from fault diagnostics, control theory, signal processing, software engineering and systems 
engineering to build the integrated online FACT system.   
In this paper, our focus is on the model-based fault isolation schemes. Section 2 discusses a reference-
architecture for FACT systems. Section 3 presents our scheme for modeling hybrid systems, i.e., 
continuous physical systems with discrete supervisory controllers. Section 4 describes the hybrid observer 
scheme for tracking nominal system behavior. Section 5 discusses the fault isolation methodologies. 
Preliminary results that demonstrate the effectiveness of our approach are presented. Section 6 briefly 
discusses fault-adaptive control and controller reconfiguration.  The summary and conclusions appear in 
Section 7 of the paper. We illustrate the basic modeling concepts and our diagnosis algorithms using a 
two-tank system as the plant, with a supervisory controller. This system, while admittedly simple, has a 
relationship to real-life systems, such as aircraft fuel systems, which have a similar structure. Therefore 
this work may easily scale up to fault diagnosis and control of such real life systems. 

2. FACT Architecture 

Our overall approach, illustrated in Fig. 1, is centered on model-based approaches for fault detection, fault 
isolation and estimation, and controller selection and reconfiguration for hybrid systems.  The plant is 
“connected” to the reconfigurable monitoring and control system block. We assume the systems that we 
deal with combine continuous dynamics of the plant and PID controllers with supervisory control 
implemented as computer programs. Hybrid models [2], derived from hybrid bond graphs [3] 
systematically integrate continuous and discrete system dynamics and discrete events to establish the core 
of the modeling framework. The supervisory controller, modeled as a generalized finite state automaton, 
generates the discrete events that cause reconfigurations in the continuous energy-based bond graph 
models of the plant. Fault detection involves comparison of the expected behavior of the system generated 
from the hybrid models with actual system behavior, to determine when discrepancies occur. This 
requires the design and implementation of hybrid observers that estimate the continuous dynamic states of 
the system and detect mode transitions in the system operation. Sophisticated signal analysis and filtering 
methods linked to the hybrid observers are used for detecting deviations from nominal behavior and 
triggering the fault isolation schemes.  Details of the signal analysis schemes are discussed elsewhere 
[14]. 
Our diagnostic schemes integrate the use of failure-propagation graph based techniques for discrete-event 
diagnosis [4] and combined qualitative reasoning and quantitative parameter estimation methods for 
parameterized fault isolation [5] of degraded components (sensors, actuators, and plant components). The 
dynamic system state accumulated from the observer (discrete system mode plus continuous state vector) 
and fault isolation units (status of faulty and degraded sensors, actuators, and plant components) define 
the active system state model. The tracking, fault detection, and fault isolation mechanisms, illustrated on 
the left of Fig. 1, together constitute a bottom-up computational approach for estimating the dynamic 
system state (nominal or faulty) by monitoring plant and controller variables. 
The reconfiguration controller uses this information to select from the controller library the controller that 
is most effective in maintaining desired system operation and performance. This requires the definition of 
metrics and decision criteria that govern the controller selection process. The selection and 
reconfiguration mechanisms operate in a top-down manner, using the dynamic state information to effect 
changes in supervisory control mechanisms, such as selection (not synthesis) of feedback control 
mechanisms, and re-tuning of low level regulators, such as PID or model-based controllers.  The overall 
computational architecture combines the bottom-up and top-down computational schemes in a seamless 
manner, via the shared active model.  
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Figure 1: Fault Adaptive Control Architecture 
The implementation and support for the online FACT architecture is based on our model-integrated 
computing paradigm [1]. To achieve this, we have created (1) a graphical modeling environment that 
facilitates building hybrid models of the plant and controllers, and (2) a set of run-time components that 
can execute the code synthesized from the models. This code, when integrated with the generic FACT 
run-time components, instantiate the architecture for a specific application domain. 

