
Model-based Software Tools for Integrated Vehicle Health Management 
 
 

Gabor Karsai, Gautam Biswas, Sherif Abdelwahed, Nag Mahadevan, Eric Manders 
Institute for Software-Integrated Systems,  

Vanderbilt University 
Nashville, TN 37235 

{gabor,biswas,sherif,nag,ericM2}@isis.vanderbilt.edu 
 

 
Abstract 

 
Present day IVHM systems are often constructed 

using hand-written code that is hard to produce and 
difficult to verify and maintain. In this paper we intro-
duce a suite of model-based tools that allow for the 
construction of embeddable IVHM applications using 
a model-based approach. Reusable (and potentially 
validated) reasoners are used in conjunction with ex-
ecutable code that is generated from models, thus al-
lowing the integration of the reasoner as a component 
into a larger on-board system. This paper describes 
the toolsuite, the modeling approach used, the run-
time environment, and some of the applications where 
the tools were used.  
 
1. Introduction 
 

Integrated Vehicle Health Management systems to-
day (like the AHM on the Space Shuttle) are often 
built using traditional programming languages and 
tools that ensure performance but require significant 
effort in specification, design, implementation, verifi-
cation, and maintenance.  IVHM systems include sig-
nificant software components, which may provide in-
put to flight critical systems (e.g., engine shutoff), thus 
their reliability is of utmost importance. These soft-
ware components are built using traditional procedural 
languages, and they have to go through the same V&V 
processes as any other flight critical software. Fur-
thermore, any change in the underlying hardware ne-
cessitates changes in the software, resulting in a costly 
re-implementation and re-certification. Thus, the de-
sign, implementation, verification, and evolution of 
these systems can be very expensive, and the cost-
benefit of onboard IVHM systems is often hard to jus-
tify. 

Model-based software development that relies on 
the use of domain-specific modeling languages, model 
analysis, and automatic code generation from the mod-
els is considered one of the promising directions in 

embedded software development. Model-based devel-
opment processes and tools are rapidly gaining accep-
tance in the industry, even in safety-critical systems 
like flight control. Modern flight control systems today 
are often prototyped and tested by simulation in 
model-based tools (Matrix-X and Simulink/Stateflow 
being the two most relevant examples), and then em-
bedded code is generated from the models for deploy-
ment onboard the target platform. 

In this paper we describe an approach, called Fault-
Adaptive Control Technology (FACT) that uses 
model-based development tools, software generators, 
and reusable run-time reasoner components for build-
ing on-board IVHM systems. This framework provides 
a model-based software development approach, and it 
integrates with other model-based tools as well. The 
tools and the technology have been evaluated in a set 
of prototype applications that are discussed in section 
4.  
 
2. Background 
 

Integrated Vehicle Health Management (IVHM) has 
been used in the aerospace industry for 30+ years. Its 
goal is to provide better ways for operating and main-
taining aerospace vehicles using techniques, such as 
condition monitoring, anomaly detection, fault isola-
tion, and managing the vehicle operations in the case 
of faults [1]. In general, this includes a large number of 
sub-disciplines (e.g., sensor technology, signal proc-
essing algorithms, and robust control techniques), but 
our focus in this paper is on the software aspects of de-
signing and implementing these systems.  

The variety of tasks covered by the IVHM frame-
work (monitoring, detection, feature extraction, isola-
tion, identification, and consequence analysis) implies 
the need for significant diversity in the IVHM software 
components. A recent industry initiative, “Open Sys-
tem Architecture - Condition Based Maintenance” 
(OSA-CBM) [2] was targeted toward defining a 
framework for constructing and organizing software 



and systems for condition-based maintenance – a close 
relative of IVHM. The OSA-CBM development archi-
tecture standard serves as a reference for constructing 
layered software products that solve problems similar 
to the ones arising in IVHM systems, including data 
acquisition, data manipulation, condition monitoring, 
health assessment, prognostics, decision support, and 
presentation. Note that OSA-CBM defines the inter-
faces between these layers but leaves the implementa-
tion of the functions open to the use of different algo-
rithms and procedures.  

