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Abstract
Complex control applications require a capability for ac-
commodating faults in the controlled plant. Fault accom-
modation involves the detection and isolation of faults, and 
taking an appropriate control action that mitigates the 
effect of the faults and maintains control. This requires the 
integration of fault diagnostics with control, in a feedback 
loop. This paper discusses how a generic framework for 
building fault-adaptive control systems can be created 
using a model-based approach. Instances of the framework 
are examples of complex CBS-s that have novel capabili-
ties.  

1. Introduction 
Today’s complex systems, like high-performance aircraft 
require sophisticated control techniques to support all as-
pects of operation: from flight controls through mission 
management to environmental controls, just to give a few 
examples. All this, of course, is done using a multitude of 
CBS, all of which rely heavily on software technology. 
Software acts both as the vehicle to implement functional-
ities and as the system integrator.  One of the main goals of 
software is to implement control functions: open- or 
closed-loop control, from low-level regulation to high-
level supervisory control.  
Any real-life system is prone to failures: either physical 
(hardware) or logical (software). When a high degree of 
reliability and safety is desired the effects of these failures 
must be mitigated and control must be maintained under 
all fault scenarios. If systems are designed with redun-
dancy, control decisions have to be made when and how 
the backup systems should be activated, and how exactly 
the reconfiguration should happen. All these decisions 
must be made by a control system that now incorporates 
not only simple regulatory loops and the supervisory con-

trol logic, but also a set of components that detect, isolate, 
and manage faults, in coordination with control functions.  
Control theory gives very little guidance to the implemen-
ter of these systems: while there are special cases for 
which the mathematical apparatus has been created, the 
full theory of control systems that can operate under fault 
conditions is not realized yet. Implementations tend to take 
a pragmatic approach: possible fault scenarios are enumer-
ated and the system is prepared with appropriate fault ac-
commodation actions for each case. For these cases, this 
approach works quite well, but may break down in unfore-
seen situations.  
In this paper, we show a systematic model-based approach 
that can be used to create control systems that can accom-
modate faults. We call this approach Fault-Adaptive Con-
trol Technology (FACT, for short), which integrates a 
number of areas from fault diagnostics, control theory, 
signal processing, software engineering and systems engi-
neering.   
This paper first discusses the background areas that con-
tribute to the FACT. Next, a reference-architecture of 
FACT systems is presented followed by details on how the 
architecture can be realized. The paper concludes with 
showing some initial results.  

2. Background 
Fault-adaptive control involves solving a number of tech-
nical problems beyond the capabilities of traditional con-
trol approaches. First, the faults must be detected. Nominal 
behavior of the plant must be distinguished from faulty 
behavior, and the discrepancies between the two must be 
noted. Once a fault is detected, its source must be isolated. 
Fault source isolation is a process that generates a set of 
hypotheses regarding the cause of a fault, typically in 



   
 

terms of physical components and their failure modes. 
After fault source isolation, a decision has to be made how 
to reconfigure the control system in order to accommodate 
the fault. Many alternatives may have to be evaluated, and 
one has to be selected which is optimal according to some 
metric. Finally, the reconfiguration must be executed: set 
points and control parameters changed, or different con-
trollers selected.  

3. FACT Architecture 

Our overall approach, illustrated in Fig. 1, is centered on 
model-based approaches to design hybrid observers, fault 
detection and isolation algorithms, and controller selection 
and reconfiguration methodologies.  Hybrid models [2], 
derived from hybrid bond graphs [3], which systematically 
incorporate continuous system dynamics and discrete 
events, establish the core of the modeling framework. Hy-
brid observers estimate the continuous dynamic states of 
the system and detect mode changes in the system opera-
tion. Sophisticated signal analysis and filtering methods 
linked to the hybrid observers will be used for detecting 
deviations from nominal behavior and triggering the fault 
isolation schemes.   