3. Modeling Hybrid Systems and Controllers 

We assume the plant is made up of components, such as tanks and pipes that exhibit continuous 
behaviors. Other components like valves and switches can be turned off and on at rates much faster than 
the normal dynamics of the plant. There are also components, such as pumps and motors that exhibit 
continuous behaviors, interspersed with more discrete on/off transitions. Plants that exhibit these mixed 
continuous/discrete behaviors are modeled as hybrid systems. Some of the discrete changes can be 
attributed to changes in system configuration imposed by the supervisory controller, and other changes 
can be attributed to abstracting complex non-linear system behaviors into piecewise linear behaviors [28]. 
In this section, we first describe our hybrid bond graph modeling approach, and present the scheme for 
modeling the supervisory controller. 

3.1 Hybrid Bond Graphs 

We use bond graphs as the modeling paradigm in the continuous domain [12].  Bond graphs represent 
energy-based models of the system in terms of the effort and flow variables of the system. Bonds specify 
interconnections between elements that exchange energy, which is given by the rate of flow of energy, 
power = effort x flow. Bond graphs represent a generic modeling language that can be applied to a 
multitude of physical systems, such as electrical, fluid, mechanical, and thermal systems. There exist 
standard techniques to build bond graph models of systems based on physical principles. State equations 
can be systematically derived from the bond graph representation of the system. We can systematically 
derive temporal causal graphs, the models for qualitative diagnostic analysis, from bond graphs [15].  
We use an enhanced form of bond graphs, called hybrid bond graphs (HBG) [3] that include controlled 
junctions to facilitate the modeling of discrete mode transitions in system behavior. Consider the example 
of a two-tank system shown in Fig. 2. The system consists of tanks, flow sources (simplified models of 
pumps), connecting pipes, and outlet pipes. Some of the pipes contain valves that can be opened and 
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closed by the supervisory controller. The flow source can also be turned on and off by the controller. Two 
types of discrete events (or “jumps”) can occur in the system:  

1. Controlled event: these are external controller actions that cause changes in the configuration of 
the system. Opening or closing of the valve on the flow source, Sf1, pipe is determined by 
supervisory controller signals. This represents a controlled event. 

2. Autonomous events: these are changes that occur in the configuration of the system when its 
internal variables go above and below pre-specified values. When the level of fluid in tank 1 
reaches the height of pipe R2, fluid flow commences through pipe R2. This represents an 
autonomous event, since the presence or absence of flow is determined by internal variables 
(heights of tanks 1 and 2), and not by the controller. 
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Figure 2: Two-tank system and its hybrid bond graph model 

The hybrid bond graph model of the two-tank system of Fig. 2 is illustrated on the bottom part of the 
figure. The two tanks are modeled as capacitors. The pipes in the system are modeled as simple 
resistances. Fluid flow through the pipes are assumed to be at low velocities, therefore, the inertia of the 
fluid is ignored. The inlet pipe is modeled as an idealized flow source, Sf1, with constant inflow rate. The 
0- and 1- junctions are analogous to parallel and series junctions in electrical circuits. Fluid flow behavior 
is defined in terms of the effort variable, pressure, and the flow variable, fluid flow rate.  The switching 0- 
and 1- junctions represent idealized discrete switching element that can turn the corresponding energy 
connection on and off.  The physical on/off state for each of these controlled junctions is determined by 
external control signals and continuous variables crossing pre-specified thresholds. These can be specified 
as finite state sequential automata. The sequential automata that control the on/off states for all the 
controlled junctions are shown in Fig. 2. There are 4 possible modes of continuous operation of the two-
tank system. The valve connecting the source to tank 1 may be ON or OFF. This would correspond to the 
switching junction 11 in the HBG. The flow between the tanks is a function of the level of fluid in the 
tanks. This is captured by switching junction 12. Since each junction can be on or off, the system can have 
four distinct modes of operation. 
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3.2 Controller Models 
In the FACT architecture, the reconfigurable monitoring and control component represents all the 
traditional monitoring and control functions in an application. We envision that this component is 
implemented mainly in software, although some components might utilize dedicated hardware 
components. This component is also “reconfigurable”: its sub-components, their parameters, and their 
interconnection can be changed during system operation.  
To represent this reconfigurable monitoring and control component, we have developed a modeling 
language, called Controller Modeling Language (CML). The approach followed here is that of Model-
Integrated Computing [1]. CML represents controllers on two levels: 

• On the regulatory level, it represents controllers using computational blocks that form a signal 
flow diagram. The signal flow diagram has process-network semantics: each block is a process 
that is scheduled for execution upon arrival of data on its inputs. Then the process performs some 
calculations and may generate output data that is sent to downstream blocks. After finishing 
processing, the process terminates and waits for the next triggering data.  

