
Fault-Adaptive Control:
A CBS Application

Gabor Karsai, Gautam Biswas, Tal Pasternak, and Sriram Narasimhan

Institute for Software Integrated Systems
Vanderbilt University
PO Box 1829 Station B

Nashville, TN 37235,USA
{gabor,biswas,tal.pasternak,nsriram}@vuse.vanderbilt.edu

Gabor Peceli, Gyula Simon, and Tamas Kovacshazy
Department of Measurement and Information Systems

Technical University of Budapest, H-1521 Budapest, Hungary
{simon,khazy,peceli}@mit.bme.hu

Abstract
Complex control applications require a capability for ac-
commodating faults in the controlled plant. Fault accom-
modation involves the detection and isolation of faults, and
taking an appropriate control action that mitigates the
effect of the faults and maintains control. This requires the
integration of fault diagnostics with control, in a feedback
loop. This paper discusses how a generic framework for
building fault-adaptive control systems can be created
using a model-based approach. Instances of the framework
are examples of complex CBS-s that have novel capabili-
ties.

1. Introduction
Today’s complex systems, like high-performance aircraft
require sophisticated control techniques to support all as-
pects of operation: from flight controls through mission
management to environmental controls, just to give a few
examples. All this, of course, is done using a multitude of
CBS, all of which rely heavily on software technology.
Software acts both as the vehicle to implement functional-
ities and as the system integrator. One of the main goals of
software is to implement control functions: open- or
closed-loop control, from low-level regulation to high-
level supervisory control.
Any real-life system is prone to failures: either physical
(hardware) or logical (software). When a high degree of
reliability and safety is desired the effects of these failures
must be mitigated and control must be maintained under
all fault scenarios. If systems are designed with redun-
dancy, control decisions have to be made when and how
the backup systems should be activated, and how exactly
the reconfiguration should happen. All these decisions
must be made by a control system that now incorporates
not only simple regulatory loops and the supervisory con-

trol logic, but also a set of components that detect, isolate,
and manage faults, in coordination with control functions.
Control theory gives very little guidance to the implemen-
ter of these systems: while there are special cases for
which the mathematical apparatus has been created, the
full theory of control systems that can operate under fault
conditions is not realized yet. Implementations tend to take
a pragmatic approach: possible fault scenarios are enumer-
ated and the system is prepared with appropriate fault ac-
commodation actions for each case. For these cases, this
approach works quite well, but may break down in unfore-
seen situations.
In this paper, we show a systematic model-based approach
that can be used to create control systems that can accom-
modate faults. We call this approach Fault-Adaptive Con-
trol Technology (FACT, for short), which integrates a
number of areas from fault diagnostics, control theory,
signal processing, software engineering and systems engi-
neering.
This paper first discusses the background areas that con-
tribute to the FACT. Next, a reference-architecture of
FACT systems is presented followed by details on how the
architecture can be realized. The paper concludes with
showing some initial results.

2. Background
Fault-adaptive control involves solving a number of tech-
nical problems beyond the capabilities of traditional con-
trol approaches. First, the faults must be detected. Nominal
behavior of the plant must be distinguished from faulty
behavior, and the discrepancies between the two must be
noted. Once a fault is detected, its source must be isolated.
Fault source isolation is a process that generates a set of
hypotheses regarding the cause of a fault, typically in

terms of physical components and their failure modes.
After fault source isolation, a decision has to be made how
to reconfigure the control system in order to accommodate
the fault. Many alternatives may have to be evaluated, and
one has to be selected which is optimal according to some
metric. Finally, the reconfiguration must be executed: set
points and control parameters changed, or different con-
trollers selected.