 
Figure 1: Fault Adaptive Control Architecture 

Our diagnostic schemes integrate the use of failure-
propagation graph based techniques for discrete-event di-
agnosis [4] and combine qualitative reasoning and quanti-
tative parameter estimation methods for computationally 
efficient fault isolation [5] of degraded components (sen-
sors, actuators, and plant components). The dynamic sys-
tem state accumulated from the observer (discrete system 
mode plus continuous state vector) and fault isolation units 
(status of faulty and degraded sensors, actuators, and plant 
components) define the active system state model. The 
tracking, fault detection, and fault isolation mechanisms, 
illustrated on the left of Fig. 1, together constitute a bot-
tom-up computational approach for estimating the dy-
namic system state (nominal or faulty) by monitoring plant 
and controller variables. 
The reconfiguration controller uses this information to 
select from the controller library the controller that is most 
effective in maintaining desired system operation and per-

formance. This requires the definition of metrics and deci-
sion criteria that govern the controller selection process. 
The selection and reconfiguration mechanisms operate in a 
top-down manner, using the dynamic state information to 
effect changes in supervisory control mechanisms, selec-
tion (not synthesis) of feedback control mechanisms, and 
re-tuning of low level regulators, such as PID or model-
based controllers.  The overall computational architecture 
combines the bottom-up and top-down computational 
schemes in a seamless manner, via the shared active 
model.  
To implement and support the FACT architecture we have 
used our model-integrated computing tools [1]. We are in 
the process of building a toolset consisting of a graphical 
modeling environment, and a set of run-time components. 
The modeling environment will allow us to create models 
of the plant (using the modeling approaches described be-
low), and to synthesize implementation code that, when 
integrated with the generic FACT run-time components 
will instantiate the architecture for a specific application 
domain. 

3.1 Approaches to fault detection and isolation 
A primary component of our system is the model-based 
fault detection and isolation subsystem that can deal with 
sensor, actuator, and parametric faults in the system.  Tra-
ditional FDI methods are mainly directed toward sensor 
and actuator faults.  Numerical techniques for state and 
parameter estimation often face convergence and accuracy 
problems when dealing with models that have strong non-
linearities [12,13]. Furthermore, these schemes are appli-
cable in continuous real-valued spaces, and they do not 
easily extend to situations where mode transitions cause 
discontinuous changes in the system models and system 
variables. Discrete-event based diagnosis techniques have 
been proposed, but they require the pre-compiling of the 
fault models and fault trajectories into finite state automata 
for tracking nominal and faulty system behavior [14,15]. 
These approaches have been successfully applied to well-
studied and well-understood systems. For example, finite 
state machine (FSM) models for tracking the system can 
be constructed from FMEA documents and historical data 
collected from the system.  In other situations, they may be 
derived by simulating the detailed system model under a 
variety of scenarios, and then compiling the information 
generated into a FSM representation. In both cases, com-
piling FSM models can be very expensive, and a new FSM 
has to be generated whenever a new fault is added to the 
system, or the system configuration is modified. Besides, 
situations may arise when the discrete-event models are 
not sufficiently fine-grained to capture small degradations 
in components that do not produce immediate significant 
changes in system behavior, but the long-term effects may 
be very undesirable. 



   
 

We propose two approaches to the FDI problem that gen-
eralize traditional approaches: (i) the use of a robust quali-
tative fault isolation scheme based on tracking fault tran-
sients combined with a parameter estimation scheme for 
refining fault hypotheses, and (ii) fault diagnostics based 
on discrete event models represented as fault propagation 
graphs.  We discuss each of these methodologies in greater 
detail next. 

3.2 The continuous approach 

3.2.1 Modeling the Plant 
In our work, we assume the plant is made up of compo-
nents, such as tanks and pipes that exhibit continuous 
behaviors. Other components like valves and switches that 
can be turned off and on at rates much faster than the nor-
mal dynamics of the plant. There are also components, 
such as pumps and motors that exhibit continuous behav-
iors, interspersed with more discrete on/off transitions. 
Plants that exhibit these mixed continuous/discrete behav-
iors are modeled as hybrid systems. Our approach to mod-
eling the plant involves building hybrid automata that 
combines finite state machines with continuous representa-
tions [10]. The FSM, whose states correspond to the modes 
of operation of the system, captures the possible mode 
transitions in the system. A continuous system model that 
governs behavior evolution in that state augments each 
FSM state. The number of modes of a system may be large 
enough to make it infeasible to exhaustively generate the 
complete hybrid automata. We avoid this computational 
problem by enumerating states of the hybrid automata 
(which correspond to the modes of system operation) dy-
namically as system behavior evolves. We use the model 
of the controller and the direction of change of the system 
variables to predict possible mode transitions from the 
current mode of operation. Similarly, the controller model 
provides indications of all possible controlled transitions 
from the current mode. The combination of the two sets of 
constraints results in a small number of possible next 
modes, making it feasible to pre-compute the continuous 
models for the corresponding destination states. Conditions 
for transition to the destination state, and the reset condi-
tions  (i.e., the state vector value) in the new state are also 
pre-computed [11]. 
  We use bond graphs as the modeling paradigm in the 
continuous domain [12].  Bond graphs represent energy-
based models of the system in terms of the effort and flow 
variables of the system. Bonds specify interconnections 
between elements that exchange energy, which is given by 
the rate of flow of energy, power = effort x flow. Bond 
graphs represent a generic modeling language that can be 
applied to a multitude of physical systems, such as electri-
cal, fluid, mechanical, and thermal systems. There exist 
standard techniques to build bond graph models of systems 
based on physical principles. State equations can be sys-