• On the supervisory level, it represents controllers using a hierarchical finite state machine 
approach, in the style of Statecharts [22]. State machines are triggered by events, may perform 
state transitions triggered by events or timers, and generate other events and actions.  

The two levels are in a master-slave relationship. CML can also represent reconfigurable controllers: 
actions executed by the supervisory controller may result in changes in the regulatory controllers. 
Furthermore, CML has provisions for interfacing the supervisory control logic with the output of the fault 
diagnostics system. 
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Figure 3: Relationship between the supervisory and regulatory controllers 
The relationship between the two controller layers: supervisory and regulatory, is shown in Fig. 3. The 
regulatory layer operates in a discrete-time fashion, i.e., it receives discrete (sporadic) and sampled data 
from the plant, and it generates discrete (sporadic) and sampled data for the actuators. On the other hand, 
the supervisory controller operates in a discrete-event mode, i.e., it has no explicit notion of time. It 
receives sampled data values and discrete events generated in the regulatory layer, and sends new data 
values for parameters, and events in the form of discrete control signals to the regulatory layer. The 
supervisory controller can also trigger the execution of reconfiguration actions. As mentioned above, 
during reconfiguration the design procedures associated with the regulatory blocks will be triggered to 
recalculate parameter values. 

4. The Hybrid Observer 

The hybrid observer tracks the system behavior across different modes of operation. This involves two 
steps: 

• Tracking continuous system behavior in individual modes of operation, and 
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• Identifying and executing all mode changes including controlled and autonomous jumps. 
Transitioning from one mode to the other involves: (i) switching the state equation model that 
defines continuous behavior in a mode, and (ii) applying the reset function to derive the initial 
state in the new mode. 

The observer uses the state equations models —derived by symbolic analysis from the hybrid bond graph 
model— for tracking the continuous behavior in a particular mode of operation. The analysis also derives 
the controlled and autonomous events that define mode transition conditions as the system behavior 
evolves in time. Solving for the mode transitions requires access to controller signals for controlled 
jumps, and predictions of state variable values for autonomous jumps. We rewrite all autonomous jump 
conditions in terms of the state variables of the system. The state variable estimates are obtained from the 
hybrid observer, and these values are used to determine if autonomous jumps have occurred. If a mode 
change occurs in the system, the observer switches the tracking model (to a different set of state space 
equations), initializes the state variables in the new mode (using a “reset” function, again derived from the 
hybrid bond graph model), and continues to track system behavior with the new model [13]. Fig. 4 
illustrates our approach to building a hybrid observer. 
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Figure 4: The Hybrid Observer Scheme 

Since the input and output of the system may be affected by processor disturbances and measurement 
noise, we use a Kalman filter [23] to track system behavior in a single mode of operation. For a given 
state space model the Kalman gain matrix can be computed from the covariance matrices, as usual.  
 
Fig. 5 illustrates a sample run of our hybrid observer as it tracks the pressure values at the bottom of the 
tanks in the two-tank system. (The horizontal axis shows time in seconds, and the vertical axis shows 
pressure values.) The crosses show the ideal behavior, the circles are the noisy measurement values 
obtained by adding noise to the ideal values, and the continuous black line represents the hybrid 
observer's estimate. The system goes through a set of modes, starting from the initial mode when both 
valves are closed, to the second mode, where the source valve is open, to the third mode, when source 
valve and connecting valve are open, and the last mode, where the source valve is closed. This sequence 
is repeated many times but the figure shows tracking for one cycle only.  
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Figure 5: Sample run of the Hybrid Observer 