3. FACT Architecture

Our overall approach, illustrated in Fig. 1, is centered on
model-based approaches to design hybrid observers, fault
detection and isolation algorithms, and controller selection
and reconfiguration methodologies. Hybrid models [2],
derived from hybrid bond graphs [3], which systematically
incorporate continuous system dynamics and discrete
events, establish the core of the modeling framework. Hy-
brid observers estimate the continuous dynamic states of
the system and detect mode changes in the system opera-
tion. Sophisticated signal analysis and filtering methods
linked to the hybrid observers will be used for detecting
deviations from nominal behavior and triggering the fault
isolation schemes.

Figure 1: Fault Adaptive Control Architecture

Our diagnostic schemes integrate the use of failure-
propagation graph based techniques for discrete-event di-
agnosis [4] and combine qualitative reasoning and quanti-
tative parameter estimation methods for computationally
efficient fault isolation [5] of degraded components (sen-
sors, actuators, and plant components). The dynamic sys-
tem state accumulated from the observer (discrete system
mode plus continuous state vector) and fault isolation units
(status of faulty and degraded sensors, actuators, and plant
components) define the active system state model. The
tracking, fault detection, and fault isolation mechanisms,
illustrated on the left of Fig. 1, together constitute a bot-
tom-up computational approach for estimating the dy-
namic system state (nominal or faulty) by monitoring plant
and controller variables.
The reconfiguration controller uses this information to
select from the controller library the controller that is most
effective in maintaining desired system operation and per-

formance. This requires the definition of metrics and deci-
sion criteria that govern the controller selection process.
The selection and reconfiguration mechanisms operate in a
top-down manner, using the dynamic state information to
effect changes in supervisory control mechanisms, selec-
tion (not synthesis) of feedback control mechanisms, and
re-tuning of low level regulators, such as PID or model-
based controllers. The overall computational architecture
combines the bottom-up and top-down computational
schemes in a seamless manner, via the shared active
model.
To implement and support the FACT architecture we have
used our model-integrated computing tools [1]. We are in
the process of building a toolset consisting of a graphical
modeling environment, and a set of run-time components.
The modeling environment will allow us to create models
of the plant (using the modeling approaches described be-
low), and to synthesize implementation code that, when
integrated with the generic FACT run-time components
will instantiate the architecture for a specific application
domain.

3.1 Approaches to fault detection and isolation
A primary component of our system is the model-based
fault detection and isolation subsystem that can deal with
sensor, actuator, and parametric faults in the system. Tra-
ditional FDI methods are mainly directed toward sensor
and actuator faults. Numerical techniques for state and
parameter estimation often face convergence and accuracy
problems when dealing with models that have strong non-
linearities [12,13]. Furthermore, these schemes are appli-
cable in continuous real-valued spaces, and they do not
easily extend to situations where mode transitions cause
discontinuous changes in the system models and system
variables. Discrete-event based diagnosis techniques have
been proposed, but they require the pre-compiling of the
fault models and fault trajectories into finite state automata
for tracking nominal and faulty system behavior [14,15].
These approaches have been successfully applied to well-
studied and well-understood systems. For example, finite
state machine (FSM) models for tracking the system can
be constructed from FMEA documents and historical data
collected from the system. In other situations, they may be
derived by simulating the detailed system model under a
variety of scenarios, and then compiling the information
generated into a FSM representation. In both cases, com-
piling FSM models can be very expensive, and a new FSM
has to be generated whenever a new fault is added to the
system, or the system configuration is modified. Besides,
situations may arise when the discrete-event models are
not sufficiently fine-grained to capture small degradations
in components that do not produce immediate significant
changes in system behavior, but the long-term effects may
be very undesirable.

We propose two approaches to the FDI problem that gen-
eralize traditional approaches: (i) the use of a robust quali-
tative fault isolation scheme based on tracking fault tran-
sients combined with a parameter estimation scheme for
refining fault hypotheses, and (ii) fault diagnostics based
on discrete event models represented as fault propagation
graphs. We discuss each of these methodologies in greater
detail next.