An important component of the IVHM function is 
related to fault detection and fault isolation. Here we 
can only hint at the vast literature and the diversity of 
techniques in these fields that come from well-
established disciplines like signal processing, dynamic 
system theory, control theory, and automated symbolic 
reasoning and search (subfields within “AI”).  Note 
that while a large number of algorithms and techniques 
are available, very little has been published on the 
software implementation, integration, and run-time en-
vironments for these systems.  

Our work develops a model-based software devel-
opment toolsuite for constructing embedded IVHM 
applications. We have used a specific sort of model-
based development approach called Model-Integrated 
Computing (MIC) [3]. MIC is a variant of the Model-
Driven Architecture (MDA) variant of the Object 
Management Group (OMG) that focuses on the use of 
domain-specific modeling languages (DSML-s), model 
analysis tools, model transformations (including code 
generation), and model-integrated toolchains. Domain-
specific modeling implies that the models used to ana-
lyze, (possibly) generate, and integrate the system are 
expressed in languages that are based on the concepts 
of the engineering discipline that the application is cre-
ated for. Specifically, in the case of IVHM, the 
DSML(s) should support the modeling of dynamic sys-
tems from the viewpoint of the health management. 
Note that a number of system-level modeling lan-
guages exist, but they are not well-suited for modeling 
systems for IVHM applications. Model analysis uses 
the domain-specific models for design-time analysis, 
facilitated by simulators, symbolic and mathematical 
analysis techniques (e.g., model checking and theorem 
proving). Model-based code generation is the process 
of transforming models into executable code. While it 
is doubtful that automated code generation from mod-
els will completely replace manual code development 
in algorithmic languages, it seems useful for specific, 
well-structured domains (e.g., controllers specified us-
ing Statechart-like notations), and for interface (a.k.a. 
“glue”) code that is not hard but tedious to write by 
hand. Code generation can be looked upon as a spe-

cific version of model transformations that translate 
and transform models while preserving model seman-
tics. Model transformations also play an essential role 
in forming tool chains for a set of tools that are each 
generated using model-based development tools, but 
each tool may employ a different modeling language. 
For instance, a design tool may be based on a dedi-
cated design language (e.g., Statecharts) but model 
analysis tools could use their own notation and lan-
guage (e.g., Promela in SPIN) — which necessitates a 
model transformation when theses tools are used in an 
engineering process.  

MIC has been defined, developed, and used over 
the past fifteen years, and it is facilitated by a suite of 
meta-programmable tools that support the construction 
of DSML-s, model transformation tools, and integrated 
toolchains. The meta-tools and example toolchains are 
described elsewhere [3], and are available through the 
Escher Institute1; a non-profit organization that hard-
ens and disseminates research products from govern-
ment programs.  

 
3. The FACT toolsuite 
 

The FACT toolsuite [4], developed using MIC 
meta-programmable tools, is a model-based software 
development environment for constructing IVHM ap-
plication. Not all aspects of the IVHM software devel-
opment are addressed in the current version of the 
FACT paradigm. In this paper, we focus mainly on the 
functionality for (a) model-based observation and 
tracking, (b) fault-detection using statistical tech-
niques, (c) fault-source isolation using symbolic rea-
soning, (d) fault-magnitude estimation, and (e) recon-
figurable control via switching among pre-determined 
alternative control laws. The toolsuite is constructed 
such that in the final IVHM application a toolchain can 
be constructed that includes one or more of all of the 
above capabilities.  

FACT has two main components: (1) a design-time 
environment for modeling and model transformation, 
and (2) a run-time environment consisting of the 
model-based reasoner components. A Windows desk-
top version f the runtime environment can be used for 
simulation-based experiments. Synthesized code for 
embedded boards is used for online processing on the 
actual system.  The notional architecture of FACT is 
shown on Figure 1. 