5. Approaches to Fault Detection and Isolation 

A primary component of our system is the model-based fault detection and isolation (FDI) subsystem that 
can deal with sensor, actuator, and parametric faults in the system.  Traditional FDI methods [6,24,25,26] 
are primarily directed toward additive faults that include failures in sensors and actuators. Isolation of 
parametric component faults, which are multiplicative, requires the use of sophisticated parameter 
estimation techniques [26]. Numerical techniques for state and parameter estimation often face 
convergence and accuracy problems when dealing with high-order models that may contain non-
linearities [7,26]. Parameter estimation techniques are often biased by measurement noise, and may need 
specialized approaches to compensate for these situations [26,29]. Accurate parameter estimation also 
requires persistent excitation of the input, and this may not always be true during system operation. 
Furthermore, these schemes are applicable in continuous real-valued spaces, and they do not easily extend 
to situations where mode transitions cause discontinuous changes in the system models and system 
variables. Discrete-event based diagnosis techniques have been proposed, but they require the pre-
compiling of the fault models and fault trajectories into Finite State Machines (FSM-s) for tracking 
nominal and faulty system behavior [8,9]. In the section below we will show how an alternative 
representation form can be used which does not require the explicit construction of FSM-s. 
When one deals with hybrid systems that include discrete transitions, extending these continuous 
methodologies becomes intractable, because the residual transformation functions have to be pre-
computed for all modes of operation.  Further, when faults occur, predicting the true system mode in itself 
becomes a challenging task. The fault isolation problem becomes even more complex, when the fault 
occurs in an earlier mode, but is detected in a later mode of operation. The predicted mode sequence may 
no longer be the true mode sequence the system goes through after the occurrence of the fault. Additional 
methods have to be introduced for detecting mode transitions, switching the system model when such 
transitions occur, and correctly initializing the system state, so that the fault observers perform correctly. 
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Typically mode changes introduce discrete effects that cause transients, and it may be difficult to separate 
the fault transients from the transients caused by mode changes.  Therefore, extending continuous FDI 
schemes to hybrid systems is a non-trivial task.  
We use two approaches to the FDI problem that generalize traditional approaches: (i) the use of a robust 
qualitative fault isolation scheme based on tracking fault transients combined with a parameter estimation 
scheme for refining fault hypotheses, and (ii) fault diagnostics based on discrete event models represented 
as fault propagation graphs.  We discuss each of these methodologies in greater detail next. 

5.1 Diagnosis using Hybrid Models 
Our diagnosis methodology consists of three mains steps, (i) using a hybrid observer to track system 
behavior, (ii) detecting fault occurrences, and (iii) isolating faults in the system. The hybrid observer, 
discussed in the last section, uses the models of the system to track system behavior. The fault detection 
schemes that compare the measurements made on the system and the predictions from the observer to 
look for significant deviations in the observed signals are discussed elsewhere [14]. Our fault detectors for 
continuous systems have to be modified to signal faults only when abrupt changes cannot be attributed to 
mode changes [11,13].  
The overall scheme for hybrid diagnosis is illustrated in Fig. 6. We overcome limitations of quantitative 
schemes by combining robust qualitative reasoning mechanisms with quantitative parameter estimation 
schemes for parametric fault isolation [5]. Hybrid bond graphs models discussed in Section 3 form the 
basis for generating parameterized Timed Causal Graphs (TCG-s), a representation that captures system 
dynamics as causal links between system variables, annotated by temporal relations, such as 
instantaneous effects and integral relationships [9]. The bond graph representation explicitly includes 
component parameters that govern system dynamics as resistive, capacitive, inertial, transformation, and 
signal propagation elements.  The TCG representation makes explicit the effect of changes in parameter 
values on the dynamics of system variables. The fault isolation methodology for hybrid systems is broken 
down into three steps. It includes 

1. A fast roll back process using qualitative reasoning techniques to generate possible fault 
hypotheses. Since the fault could have occurred in a mode earlier than the current mode, fault 
hypotheses need to be characterized as a two-tuple <mode, fault parameter>, where mode 
indicates the mode in which the fault occurs, and fault parameter is parameter of the implicated 
component whose deviation possibly explains the observed discrepancies in behavior. 

2. A quick roll forward process using progressive monitoring techniques to refine the possible fault 
candidates. The goal is to retain only those candidates whose fault signatures are consistent with 
the current sequence of measurements. After the occurrence of a fault, the observer’s predictions 
of autonomous mode transitions may no longer be correct, therefore, determining the consistency 
of fault hypotheses also requires the fault isolation unit to roll forward to the correct current mode 
of system operation. 