3.2 The continuous approach

3.2.1 Modeling the Plant
In our work, we assume the plant is made up of compo-
nents, such as tanks and pipes that exhibit continuous
behaviors. Other components like valves and switches that
can be turned off and on at rates much faster than the nor-
mal dynamics of the plant. There are also components,
such as pumps and motors that exhibit continuous behav-
iors, interspersed with more discrete on/off transitions.
Plants that exhibit these mixed continuous/discrete behav-
iors are modeled as hybrid systems. Our approach to mod-
eling the plant involves building hybrid automata that
combines finite state machines with continuous representa-
tions [10]. The FSM, whose states correspond to the modes
of operation of the system, captures the possible mode
transitions in the system. A continuous system model that
governs behavior evolution in that state augments each
FSM state. The number of modes of a system may be large
enough to make it infeasible to exhaustively generate the
complete hybrid automata. We avoid this computational
problem by enumerating states of the hybrid automata
(which correspond to the modes of system operation) dy-
namically as system behavior evolves. We use the model
of the controller and the direction of change of the system
variables to predict possible mode transitions from the
current mode of operation. Similarly, the controller model
provides indications of all possible controlled transitions
from the current mode. The combination of the two sets of
constraints results in a small number of possible next
modes, making it feasible to pre-compute the continuous
models for the corresponding destination states. Conditions
for transition to the destination state, and the reset condi-
tions (i.e., the state vector value) in the new state are also
pre-computed [11].
 We use bond graphs as the modeling paradigm in the
continuous domain [12]. Bond graphs represent energy-
based models of the system in terms of the effort and flow
variables of the system. Bonds specify interconnections
between elements that exchange energy, which is given by
the rate of flow of energy, power = effort x flow. Bond
graphs represent a generic modeling language that can be
applied to a multitude of physical systems, such as electri-
cal, fluid, mechanical, and thermal systems. There exist
standard techniques to build bond graph models of systems
based on physical principles. State equations can be sys-

tematically derived from the bond graph representation of
the system. In addition, we can also systematically derive
temporal causal graphs from bond graphs. This is very
important since state equations can be used to simulate
system behavior and state equations and temporal causal
graphs constitute our diagnosis models.
We use an enhanced form of bond graphs that allow con-
trolled junctions that facilitate the modeling of discrete
mode transitions in system behavior [3]. In general, the
number of modes and possible transitions in a system
model can be quite large. Instead of pre-enumerating the
bond graph for each mode to build complete hybrid auto-
mata, the complete system model is developed as a hybrid
bond graph, where individual junctions model local mode
transitions [18,19]. The switching 0- and 1- junctions rep-
resent idealized discrete switching element that can turn
the corresponding energy connection on and off. The
physical on/off state for each of these controlled junctions
is determined by external control signals and continuous
variables crossing pre-specified thresholds. These can be
specified as finite state sequential automata.

3.2.2 Fault Detection and Isolation

Figure 2: Fault Detection and Isolation Schematic

Our diagnosis methodology illustrated in Fig. 2 consists of
three mains steps, (i) using a hybrid observer to track sys-
tem behavior, (ii) detecting fault occurrences, and (iii) iso-
lating faults in the system. The hybrid observer uses the
models of the system to track system behavior. We use
hybrid bond graphs [3] as the primary modeling language
for building hybrid system models. The observer uses the
state equations models —derived automatically from the

Observer
and mode
detector

System y r

u

Fault detec-
tion

(Binary
decision)

Qualitative
analysis

Quantitative
parameter
estimation

Fault isola-
tion

fh

mi

u = inputs, y = measured output from system, �

= predicted output from model, r = residual
y – ���Pi = current mode, fh = fault hypotheses