Specifically, FACT includes (1) a graphical model-
ing environment that supports a multitude of modeling 
languages for capturing plant and controller models, 
(2) a set of program generators that “compile” the 
                                                           
1 www.escherinstitute.org  



models into executable code, and (3) a run-time com-
ponent that includes (a) a hybrid observer, (b) config-
urable fault detectors, (c) two diagnostic reasoners 
(one that operates in continuous-time but accommo-
dates discrete changes in system models , and a second 
that operates with timed discrete-event models) that 
could be used separately or in conjunction, (d) a con-
troller reconfiguration manager, and (e) a small foot-
print dataflow kernel that coordinates the operations of 
the various components. We briefly describe each of 
these components below.  

 

Run-time Platform  

Interface & Controllers 
  

Hybrid Observer  

Hybrid   Diagnostics   
Failure Propagation   Diagnostics   

  Active   Model   Controller Selector 

 
 

 
 

Reconfiguration Manager 

Fault Detector   Plant 
Models 

Controller
Models 

Strategy
Models

Model Transformation/ 
Code Generation 

 
Figure 1. The FACT architecture 

3.1 Modeling in FACT 
 

FACT models contain two parts. One is geared 
toward physical plant representations that facilitate di-
agnosis and control. The second component is geared 
toward modeling the plant controllers. Two plant mod-
eling forms are employed that correspond to the two 
independent fault isolation methods: one based on hy-
brid bond-graphs [5], and a second based on fault 
propagation graphs [6]. Both languages describe the 
plant in terms of hierarchically structured components. 
The two languages share a common component hierar-
chy representation for the plant model, but they repre-
sent different aspects of component behavior at each 
level of the hierarchy. 

The approach based on hybrid bond graphs (HBG) 
represents the physical plant as an interconnected set 
of junctions that can be switched on and off, effort and 
flow sources that define mechanisms for energy trans-
fer in and out of the system, resistive that model the 
dissipative behaviors in the system, energy storage 
elements that define the time-varying characteristics of 
system behavior, and transformers and gyrators that 
model transformations between different energy do-
mains. An example is shown on Figure 2. The model-
ing approach is based on the bond-graph modeling 
technique [7]: a physics- and energy-based, domain-
independent modeling approach for dynamic systems. 
There are two extensions in FACT beyond the basic 

bond-graph approach: we support non-linear behaviors 
by allowing component parameter values to be func-
tions of the value(s) of state variables, and we support 
junction switching, which changes the model configu-
ration depending on whether the junction is on or off. 
This latter feature is highly productive for representing 
systems that undergo discrete changes, such as a valve 
turning on and off. As mentioned above, bond graphs 
represent energy flows, however, in FACT information 
flows (controlling junctions and influencing non-linear 
elements) are also explicitly modeled.  Note that other 
modeling approaches, e.g., signal flow diagrams can 
easily be converted into bond graphs, and other dy-
namic system models, e.g., state-space representations 
can be easily derived from the bond graph models. We 
make the assumption that all faults and degradations of 
interest are captured as component parameters in the 
hybrid bond-graph model, therefore, all fault hypothe-
ses are captured as parametric faults, i.e., changes in 
one or more parameters of the model. For example, in-
crease resistance, decreased capacitance, changes in 
the transformer coefficient define fault hypotheses, and 
the objective of the fault diagnosis is to isolate the 
faulty parameter and identify its specific value.  

 
Figure 2. Example HBG model 

The approach based on timed failure propagation 
graphs (TFPG) [6] uses a model where component fail-
ure modes and their effects, called discrepancies, are 
enumerated. Failure modes belong to components and 
cause discrepancies which may lead to other discrep-
ancies, thus, produce the effects of the failure mode 
cascading through the system. The assumption here is 
that (the majority of) discrepancies are detectable by 
one or more observations. The causal links between 
failure modes and discrepancies, and between pairs of 
discrepancies, may be mode-dependent, and could 
have a simple dynamics associated with them. The 
“simple dynamics” means that the modeler can specify 
minimum and maximum propagation times for each 
link. The fault assumption here is that components fail 
with known failure mode(s), and the effect of these 
faults are detectable through (hardware and software) 
monitors that detect specific discrepancies.  