3. A real-time parameter estimation process using quantitative parameter estimation schemes. The 
qualitative reasoning schemes are inherently imprecise. As a result a number of fault hypotheses 
may still be active after Step 2. We employ a least squares estimation technique on the input-
output form of the system model to estimate consistent values of the fault parameter that is 
consistent with the sequence of measurements made on the system. 

Each of these steps is explained in greater detail next. 

5.1.1 Fast Roll Back Process using Back Propagation 
We use qualitative reasoning mechanism to identify an initial candidate set to explain the discrepancy in 
the observations and predictions. This is achieved by back propagating the qualitative value of the 
discrepancy (−, 0 or +) through the temporal causal graph of the system. Back propagation for initial 
hypotheses generation has to be performed across modes the system has traversed through because the 
fault may have occurred in a previous mode but the manifestations are not seen until a later mode. For 
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example, this happens when none of the observed variables are affected in the mode in which the fault 
occurs. The problem is that once a fault occurs the predicted mode sequence of the observer may no 
longer be correct, and a worst-case analysis may require considering all possible modes of the system in 
generating fault hypotheses. However, we make that the assumption that the controller model is correct; 
therefore, the observer must have predicted the correct mode sequence till the fault occurred. As a 
consequence, the mode in which the fault occurred must be in the predicted trajectory of the observer.  
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Figure 6:Hybrid diagnosis scheme 

 
The back propagation algorithm, determines all possible component parameter deviations that are 
consistent with observed discrepancies in each of the modes in the mode trajectory up to the current 
mode. This ensures that the true fault hypothesis, which includes the fault and the mode in which the fault 
occurred (<mode, fault parameter>) will be included in our initial hypothesis set. As a reasonable 
heuristic, we limit our search by looking back only k modes. k is determined by measurement selection 
analyses [27], which verifies that the effects of any fault must manifest within k mode changes. 
As an example scenario, we introduce a R1+ fault (this corresponds to a partial block in outlet pipe1, 
causing an increase in its resistance) into the system in mode 10, when the level of fluid in the tank 1 is 
very close to the height of the connecting pipe. This causes the autonomous transition, where flow occurs 
in the connecting pipe but the observer does not predict this transition. However, the fault causes the level 
of fluid in tank 2 to start increasing from a 0 value. The observer still works with the model where the 
second tank is isolated; therefore, the predicted pressure value in tank 2 is 0. At some point this leads to 
Tank2Pressure + (above nominal) discrepancy. The back propagation algorithm triggered by this 
discrepancy generates candidates, in what the algorithm thinks is the current mode (source flow on, tanks 
disconnected), but the actual mode is source flow on and tanks connected. The mode produces C1- and 
R1+ as candidates. The system also backtracks to the previous mode (source off and tanks disconnected), 
but that mode does not generate any new candidates. 

5.1.2 Quick Roll Forward Process using Progressive Monitoring 
The quick roll forward process is initiated by applying a progressive monitoring scheme [15] to compare 
signatures for the hypothesized faults against observations within a mode of system behavior. Typically a 
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mismatch would indicate that the hypothesized fault is not consistent with the observations, and the 
hypothesis would be dropped.  In the hybrid system case, it may also imply that the hypothesized mode is 
not the current mode the system is operating in. In that case, we hypothesize potential autonomous mode 
changes that could have taken place but were not hypothesized by the observer after the occurrence of the 
fault. Therefore, the goal of the quick roll forward process is to arrive at situations where the system 
measurements are consistent with the hypothesized fault and predicted mode.   
We can qualitatively predict future behavior of the system under each of the hypothesized fault conditions 
by forward propagating through the TCG [5,15]. These predictions include magnitude and higher order 
derivatives of the variables of the system in the mode that the fault occurred. If the qualitative predictions 
do not match the observations in the mode, we consider possible autonomous mode changes from the 
current mode using the model of the controller plus additional information from the system to limit the 
number of possible mode transitions. For each of the hypothesized modes, the new TCG is used to derive 
a new set of qualitative predictions. If the predictions still do not match the observations, then the 
candidate mode is dropped. For a fault hypothesis, if all mode candidates are dropped, then the fault 
candidate is dropped since none of the possible mode change sequences could make the predictions for 
the fault candidate and the observations consistent. To limit the search in the quick Roll Forward phase, 
the parameter k is again invoked to limit the number of autonomous mode transitions that have to be 
considered. 
Going back to our example fault scenario, the signature for C1− implies that there should be a 
discontinuous change in Tank1Pressure.  Since a discontinuous change in pressure was not observed, we 
eliminate C1− as a candidate. The signature for R1+ in the current mode indicates that the Tank2Pressure 
is unaffected. This does not agree with the observations, so we hypothesize a possible autonomous 
transition, apply this transition, and generate fault signatures for candidate R1+ in this new mode. In this 
mode, the signatures for Tank1Pressure and Tank2Pressure match the actual observations and so R1+ is 
still considered to be a possible candidate. 