Hybrid
models

Diagnosis
models

bind graph models— for tracking continuous behavior in a
mode, and the hybrid automaton for detecting and making
mode transitions as system behavior evolves. Detection of
mode changes requires access to controller signals for con-
trolled jumps, and predictions of state variable values for
autonomous jumps. If a mode change occurs in the system,
the observer switches the tracking model (different set of
state space equations), initializes the state variables in the
new mode, and continues tracking system behavior with
the new model [18,19]. The fault detector compares the
observations from the system and the predictions from the
observer to look for significant deviations in the observed
signals. We use a simple decision scheme that signals a
fault, if the discrepancy between an observation and pre-
diction exceeds a pre-specified threshold for a few time
steps, or if an abrupt change is detected in a signal value
that cannot be explained by a mode change [14].
Once the fault has been detected, qualitative and quantita-
tive techniques are used to isolate the fault in the system.
We use temporal causal graphs [11] derived from hybrid
bond graphs for the qualitative analysis, and state equa-
tions derived from bond graphs for the quantitative analy-
sis [11,21]. In the qualitative analysis, we first identify an
initial candidate set to explain the discrepancy in the ob-
servations and predictions. This is achieved by back
propagating the qualitative value of the discrepancy (-, 0 or
+) through the temporal causal graph of the system. The
back propagation may have to be continued in previous
modes to identify all possible candidates [15]. We can
qualitatively predict future behavior of the system under
each of the hypothesized fault conditions by forward
propagating through the causal graph. These predictions
include magnitude and higher order derivatives of the vari-
ables of the system. The predictions can be compared
against the qualitative value of the observations to refine
the candidate set. We use a technique called progressive
monitoring [15] to achieve this.
For the quantitative analysis, we estimate the deviated pa-
rameter values for each of the remaining fault candidates.
To do this, we rewrite the state space equations in terms of
the parameter associated with the fault candidate and use
system identification techniques to estimate the parameter
value [5]. These estimated parameter values could be used
to quantitatively predict future behavior of the system,
which can be compared to the observations from the sys-
tem to eliminate some candidates.

3.3 The discrete approach

3.3.1 Failure Propagation Model
For discrete diagnosis, the system dynamics is modeled as
a tuple (T, L) where T is a set of transition events and L is
an event ordering relation. L ⊆ T × T, defined as L =
{<τ1, τ2> | there is a transition in which τ2 immediately
follows τ1 and τ1 ≠ τ2}.

A transition event represents either a discrete-state transi-
tion, or the crossing of a partition boundary in a continuous
state space.
The tuple (T,L) models the system dynamics, while addi-
tional information about the system, such as what outputs
are observed when a transition event occurs, or which
components are involved in a particular transition event,
can be introduced by relations mapping T onto these sets.
A subset Tf ⊆ T may be designated as set of fault events.
The failure propagation relation, P ⊆ L is defined recur-
sively as

P = {<τ1, τ2>∈ L | (τ1∈ Tf) ∨ (∃τ [<τ, τ1> ∈ P]) }.
A Failure Propagation Graph (FPG) is a digraph with ver-
tices V ⊆ T, representing the relation P. A Timed Failure
Propagation Graph is an FPG whose edges are labeled with
the timing intervals: (tmin, tmax) with the values denoting the
minimum and maximum elapsed time between the two
transition events at the adjoining vertices.
We are now ready to introduce the Failure Propagation
Model. A Failure Propagation Model is a 8-tuple (V, E, F,
D, A, T, W, Q), where (V, E) is a directed graph (whose
vertices are interpreted as transition events), called the
failure propagation graph, F is a finite set (whose elements
are interpreted as failure modes), D is a finite set (whose
elements are interpreted as discrepancies), A is a subset of
D (whose elements are interpreted as alarms), T is a rela-
tion T ⊆ V× ℘(F) representing a map from sets of failure
modes to transition events, W is a relation W ⊆ V× ℘(D)
representing a map from sets of discrepancies to transition
events and Q ⊆ W, is a relation Q ⊆ V × ℘(A) represent-
ing a map from sets of alarms to transition events. We
need to consider a mapping between sets of inputs, outputs
and faults in order to model observations and faults that
are not necessarily independent [16].
The semantic precision of this definition of Failure Propa-
gation Graphs makes it possible to generate the model di-
rectly from system models, such as Finite State Automata
[16] or timed discrete-event models of quantized systems
[17]. However, it is possible to perform diagnosis directly
on the Failure Propagation Model, which makes it accept-
able as a modeling language, in situations when the com-
plete system model, which includes failure conditions is
not known, but typical failure trajectories can be identified.
For a system modeled as a Finite State Automata (X, Σ, δ,
x0, Y, λ), where X and Σ are the finite state and event sets,
x0 is the initial state, and δ: X × Σ × X is the transition
function. A transition event can be defined as τ = <σ, x,
δ(σ, x)> where σ is a triggering event, x is a state, and δ(σ,
x) is the next state. The event-ordering relation is then
L = {<τ1, τ2> | ∃σ1,σ2[(τ1 = <σ1, x1, δ(σ1, x1)>) ∧(τ2 = <σ2,