 
Figure 3. Example TFPG model 

The modeler can use either or both modeling ap-
proaches to construct plant models. Note that the 
HBG-approach requires a high-fidelity model of the 
plant, while the TFPG-approach uses a simpler and 
coarser causal model that can usually be generated by 
design or plant engineers. An interesting issue is to 
link failure modes defined by the HBG model based on 
physics models, and TFPG failure modes that are 
specified by human experts, and study the integrated 
results from the two reasoners.  

Beyond modeling the physical plant, the FACT 
modeling language also support modeling of recon-
figurable controllers. Such controllers are modeled us-
ing a signal-flow, block-diagram oriented paradigm, 
where the configuration of block diagram is deter-
mined via a controlling finite state machine (CFSM). 
Blocks in the diagram represent individual controller 
algorithms whose behavior is specified using either 
procedural code or using a FSM-like modeling lan-
guage. The reconfiguration implies a topological 
change in the block diagram, and this is captured by 
assigning various sub-graphs (blocks and connecting 
‘wires’) to each state of the CFSM. A state transition 
in the CFSM can be linked to failure-modes identified 
in the HBG or in the TFPG, with the following seman-
tics: if failure mode <Fi>  is identified as the fault 
source then trigger transition <Tj> and potentially re-
configure the controller structure. Figure 4 shows an 
example controller model.  

The modeler creates models for the plant and the 
controllers (as needed) using the DSML of FACT, 
which is supported by MIC’s meta-programmable vis-
ual modeling environment called Generic Modeling 
Environment (GME) [8]. These models are then com-
piled into either a compact loadable file, or executable 
code. The purpose of these is to reconstruct the model 
data structures in the run-time environment. The load-
able file is used whenever file storage is available for 
the run-time system (e.g., in a desktop experiment), 
while the executable code is used whenever the “model 
construction” code needs to be compiled into the run-
time environment because of the lack of a file system 
(e.g., an embedded board).  

 
Figure 4. Example controller model 

3.2 Run-time environment 
 
The FACT run-time environment consists of a 

number of generic software components that are in-
stantiated and configured according to the models. 
These components could be used as standalone com-
ponents (e.g., a TFPG-based reasoner), or under the 
control of a small, component integration platform: a 
dataflow kernel that schedules component execution. 
Figure 5 shows the details of the FACT run-time sys-
tem. We describe the main components and how they 
are implemented below. Figure 5 shows the details of 
the FACT run-time system.  

 
Figure 5. FACT run-time system 

The FACT run-time system includes a hybrid ob-
server (HO) that tracks the continuous plant behavior, 
and also across discrete mode changes, which corre-
spond to changes in the junction state of the HBG. 
Changes in junction configuration modify the model 
topology, and corresponding to each bond graph to-
pology, a new set of state space equations is derived. 
The HO essentially implements a multi-model Ex-
tended Kalman filter (the system models are nonlin-
ear), with a different continuous model for each mode 
(junction states) of operation. When a mode change 
occurs, the filter is switched to a different set of equa-
tions. The HO is automatically and symbolically de-
rived at the time when the run-time system is initial-
ized with the models. Plant inputs and plant outputs are 
both fed to HO, and some of these signals are used to 
trigger mode changes in the filter. Obviously, the HO 
requires the presence of HBG models. The HO main-



tains an “active state model,” which is the best current 
estimate of the model parameters, state variables and 
mode of the plant.  