tematically derived from the bond graph representation of 
the system. In addition, we can also systematically derive 
temporal causal graphs from bond graphs. This is very 
important since state equations can be used to simulate 
system behavior and state equations and temporal causal 
graphs constitute our diagnosis models.  
We use an enhanced form of bond graphs that allow con-
trolled junctions that facilitate the modeling of discrete 
mode transitions in system behavior [3]. In general, the 
number of modes and possible transitions in a system 
model can be quite large. Instead of pre-enumerating the 
bond graph for each mode to build complete hybrid auto-
mata, the complete system model is developed as a hybrid 
bond graph, where individual junctions model local mode 
transitions [18,19]. The switching 0- and 1- junctions rep-
resent idealized discrete switching element that can turn 
the corresponding energy connection on and off.  The 
physical on/off state for each of these controlled junctions 
is determined by external control signals and continuous 
variables crossing pre-specified thresholds. These can be 
specified as finite state sequential automata. 

3.2.2 Fault Detection and Isolation 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Fault Detection and Isolation Schematic 
 
Our diagnosis methodology illustrated in Fig. 2 consists of 
three mains steps, (i) using a hybrid observer to track sys-
tem behavior, (ii) detecting fault occurrences, and (iii) iso-
lating faults in the system. The hybrid observer uses the 
models of the system to track system behavior. We use 
hybrid bond graphs [3] as the primary modeling language 
for building hybrid system models. The observer uses the 
state equations models —derived automatically from the 
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bind graph models— for tracking continuous behavior in a 
mode, and the hybrid automaton for detecting and making 
mode transitions as system behavior evolves. Detection of 
mode changes requires access to controller signals for con-
trolled jumps, and predictions of state variable values for 
autonomous jumps. If a mode change occurs in the system, 
the observer switches the tracking model (different set of 
state space equations), initializes the state variables in the 
new mode, and continues tracking system behavior with 
the new model [18,19]. The fault detector compares the 
observations from the system and the predictions from the 
observer to look for significant deviations in the observed 
signals. We use a simple decision scheme that signals a 
fault, if the discrepancy between an observation and pre-
diction exceeds a pre-specified threshold for a few time 
steps, or if an abrupt change is detected in a signal value 
that cannot be explained by a mode change [14].  
Once the fault has been detected, qualitative and quantita-
tive techniques are used to isolate the fault in the system. 
We use temporal causal graphs [11] derived from hybrid 
bond graphs for the qualitative analysis, and state equa-
tions derived from bond graphs for the quantitative analy-
sis [11,21].  In the qualitative analysis, we first identify an 
initial candidate set to explain the discrepancy in the ob-
servations and predictions. This is achieved by back 
propagating the qualitative value of the discrepancy (-, 0 or 
+) through the temporal causal graph of the system. The 
back propagation may have to be continued in previous 
modes to identify all possible candidates [15]. We can 
qualitatively predict future behavior of the system under 
each of the hypothesized fault conditions by forward 
propagating through the causal graph. These predictions 
include magnitude and higher order derivatives of the vari-
ables of the system. The predictions can be compared 
against the qualitative value of the observations to refine 
the candidate set. We use a technique called progressive 
monitoring [15] to achieve this. 
For the quantitative analysis, we estimate the deviated pa-
rameter values for each of the remaining fault candidates. 
To do this, we rewrite the state space equations in terms of 
the parameter associated with the fault candidate and use 
system identification techniques to estimate the parameter 
value [5]. These estimated parameter values could be used 
to quantitatively predict future behavior of the system, 
which can be compared to the observations from the sys-
tem to eliminate some candidates. 

3.3 The discrete approach 

3.3.1 Failure Propagation Model 
For discrete diagnosis, the system dynamics is modeled as 
a tuple (T, L) where T is a set of transition events and L is 
an event ordering relation. L  ⊆ T × T, defined as L = 
{<τ1, τ2> | there is a transition in which τ2 immediately 
follows τ1 and τ1 ≠ τ2}. 