5.1.3 Real Time Parameter Estimation 
For the quantitative analysis, we estimate the deviated parameter values for each of the remaining fault 
candidates. To do this, we rewrite the state space equations in terms of the parameter associated with the 
fault candidate, and use least squares estimation techniques to derive the faulty parameter value [5]. First, 
the input output transfer function model of the system is derived as: 
The input output model is expressed in terms of the component parameters by applying the Mason’s gain 

rule to the TCG model of the system. Note that the above formula works only for linear systems. For non-
linear systems (which are approximated by piecewise linear models), a separate formula has to be 
developed for each region, and the parameter estimation procedure has to take these regions into account. 
For each hypothesis, we start a new parameter estimator. To make the computation simpler and achieve 
convergence faster, the parameter estimator estimates only those g and h coefficients that include the 
hypothesized fault parameter. All other coefficients are fixed using nominal values of the remaining 
parameters. If the computed g and h coefficients converge, we can invert the relation between the 
coefficients and the parameter to estimate the parameter value. If a controlled transition occurs during the 
estimation process, we calculate the new input output model and continue the estimation process using the 
new model. We have demonstrated by empirical analysis that the estimator corresponding to the true fault 
parameter converges, whereas the estimators for the other parameters diverge. 
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In our example system, we note that the R1 fault parameter affects only two of the h coefficients. 
Computing the R1 value from these two coefficients we get R1 = 9.87 and R1 = 10.08, respectively. 
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Since these values are close, we make the determination that this is the true fault parameter, and use a 
simple average to estimate the faulty value of R1 to be 9.98. 

5.2 The discrete approach 
The discrete approach uses a discrete model of the dynamic system. Discrete models can offer an 
effective abstraction for diagnosis of large systems [8]. We employ a graphic modeling paradigm based 
on Failure Propagation Graphs (FPG), a set-relational model that can easily represent non-determinism. 
Non-determinism is a characteristic of discrete event models that are derived as an abstraction of 
deterministic hybrid dynamical systems. We have implemented the discrete diagnosis algorithm using 
Ordered Binary Decision Diagrams [16] (OBDD-s), which are used to manipulate sets and relations 
symbolically, thus enabling the representation of very large state-spaces.  

5.2.1 Failure Propagation Model 
Failure propagation graphs [4] capture the relation between failure modes of physical components and 
discrepancies (functional failures) that can be attributed to these failures. Discrepancies may have 
associated alarms that indicate the presence or absence of the discrepancy. Failures propagate to 
discrepancies and discrepancies can cascade as well. The result is a directed graph, which leads from 
failure modes to observed alarms in the system. Figure 7 illustrates a failure propagation graph for the 
two-tank system. 
The Failure Propagation Graph represents trajectories that link the set of failures that can occur in the 
system to possible alarms.  This modeling approach has the advantage of being intuitive, and it captures 
knowledge about the system at a high level. At the same time, it is important to assign precise meaning to 
the graph with relation to discrete abstractions of a hybrid dynamical system. 
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Pressure
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Pressure
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Figure 7: Example Failure Propagation Graph for the Two-Tank System 