The HO produces predictions for the plant’s state, 
and these are continuously compared against observa-
tions. If there is a significant difference detected be-
tween the predicted and the observed behavior, then 
the fault isolation process is initiated. The fault detec-
tors act as the decision making units for triggering 
fault isolation. To ensure robustness, and to reduce 
false alarms, a statistical hypothesis testing algorithm 
based on the Z-test is employed for the detection of 
deviations for each measured signal. The algorithm is 
highly parameterized, but can also be substituted by 
user-supplied fault detection code. Alternatively, if 
HBG models for the plant are not available, the TFPG 
fault isolation scheme by itself can be triggered by 
fault detection events that are generated from the 
“monitors,” which are custom hardware and/or soft-
ware elements attached directly to plant equipment, 
and generate “alarm” signals when discrepancies are 
observed.  

As mentioned above, FACT includes two fault 
isolation algorithms. One of the algorithms is based on 
the HBG-s, and it uses a qualitative/symbolic reason-
ing technique for initial fault isolation. The reasoning 
tracks the qualitative dependencies among plant state 
variables, and uses the deviations (and their deriva-
tives) detected between the expected and observed 
plant output. The reasoning process requires typically a 
few characteristic measurement deviations (derived 
from the HBG model as a fault signature) to isolate the 
parameter of the physical system whose deviation 
caused the fault. In many cases, due to the ambiguity 
in the qualitative scheme, all physical faults (i.e., pa-
rameter changes) may not be uniquely isolable because 
they generate similar symbolic signatures for all of the 
available measurements. As a result, the qualitative 
reasoner produces a set of candidate failure modes. 
This candidate set is further pruned down using a nu-
merical system identification (SI) process. For every 
fault candidate, we start a separate SI thread that uses 
collected data, and computes the value of each of the 
hypothesized deviated plant parameters from the data. 
The deviated parameter value that produces the least 
error in tracking the measurements is considered to be 
the real candidate, and the estimated parameter value is 
considered the new, “faulty” parameter value for the 
plant. This faulty value is written back into the “active 
state” model in the HO, and once this update is per-
formed, we have shown that the HO is able to track the 
faulty plant with small error. 

The second algorithm executed in parallel uses the 
TFPG algorithm, which receives time-stamped data 

from the fault detectors (or monitors) that indicate the 
discrepancies that have been detected. Using a propa-
gation algorithm on the TFPG model, the most plausi-
ble explanation for the discrepancy sequence observed 
is derived in terms of specific failure modes in compo-
nents. The algorithm is “robust,” i.e., it can tolerate 
missing (undetected) or false (erroneously indicated) 
discrepancies. Edges in the TFPG could be dependent 
on operational modes of the system: the algorithm 
tracks and analyses these changes as well. Note that 
the TFPG has structural and temporal constraints that 
discrepancy sequence must satisfy, and this informa-
tion can be used to eliminate unlikely failure modes. 
The TFPG reasoner also generates a set of failure 
mode candidates, but these are ranked according to 
plausibility metrics defined in terms of the TFPG 
model.  

If both the HBG and TFPG reasoners are present, 
their result is combined using a straightforward fusion 
algorithm: failure modes isolated by both reasoners get 
the highest likelihood, while failure modes generated 
by only one reasoner are discarded. If only one rea-
soner is available, its results are used as the true fault 
candidate. In either case, the result of the fault isola-
tion process is made available through an API for other 
software components to use.  

The isolation fault can be used to trigger a recon-
figuration in the control system, if control models are 
provided. Initially, the controller models are compiled 
and instantiated, such that one of the alternative con-
trollers is active. This controller operates with the as-
sistance of the run-time kernel that acts as a dataflow 
scheduler for the controller blocks. The CFSM is com-
piled into executable code that implements the state 
transition and reconfiguration logic. The reconfigura-
tion happens when such a fault is isolated that has a 
corresponding transition from the current, active state 
in the CFSM. When such a transition is found, the new 
state is determined and the wiring of the controller 
blocks is changed, under the control of the dataflow 
kernel. For mitigating the reconfiguration transients, 
we have experimented with a number of strategies for 
initializing and transitioning the state of the controller 
blocks, some of which have been modeled as recon-
figuration strategies.  