x2, δ(σ2, x2)>)∧ (x2=δ(σ1, x1))}
Given a set of faults modeled as inputs Σf ⊆ Σ, the set of
failure transition events is

Tf = {<σf, x, δ(σf, x)> ∈ T | σf ∈ Σf }

In this case a mapping can be identified between a failure
mode σf ∈ Σf and any transition event τ f =<σf, x, δ(σf, x)>.
Alarms, which are events produced by sensors, are associ-
ated with outputs, for a Moore machine, in which an out-
put is associated with a state. An output, ya is mapped to
any transition τa=<σ, x, δ(σ, x)> for which λ(δ(σ, x))= ya.

In a similar fashion, discrepancies, which are unobserved
fault conditions, can be mapped to states or transitions. For
an FSA of a component constructed from the multiple
FSA-s of its components it is also possible to label dis-
crepancies as pertaining to specific components, based on
the composition of the system. Any transition in the com-
posed system corresponds to a transition in one or more of
components’ FSA-s.

3.3.2 Diagnosis Algorithm
Based on the Failure Propagation Model described above,
diagnosis can be performed using the predictor-corrector
principle [4]. A hypothesis set is maintained, and when a
new alarm set is generated, it is compared to the predicted
alarms, based on the Failure Propagation Model, and the
hypothesis set is updated accordingly. The refined set will
contain hypotheses that are compatible both with the ob-
served data and the prediction.

3.3.2.1 Characterizing a Hypothesis
The fault propagation graph describes how faults propa-
gate to unalarmed discrepancies and alarms. At any time it
is possible to hypothesize any combination of finite paths
on the graph as an explanation to the current observation
and passed observations.
In diagnosis we are not interested in which path led to the
current observation, so long as the faults hypothesized are
the same. A set of faults is sufficient to identify an expla-
nation for the observed alarms.
In conclusion, a hypothesis will be a relation H ⊆ F × V,
relating node sets that are consistent with previous and
current observations with failure modes that explain them.

3.3.2.2 Hypothesis Set Refinement
Each hypothesis consists of a set of faults and a set of cur-
rent nodes. When a new event is reported, as a new set of
alarms, A2 a new set of hypotheses, H2 is generated which
would explain each hypothesis in terms of a previous hy-
pothesis, H1 or solely in terms of new faults, or as a com-
bination of both. Hypotheses, which cannot be used to
explain the new event, can be ruled out.

3.3.2.3 Calculating a new hypothesis set
We will employ the interpretation such that when a failure
mode and an alarm are associated with the same transition
event, the failure mode provides an explanation for the
alarm. This implies that an effect of a failure mode may be

immediate, with no time delay. In other words, there may
be failure modes, which are directly observable.
A new hypothesis Hk must satisfy the following condi-
tions:
(1) All transition events represented in Hk must corre-

spond exactly to the observed alarm set. The transi-
tion events in Hk must be in (Q; Ak) where the semico-
lon represents a relational product [20].