 
Starting from a closed-loop model of a hybrid dynamical system, a discrete-event model of the closed-
loop system can be obtained by defining events that correspond to region crossings defined by 
hypersurfaces in the hybrid state-space [9,30]. The set of discrepancies in the Failure Propagation Graph 
are interpreted as a distinguished set of events that correspond to the occurrence of faults in system 
components. The Failure Propagation Graph describes the order of discrepancies in time, following the 
failure occurrence.  
The Failure Propagation Graph is expressed as a six tuple: (V, E, A, F, Q, T), where (V,E) is the graph 
(vertices and edges), A is a set of alarms, F is a set of failure modes, Q is a relation Q ⊆ V × A, and T is a 
relation T ⊆ V × F. To fully represent non-determinism in the model, which allows for diagnosis of 
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multiple simultaneous faults, it is useful to define Q and T as relations between the nodes of the graph and 
the powerset of the alarms and failures, respectively. This approach is detailed in [16]. For computational 
efficiency, the FPG model can be represented symbolically using OBDD-s. 

5.2.2 Diagnosis Algorithm for Single Fault scenario 
The diagnosis algorithm, which makes the single fault assumption, starts by parsing the FPG model into 
two relations, Ancestors ⊆ A × A and Descendants ⊆ F × A, representing the relation between failures and 
alarms. The diagnosis module is initialized with three sets: Hypothesis ⊆ F, AlreadyRinging ⊆ A, and 
MissingUpstream ⊆ A, all initialized to empty sets. A hypothesis data structure is maintained, which 
includes possible failure modes matched with a ranking, designating their plausibility. The plausibility is 
a function of the alarms that occur downstream from a failure mode and are considered supporting alarms 
versus alarms that occur upstream from supporting alarms and are considered to be missing alarms. 
Whenever new alarms are reported, the hypothesis set is refined based on the set-relational computation 
algorithm that appears in Figure 8.  
 

 global set Hypothesis, AlreadyRinging, MissingUpstream; 
global const set Ancestors, Descendants; 
 
procedure RefineHypothesis (in set Alarms) 
local set NewFailureModes, NewMissingUpstream, MissingAncestor,   

  PromotedNewFailureModes; 
begin 
(* Calculate new failure modes that have descendants in the current set 
   of alarms but are not in the hypothesis set yet*) 
NewFailureModes :=  relationalproduct(Descendants,Alarms) intersect 
                    complement(Hypothesis);  
(* Add new failure modes to the hypothesis set *) 
Hypothesis := hypothesis union NewFailureModes; 
(* Calculate missing ancestor alarms: the ancestors of the current  
   alarms, which are not in the set of missing upstream alarms and are  
   not ringing yet *) 
MissingAncecstors := relationalproduct(Ancestors,Alarms) intersect 
      complement(MissingUpstream) intersect  

    complement(AlreadyRinging); 
(* Calculate new missing upstream alarms: all the descendant alarms of    
   the current hypothesis set, which are also in the missing ancestor  
   alarm set *) 
NewMissingUpstream := relationalproduct(Descendants,Hypothesis) 

    intersect MissingAncestors; 
(* Update set of missing upstream alarms *) 
MissingUpstream := MissingUpstream union NewMissingUpstream;  
(* Update set of already ringing alarms *) 
AlreadyRinging := AlreadyRinging union Alarms; 
(* Increment rank of faults which have new supporting alarms and no new  
   missing upstream alarms *) 
PromotedNewFailureModes := relationalproduct(DescendantAlarms,Alarms) 

     intersect  
   complement(relationaproduct(Descendants,  

NewMissingUpstream)); 
end 

 
Figure 8:Discrete Diagnosis Hypothesis Refinement Algorithm 

5.2.3 Example – Two Tank System 
The two-tank system is operated with fluid flowing from Tank 1 to Tank 2 through the connecting pipe. 
For a fault scenario in which a decrease in pressure in Tank 2 is detected, followed by an increase in 
pressure in Tank 1, the results of the diagnosis using the algorithm in Figure 8 are: “Pipe.Clog” with rank 
2 and “Tank1.Leak” with rank 1 and “Tank2.Leak” with rank 1. 
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6. Controller selection 

Our approach is to develop a library of controllers, which is indexed by sets of characteristics. The goal is 
to use the information about current system state, i.e., the current mode of operation and system state 
vector along with failed and degraded states of components and subsystems to select a controller that best 
suits current and long term performance objectives.  
We address the controller reconfiguration task on two levels. At the supervisory (discrete) level, 
reconfiguration implies modification of high-level control actions. This can take the form of replacing a 
current action sequence by a new sequence, or altering the sequence of actions in the current set. This 
type of reconfiguration requires that the supervisory control logic be explicitly represented as a data 
structure. Our challenge is to adopt model-based approaches to representing supervisory control 
programs, and to develop reconfiguration procedures governed by different kinds of fault conditions. At 
the lower (continuous) level of control, the system relies on regulators, which can range from simple 
switching controllers, to PID mechanisms, and then model-based controllers. Reconfiguration at this level 
can take on three different forms.  