 
3.3 Using FACT 

 
The FACT toolsuite is a model-based develop-

ment environment for constructing IVHM applications. 
It provides tools for debugging and experimenting with 
an IVHM application, and it also has tools for generat-
ing runtime code for deployment on an embedded plat-



form.  Figure 6 shows how the FACT tools could be 
used.  

  
Figure 6. Using the FACT tools 

Once the models are constructed, the designer can 
compile them into a form suitable for use in a desktop 
experimentation environment. The desktop environ-
ment allows the processing of input/output data files 
and running the HO, and the reasoners.  Testing the re-
configurable controllers is also possible, but it requires 
some coding that integrates the library containing the 
FACT run-time components with real-time data 
streams. 

Lessons learned from the desktop experimentation 
typically used in improving the models. Once this 
process converges, the executable code for the embed-
ded platform is generated and the application tested on 
the real hardware.  

 
4. Application experience with FACT 

 
FACT has been tested on a number of example 

systems. Below we highlight the main results and dis-
cuss the experiences. 
 
4.1. Academic example: The 3-Tank system 
 

One example system FACT has been tested on is 
the classic 3-tank system. The notional schematic of 
the system is shown on Figure 7.  

 
Figure 7.  3-tank system 

The 3-tank system consists of 3 interconnected 
tanks that hold some fluid. The anticipated failure 

modes of the system include: tank capacity change 
(something is dropped in to the tank), pipe blockage, 
and fault in the input feed. 

The construction of the model was straightforward, 
although the system has been modeled in the past ex-
ceedingly. For model parameter estimation we have 
collected data from the real physical implementation 
(available in the lab at Vanderbilt), and used a standard 
system identification techniques for model parameter 
estimation [9]. Once the HBG model was constructed 
and identified, we have shown that the HO can indeed 
track the plant, both in the continuous and discrete 
modes. The tracking error was typically less than 5% 
in the continuous modes and a little higher when mode 
transitions occurred. Next, we collected data from the 
real system that included faulty behavior, by inducing 
faults in the physical system. The “faulty” data was 
used to fine tune the fault detectors and ensuring that 
they trigger on the right event(s).  

We ran a number of experiments with faults in ei-
ther tanks 1 and 2 or blocks in the connecting and 
drain pipes. The measured values were the three tank 
heights. For capacity faults ( −−

21 ,CC ) the qualitative 
fault isolation scheme was able to isolate the fault 
uniquely in less than 10 time steps (sampling rate = 1 
sec), whereas for the resistive fault, a block in the out-
let pipe from tank 1 ( +

1R ), qualitative fault isolation 

reduced the number of candidates to two ( −+
121 , RR ), 

i.e., block in Tank 1 outlet pipe or leak in the transfer 
pipe between tank 1 and 2. After 50 time steps the SI 
module was initiated, and it estimated the true fault 
with the fault parameter value of (2x), i.e., the block 
fault doubled the drain resistance of the pipe. 
 
4.2. Simple example: Simple aircraft fuel sys-
tem 
 

A second, more realistic example is a generic fuel 
transfer system for fighter aircraft, illustrated in Figure 
8. The system is designed to provide uninterrupted 
supply of fuel at a constant rate to the aircraft engines 
while maintaining the center of gravity of the aircraft. 

The system is symmetrically divided into left and 
right parts (top and bottom in the schematic). The four 
supply tanks (Left Wing (LWT), Right Wing (RWT), 
Left Transfer (LTT), and Right Transfer (RTT)) are 
full initially, and so are the two receiving tanks (Left 
Feed (LFT) and Right Feed (RFT)) that directly feed 
the engine. During engine operation, fuel is transferred 
from the supply tanks through a common manifold to 
the two feed tanks in a sequence determined by the 



fuel system controller. The controller generates on/off 
signals for the pumps in the supply tanks, and the 
valves in the pipes to achieve different flow configura-
tions.  