A transition event represents either a discrete-state transi-
tion, or the crossing of a partition boundary in a continuous 
state space.  
The tuple (T,L) models the system dynamics, while addi-
tional information about the system, such as what outputs 
are observed when a transition event occurs, or which 
components are involved in a particular transition event, 
can be introduced by relations mapping T onto these sets.  
A subset Tf ⊆ T may be designated as set of fault events. 
The failure propagation relation, P ⊆ L is defined recur-
sively as  

P = {<τ1, τ2>∈ L | (τ1∈ Tf ) ∨ (∃τ  [<τ, τ1> ∈ P] ) }. 
A Failure Propagation Graph (FPG) is a digraph with ver-
tices V ⊆ T, representing the relation P. A Timed Failure 
Propagation Graph is an FPG whose edges are labeled with 
the timing intervals: (tmin, tmax) with the values denoting the 
minimum and maximum elapsed time between the two 
transition events at the adjoining vertices.   
We are now ready to introduce the Failure Propagation 
Model. A Failure Propagation Model is a 8-tuple (V, E, F, 
D, A, T, W, Q), where (V, E) is a directed graph (whose 
vertices are interpreted as transition events), called the 
failure propagation graph, F is a finite set (whose elements 
are interpreted as failure modes), D is a finite set (whose 
elements are interpreted as discrepancies), A is a subset of 
D (whose elements are interpreted as alarms), T is a rela-
tion T ⊆ V× ℘(F) representing a map from sets of failure 
modes to transition events, W is a relation W ⊆ V× ℘(D) 
representing a map from sets of discrepancies to transition 
events and Q ⊆ W, is a relation Q  ⊆ V × ℘(A) represent-
ing a map from sets of alarms to transition events. We 
need to consider a mapping between sets of inputs, outputs 
and faults in order to model observations and faults that 
are not necessarily independent [16]. 
The semantic precision of this definition of Failure Propa-
gation Graphs makes it possible to generate the model di-
rectly from system models, such as Finite State Automata 
[16] or timed discrete-event models of quantized systems 
[17]. However, it is possible to perform diagnosis directly 
on the Failure Propagation Model, which makes it accept-
able as a modeling language, in situations when the com-
plete system model, which includes failure conditions is 
not known, but typical failure trajectories can be identified.  
For a system modeled as a Finite State Automata (X, Σ, δ, 
x0, Y, λ), where X and Σ are the finite state and event sets, 
x0 is the initial state, and δ: X × Σ × X is the transition 
function. A transition event can be defined as τ = <σ, x, 
δ(σ, x)> where σ is a triggering event, x is a state, and δ(σ, 
x) is the next state. The event-ordering relation is then  
L = {<τ1, τ2> | ∃σ1,σ2[(τ1 = <σ1, x1, δ(σ1, x1)>) ∧(τ2 = <σ2, 

x2, δ(σ2, x2)>)∧ (x2=δ(σ1, x1))} 
Given a set of faults modeled as inputs Σf ⊆ Σ, the set of 
failure transition events is  

Tf  = {<σf, x, δ(σf, x)> ∈  T  |  σf ∈ Σf  } 



   
 

In this case a mapping can be identified between a failure 
mode σf ∈ Σf  and any transition event τ f =<σf, x, δ(σf, x)>. 
Alarms, which are events produced by sensors, are associ-
ated with outputs, for a Moore machine, in which an out-
put is associated with a state. An output, ya is mapped to 
any transition τa=<σ, x, δ(σ, x)> for which λ(δ(σ, x))= ya. 

In a similar fashion, discrepancies, which are unobserved 
fault conditions, can be mapped to states or transitions. For 
an FSA of a component constructed from the multiple 
FSA-s of its components it is also possible to label dis-
crepancies as pertaining to specific components, based on 
the composition of the system. Any transition in the com-
posed system corresponds to a transition in one or more of 
components’ FSA-s. 

3.3.2 Diagnosis Algorithm 
Based on the Failure Propagation Model described above, 
diagnosis can be performed using the predictor-corrector 
principle [4]. A hypothesis set is maintained, and when a 
new alarm set is generated, it is compared to the predicted 
alarms, based on the Failure Propagation Model, and the 
hypothesis set is updated accordingly. The refined set will 
contain hypotheses that are compatible both with the ob-
served data and the prediction.   