1. Set point changes for handling simple fault situations, such as a partially degraded component.  
2. Controller tuning for handling cases where the fault changes the plant dynamics (e.g., changes   in 

the capacitive and inertial parameters in the plant), and the re-tuning of the controller is a viable 
solution.  

3. Structural changes (i.e., rewiring or replacing the regulators) may compensate for complex faults 
where the current controller architecture is unable to maintain the desired control because of a 
significant fault (e.g., sensor faults, actuator faults, and major structural changes in the plant, such 
as pump failures or valves stuck at closed).  

All of the above cases may lead to the introduction of large switching transients into the system. We are 
investigating a number two ways to manage the reconfiguration. Two examples are as follows. 
• The Blender approach. In this technique, a “new” controller gradually replaces the “old” controller. 

The reconfiguration starts with the old and new controllers connected to a tapered switch. Initially the 
output of the "old" controller is fully connected to the plant. As time proceeds, the switch setting is 
gradually moved from the old to the new controller setting. At the end of the process, the new 
controller completely replaces the old one. Interesting research issues that we have to deal with 
include design of the blending function for control signals at intermediate stages of the tapered 
switching process and the speed (and thus the dynamics) at which the switching is accomplished to 
avoid unnecessary transients in the plant dynamics during the reconfiguration process. 

• The State Initialization approach. If rapid reconfiguration is required, the tapered switch approach 
may not be fast enough. In this case, the new controller should replace the old one, possibly within 
the sampling interval set for the system. To avoid large bumps, the internal state of the new controller 
should be initialized in such a way that it generates a control signal after reconfiguration that is 
minimally different from the last signal generated by the old controller.  

There is an interesting and highly relevant aspect of controller reconfiguration that is also being 
addressed: the explicit management of reconfiguration transients. Early results [24,25] show that there are 
a number of techniques available for mitigating reconfiguration transients in control systems. If the 
selected approach of controller re-initialization and/or blending does not meet the requirements for the 
reconfiguration dynamics other, more explicit transient suppression techniques can be applied to mitigate 
the effects of switching.  

7. Conclusions and Future Work 

We have applied our continuous and discrete FDI methodology to diagnosing faults in a two-tank system 
with a number of valves.  A simple supervisory controller model took the system through a number of 
filling, emptying, and mixing cycles. We were successful in tracking continuous system behavior through 
discrete mode changes, and isolating faults when they occurred, with the discrete and continuous 
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diagnostics algorithms. As a next step, we would like to extend the two diagnostic algorithms to work in a 
more cohesive fashion, and inform each other as they come up with fault hypotheses. Once this step is 
completed, we will introduce the controller selection mechanisms to have a comprehensive 
implementation of the FACT architecture that has been presented in this paper.  
We are also looking at applying this technology to more real-world applications, such as the fuel transfer 
system in modern aircraft. The physical components of the fuel system include a number of tanks, 
interconnecting pipes, valves, and pumps. In addition, the system is equipped with sophisticated controls 
to support reliable and robust fuel delivery under a variety of flight conditions, at the same time ensuring 
that the gravity of aircraft center of gravity is not compromised. In addition, the controllers have to deal 
with a number of fault scenarios, such as pump failure and pipe leaks. The goal under such conditions is 
not to compromise aircraft safety, but to save as much fuel as one can to continue the current mission. To 
achieve this the system should utilize built-in redundancy mechanisms to compensate for the failure, and 
at the same time, maintain control. We are currently developing models of a generic aircraft fuel system, 
and testing and validating the FACT tools and techniques on a number of example scenarios that have 
been generated using a high fidelity simulator. 
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