 
Table 1 illustrates the results of a set of diagnosis 

experiments that we ran for a set of faults using the 
HBG scheme. In the experiments, we varied the fault 
size and amount of measurement noise in the signal. In 
designing the experiments, we had to set parameters 
for the Kalman filter, fault detector, and symbol gen-
erator. A high fidelity simulator was used to generate 
the data for the experimental runs, and measurement 
noise was added to the simulated data. Ten runs were 
conducted for each noise level and fault size, and the 
mean values of the detection and isolation times, the 
candidates generated by qualitative fault isolation, and 
the parameter value error after least squares estimation 
are reported in the table. The results indicate that as the 
noise levels in the measurements increase, and the fault 

magnitudes become smaller, the time to detection, iso-
lation, and identification (i.e., parameter estimation) 
increase, and the parameter estimation error increases. 
Experiments conducted with the TFPG diagnoser pro-
duced similar results but for lack of space are not re-
ported here. 
 
4.3. Complex example: Generic fuel system 
 

As a scaling up project, a comprehensive TFPG 
model of the Generic Fuel System, which is compara-
ble in complexity to models of real-life systems, was 
created using the FACT modeling language. The 
TFPG model is illustrated in Figure 9. In addition to 
capturing the failure propagation across the main sub-
sub-systems – Left & Right Fuselage Tanks, Left & 
Right Wing Tanks, Transfer Manifold, and Left & 
Right Feed Tanks – in great detail, this model also cap-
tures the failure propagations associated with the 
power and control elements in the system. This model 
includes 153 Components, 481 Failure Modes, 1973 
Discrepancies, 270 Alarm Monitors, 9 Modes, 3409 
Failure Propagation links (555 of them with Activation 
Functions described by Mode States).  This represents 
a significant scale-up when compared to the TFPG 
model of the simple Fuel System which had 15 Com-
ponents, 17 Failure Modes, 35 Discrepancy, 70 Failure 
Propagation Links, 14 Alarms, and 6 Modes.  

The initial system was tested exhaustively on the 
data generated from an independent simulator for 
about 250 fault scenarios. In all cases the list of “Most 
Probable Faults” from the reasoner included the “real” 
fault source(s) / failure mode(s). The worst case re-
sponse time on a  desktop AMD-Athlon XP(2400+) 2 
GHz Processor with 448 MB RAM was around 0.1 
seconds while that on a PowerPC 750, 400 MHz, 256 
MB RAM it was around 0.3 seconds.  

 

In order to validate and monitor the performance of 
the system, a simulator has been designed that gener-
ates data sets of alarm and mode events, given a model 
and a timed – sequence of faults (failure modes). The 
data sets are fed to the reasoner and the reasoner output 

Table 1. Fuel system experiments with different 
fault magnitudes and noise levels 

 
Figure 8. Simple fuel transfer system 

Figure 9. TFPG model of generic fuel system 



is verified against the initial fault sequence. This pro-
cedure is useful in validating the design model and im-
proving the model to reduce the ambiguity group in the 
final set of hypothesis. 
 
4.4. Real-time example: The SEC flight ex-
periment  
 

In a DARPA project demonstration, the FACT 
diagnosis engine was used to detect and diagnose 
faults in actuator faults in a GTMAX helicopter ex-
periment run at Georgia Tech. The result of the diag-
noser was fed to a reconfigurable flight controller. Ac-
tuator data – controller output, actuator position – ob-
tained from GTMAX was fed to the HBG-based diag-
nosis engine, and run as Software in the Loop (SITL), 
as well as Hardware in the Loop (HITL) experiments.  
For HITL, the FACT diagnosis library was ported to 
QNX – the operating system on the GTMAX proces-
sor. Initial experiments performed with the GTMAX 
simulator (SITL) helped fine tune the fault detectors, 
and this avoided false positives in the HITL runs. 