(2) All Failure Modes sets represented in Hk must be
some disjunction of

a. Failure mode sets from Hk-1, associated by

relation Hk-1 to transition events, which are
predecessors (by relation P) of the transition
events in Hk

b. Any set of failure modes, which map (by re-
lation T) to transition events in Hk

First we shall address (2). When an event is reported it
must be explained by the combination of the previous ob-
servation and some (possibly empty) set of new faults. The
relation T represents all failure modes associated with their
corresponding failure mode instances. The relation P;Hk-1
represents previously hypothesized failure mode sets asso-
ciated with transition events, which are successors of pre-
viously hypothesized transition events.
We define the disjunctive superposition of two relations,

R1 and R2 as R1 ◊ R2 by

R1 ◊ R2 = { s | (s∈ R1) ∨ (s ∈ R2) ∨ ∃s1, s2[(s1 ∈

R1) ∨ (s2 ∈R2) ∨ (s =s2 ∪ s3)}
The disjunctive superposition operation represents the pos-
sibility of combining any previously hypothesized failure
mode sets with any new (or repeated) failure mode sets.

The disjunctive superposition T ◊ (P;Hk-1) gives all the
combinations of current transition events that can be hy-
pothesized, and relates each such set to a set of failure-
modes that explains it.
This result must be constrained by (1) resulting in the fol-
lowing formula, using • to denote a join:

Hk = (T ◊ (P;Hk-1)) • (Q; A2)

The join constrains the set of 2-tuples given by
T ◊ (P;Hk-1)

to include only those 2-tuples in which the second element
(i.e. the transition-event set) is in Q; A2.
This formula calculates all possible successor transition
events, from the previous hypothesis and associates them
with failure mode sets, previously hypothesized. It then
finds all combinations of such failure mode sets with new
failure mode sets and constrains the resulting set of combi-
nations only to failure mode sets associated with transition
events that would produce the observed set of alarms. Thus
it predicts the next transition event from the previous hy-
pothesis and corrects the prediction by constraining the
hypothesis set to produce the observed alarms.

3.4 Controller selection
Our approach is to develop a library of controllers, which
will be indexed by sets of characteristics. The goal is to
use the information about current system state, i.e., the
current mode of operation and system state vector along
with failed and degraded states of components and subsys-
tems to select a controller that best suits current and long
term performance objectives. This will require the devel-
opment of efficient encoding schemes for the operational
space of system behaviors and constraints that govern sys-
tem performance. Sophisticated search algorithms will
have to be developed for controller selection and recon-
figuration.
We are addressing the controller reconfiguration task at
two levels. At the supervisory (discrete) level, reconfigura-
tion implies modification of high-level control actions.
This can take the form of replacing a current action se-
quence by a new sequence, or altering the sequencing of
actions in the current set. This type of reconfiguration re-
quires that the supervisory control logic be explicitly rep-
resented as a data structure. Our challenge is to adopt
model-based approaches to representing supervisory con-
trol programs, and to develop reconfiguration procedures
governed by different kinds of fault conditions. At the
lower (continuous) level of control, the system relies on
regulators, which can range from simple switching control-
lers to PID mechanisms to model-based controllers. (This
is obviously not an exhaustive list.) Reconfiguration at
this level can take on three different forms.
1. Set point changes for handling simple fault situations,

such as a partially degraded component.

2. Controller tuning for handling cases where the fault
changes the plant dynamics (e.g., changes in the ca-
pacitive and inertial parameters in the plant), and the
retuning of the controller is a viable solution.

3. Structural changes (i.e., rewiring or replacing the
regulators) may compensate for complex faults where
the current controller architecture is unable to main-
tain the desired control because of a significant fault
(e.g. sensor fault, actuator fault, major structural
change in the plant, such as a pump failure or a valve
stuck at closed). The switching of controllers in plant
feedback loops is discussed in greater detail in the
next section.