Both in SITL as well as HITL, the stuck actuator 
faults were detected, isolated, and estimated within 2 
seconds of the inception of the fault. The quick detec-
tion and accurate estimation greatly helped the per-
formance of the reconfigurable controller. Even in the 
presence of heavy wind gusts and other measurement 
noise, the detection and diagnosis results were robust, 
and activation of the reconfigurable controller was 
completely within 3-4 sec. The number of false posi-
tives was less than 5% (about 1 in 20). 

 
5. Summary and conclusions 
 

We have shown a model-based software develop-
ment tool for constructing IVHM applications. The 
tool supports the modeling of the physical plant and its 
controllers, the transformation of the models into a 
form suitable for execution on an embedded platform, 
and the run-time execution of hybrid state estimation, 
fault detection, fault isolation and fault estimation, and 
reconfigurable control. The tool has been applied to a 
number of examples and this illustrates the power of 
the model-based software development paradigm. 

The FACT paradigm just represents a few of the 
tools used by IVHM engineers. For instance, FMECA 
databases, testability analysis tools, fault simulators, 
and cost estimation tools are all useful for constructing 
ISHM applications. We have already started working 
on developing additional tools and the resultant tool in-
tegration issues. For instance, we can import compo-
nent/failure mode/test function data from a testability 

tool. We are also able to generate Simulink/Stateflow 
simulations from the FACT/HBG models. Another po-
tential growth area is to provide tools diagnosability 
analysis. Both the HBG and TFPG models lend them-
selves to analytical methods that predict the quality 
and performance of the fault diagnosis process.  

Yet another extension could be to improve the rea-
soners that they use anytime algorithms, and can grace-
fully degrade under resource constrained situations (on 
the embedded platform). We plan to investigate these 
and other issues with FACT, in order to grow the tool-
suite that supports a number of engineering activities 
needed in IVHM.  
 
6. References 
 
[1] L. Melvin, et al., “Integrated vehicle health monitoring 

(IVHM) for aerospace vehicles,” International Work-
shop on Structural Health Monitoring Stanford, CA, pp. 
705-714, Sept. 1997. 

 
[2] M. Lebold and M. Thurston, “Open standards for Con-

dition-based Maintenance and Prognostic Systems,” 
Maintenance and Reliability Conference (MARCON), 
May, 2001. 

 
[3] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, 

“Model-integrated development of embedded software,” 
Proc. of the IEEE, 91(1), pp. 145–164, Jan. 2003. 

 
[4] G. Karsai, et al., “Towards fault-adaptive control of 

complex dynamical systems,” in Software-Enabled 
Control – Information Technology for Dynamical Sys-
tems, eds., T. Samad and G. Balas, pp. 347–368, Wiley-
IEEE press, NJ, 2003. 

 
[5] P.J. Mosterman and G. Biswas, “A theory of disconti-

nuities in physical system models’, Journal of the 
Franklin Institute, vol. 335B(3), pp. 401–439, 1998. 

 
[6] JR Carnes, A Misra, and J Sztipanovits, “Model-

integrated toolset for fault detection, isolation and re-
covery (FDIR),” IEEE Symposium and Workshop on 
Engineering of Computer Based Systems, 1996. 

 
[7] D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, 

Systems Dynamics: Modeling and Simulation of Mecha-
tronic Systems, 3rd ed. John Wiley, NY, 2000. 

 
[8] A. Ledeczi, et al., “Composing Domain Specific Design 

Environments,” IEEE Computer, vol.  34(11), pp. 44-
51, 2001. 

 
[9] J. Wu, et al., “A Hybrid Control System Design and 

Implementation for a Three-tank Testbed,’’ IEEE Conf. 
on Control Applications, Toronto, CA, pp. 645-650, 
Aug. 2005. 