All of the above cases may lead to the introduction of large
switching transients into the system. We are investigating
two ways to manage the reconfiguration.
1. The Blender approach. In this technique, a “new” con-

troller gradually replaces the “old” controller. Upon
the start of the reconfiguration, the old and new con-
trollers are connected to a tapered switch, which ini-
tially connects the output of the "old" controller to the
plant. As time proceeds, the switch is gradually moved
from the old to the new controller. At the end of the

process, the controller completely replaces the old
one. Interesting research issues that we have to deal
with here, include design of the blending function for
control signals at intermediate stages of the tapered
switching process and the speed (and thus the dynam-
ics) at which the switching is accomplished to avoid
unnecessary transients in the plant dynamics during
the reconfiguration process.

2. The State Initialization approach. If rapid reconfigura-
tion is required, the tapered switch approach may not
be fast enough. In this case, the new controller should
replace the old one, possibly within the sampling in-
terval set for the system. To avoid large bumps, the in-
ternal state of the new controller should be initialized
in such a way that it generates a control signal after
reconfiguration that is minimally different from the
last signal generated by the old controller. We will in-
vestigate how these initial states of the new controller
can be calculated based on the state of the old control-
ler, and the state of the plant.

There is an interesting and highly relevant aspect of con-
troller reconfiguration that may need to be addressed in a
later stage of the project, i.e., explicit management of re-
configuration transients. Early results [24,25] show that
there are a number of techniques available for mitigating
reconfiguration transients in control systems. If the pro-
posed approach of controller re-initialization and/or blend-
ing does not meet the requirements for the reconfiguration
dynamics other, explicit transient suppressions techniques
can be applied to mitigate the effects of switching.

3.5 An application domain: aircraft fuel system
Modern aircraft are equipped with sophisticated control
systems in support of their fuel systems. The fuel system
consist of a number of tanks, interconnecting pipes, valves,
and pumps, whose tasks are manifold. First, the system
should supply fuel to the engines under all flight condi-
tions. Second, the center of gravity of the aircraft has to be
maintained. To achieve this, the fuel may have to be
pumped from tank to tank during flight. Third, in case of
failures (e.g. pump failures, leakage in the tanks, valves
getting stuck), the system should utilize the built-in redun-
dancy to compensate for the failure, and to maintain con-
trol. We are currently working on creating models of a
generic aircraft fuel system, and testing the FACT tools
and techniques we have developed with the help of this
example.

4. Results, Conclusions and Future Work
We have applied our continuous and discrete FDI method-
ology to diagnosing faults in a three-tank system with a
number of valves. A simple supervisory controller model
was implemented that took the system through a number of
tank filling, emptying, and mixing cycles. We were suc-
cessful in tracking continuous system behavior through

discrete mode changes, and isolating faults when the oc-
curred, with the discrete and continuous diagnostics algo-
rithms.
As a next step, we would like to extend the two diagnostic
algorithms to work in a more cohesive fashion, and inform
each other as they come up with fault hypotheses. The idea
is to come up with schemes where we can track and ana-
lyze behaviors of complex systems at multiple levels of
detail. Once this step is completed, we will integrate in the
controller selection mechanisms to complete our imple-
mentation of the FACT architecture that has been pre-
sented in this paper.

Acknowledgements
The DARPA/ITO SEC program (F30602-96-2-0227), and
The Boeing Company have supported the activities de-
scribed in this paper. We would like to thank Dr Kirby
Keller and Mr. Mark Kay for their help.

References
[1] Sztipanovits, J., Karsai, G.: “Model-Integrated Com-
puting”, IEEE Computer, pp. 110-112, April, 1997.
[2] Branicky, M.S., V. Borkar, S. Mitter, 1994. “A Unified
Framework for Hybrid Control: Background, Model, and
Theory,” Proceedings of the 33rd IEEE Conference on
Decision and Control, Lake Buena Vista, FL, Paper No.
LIDS-P-2239.
[3] Mosterman P.J. and G. Biswas, 1998. “A theory of
discontinuities in physical system models,” Journal of the
Franklin Institute:335B, pp. 401-439.
[4] Misra A., Sztipanovits J., and Carnes J., 1994. “Robust
Diagnostics: Structural Redundancy Approach,” Knowl-
edge Based Artificial Intelligence Systems in Aerospace
and Industry, SPIE's Symposium on Intelligent Systems,
Orlando.
[5] Manders E.J., S. Narasimhan, G. Biswas, and P.J.
Mosterman, 2000. A combined qualitative/quantitative
approach for efficient fault isolation in complex dynamic
systems. 4th Symposium on Fault Detection, Supervision
and Safety Processes, pp. 512-517.
[6] Patton, R.J., Frank, P.M., and Clark, R.N. (eds.), 2000.
Issues of Fault Diagnosis for Dynamic Systems, Springer-
Verlag, London, U.K.
[7] Chen, J. and Patton, R.J. 1999. Robust Model-Based
fault Diagnosis for Dynamic Systems, Kluwer Academic,
Boston, MA.
[8] Sampath, M. et al., 1996. “Fault Diagnosis using Dis-
crete-Event Models,” IEEE Trans. On Control Systems
Technology: 4(2), pp. 105-124.
[9] Lunze, J. 1999. “A Timed Discrete Event Abstraction
of Continuous Dynamic Systems,” Intl. Journal of Con-
trol: 72, pp. 1147-1164.
[10] Alur, R. et al., 1993. Hybrid Automata: an algorithmic
approach to the specification and verification of hybrid

systems, in, R.L. Grossman, et al., eds., Lecture Notes in
Computer Science, Springer, Berlin, 736, pp. 209-229.
[11] Narasimhan, S. and Biswas, G. 2000. Using Supervi-
sory Controller Models for more Efficient Diagnosis of
Hybrid Systems. Submitted to Hybrid Systems: Control
and Computation, Intl. Workshop, Rome, Italy.
[12] Rosenberg, R.C. and Karnopp, D.C. 1983. Introduc-
tion to Physical System Dynamics, McGraw Hill, NY.
[13] Narasimhan, S., Biswas, G., Karsai, G., Pasternak, T.,
and Zhao, F., 2000. “Building Observers to Handle Fault
Isolation and Control Problems in Hybrid Systems,” Proc.
2000 IEEE Intl. Conference on Systems, Man, and Cyber-
netics, Nashville, TN, pp. 2393-2398.
[14] Manders E.J., Mosterman, P.J., and Biswas, G., 1999.
Signal to symbol transformation techniques for robust di-
agnosis in TRANSCEND, Tenth International Workshop
on Principles of Diagnosis, Loch Awe, Scotland, pp. 155-
165.
[15] Mosterman P.J. and Biswas G., 1999. Diagnosis of
Continuous Valued Systems in Transient Operating Re-
gions, IEEE Trans. on Systems, Man and Cybernetics:29,
pp. 554-565.
 [16] Pasternak, T. Extended Relational Models for Diag-
nosis, Masters Thesis, Vanderbilt University, August �2000.
 [17] Lunze, J., Diagnosis of Quantized Systems by Means
of Timed Discrete-Event Representation, in Proc. Of
Thirds International Workshop on Hybrid Systems, Com-
putation and Control, Lecture Notes in Computer Science,
volume 1790, pages 258-271, March 2000.
[18] Simon, G., Kovácsházy, T., and Péceli, G., 2000.
“Transients in Reconfigurable Control Loops,” IEEE In-
strumentation and Measurement Technology Conference,
IMTC/2000, Baltimore, Maryland, USA.
[19] Simon, G., Kovácsházy, T., and Péceli, G., 2000.
“Transient Management in Reconfigurable Systems,” In-
ternational Workshop on Self Adaptive Software, Oxford
University, England.
 [20] Pierce, C. S. "Note B: The Logic of Relatives." In
Studies in Logic by Members of the Johns Hopkins Uni-
versity Boston: Little Brown and Co. 1883