3.3.2.1 Characterizing a Hypothesis  
The fault propagation graph describes how faults propa-
gate to unalarmed discrepancies and alarms. At any time it 
is possible to hypothesize any combination of finite paths 
on the graph as an explanation to the current observation 
and passed observations.  
In diagnosis we are not interested in which path led to the 
current observation, so long as the faults hypothesized are 
the same. A set of faults is sufficient to identify an expla-
nation for the observed alarms. 
In conclusion, a hypothesis will be a relation H ⊆ F × V, 
relating node sets that are consistent with previous and 
current observations with failure modes that explain them.   

3.3.2.2 Hypothesis Set Refinement 
Each hypothesis consists of a set of faults and a set of cur-
rent nodes. When a new event is reported, as a new set of 
alarms, A2 a new set of hypotheses, H2 is generated which 
would explain each hypothesis in terms of a previous hy-
pothesis, H1 or solely in terms of new faults, or as a com-
bination of both. Hypotheses, which cannot be used to 
explain the new event, can be ruled out. 

3.3.2.3 Calculating a new hypothesis set 
We will employ the interpretation such that when a failure 
mode and an alarm are associated with the same transition 
event, the failure mode provides an explanation for the 
alarm. This implies that an effect of a failure mode may be 

immediate, with no time delay. In other words, there may 
be failure modes, which are directly observable. 
A new hypothesis Hk must satisfy the following condi-
tions:  
(1) All transition events represented in Hk must corre-

spond exactly to the observed alarm set.  The transi-
tion events in Hk must be in (Q; Ak) where the semico-
lon represents a relational product [20]. 

(2) All Failure Modes sets represented in Hk must be 
some disjunction of  

a. Failure mode sets from Hk-1, associated by 

relation Hk-1 to transition events, which are 
predecessors (by relation P) of the transition 
events in Hk 

b. Any set of failure modes, which map (by re-
lation T) to transition events in Hk 

First we shall address (2). When an event is reported it 
must be explained by the combination of the previous ob-
servation and some (possibly empty) set of new faults. The 
relation T represents all failure modes associated with their 
corresponding failure mode instances. The relation P;Hk-1  
represents previously hypothesized failure mode sets asso-
ciated with transition events, which are successors of pre-
viously hypothesized transition events.  
We define the disjunctive superposition of two relations, 

R1 and R2 as R1 ◊ R2  by   

R1 ◊ R2  = { s | (s∈ R1) ∨ (s ∈ R2) ∨ ∃s1, s2[(s1 ∈ 

R1) ∨ (s2 ∈R2) ∨ (s =s2 ∪ s3 )} 
The disjunctive superposition operation represents the pos-
sibility of combining any previously hypothesized failure 
mode sets with any new (or repeated) failure mode sets. 

The disjunctive superposition T ◊ (P;Hk-1) gives all the 
combinations of current transition events that can be hy-
pothesized, and relates each such set to a set of failure-
modes that explains it.  
This result must be constrained by (1) resulting in the fol-
lowing formula, using • to denote a join: 

Hk = (T ◊ (P;Hk-1)) • (Q; A2) 

The join constrains the set of 2-tuples given by  
T ◊ (P;Hk-1) 

to include only those 2-tuples in which the second element 
(i.e. the transition-event set) is in  Q; A2. 
This formula calculates all possible successor transition 
events, from the previous hypothesis and associates them 
with failure mode sets, previously hypothesized. It then 
finds all combinations of such failure mode sets with new 
failure mode sets and constrains the resulting set of combi-
nations only to failure mode sets associated with transition 
events that would produce the observed set of alarms. Thus 
it predicts the next transition event from the previous hy-
pothesis and corrects the prediction by constraining the 
hypothesis set to produce the observed alarms. 



   
 

3.4 Controller selection 
Our approach is to develop a library of controllers, which 
will be indexed by sets of characteristics. The goal is to 
use the information about current system state, i.e., the 
current mode of operation and system state vector along 
with failed and degraded states of components and subsys-
tems to select a controller that best suits current and long 
term performance objectives. This will require the devel-
opment of efficient encoding schemes for the operational 
space of system behaviors and constraints that govern sys-
tem performance. Sophisticated search algorithms will 
have to be developed for controller selection and recon-
figuration. 
We are addressing the controller reconfiguration task at 
two levels. At the supervisory (discrete) level, reconfigura-
tion implies modification of high-level control actions. 
This can take the form of replacing a current action se-
quence by a new sequence, or altering the sequencing of 
actions in the current set. This type of reconfiguration re-
quires that the supervisory control logic be explicitly rep-
resented as a data structure. Our challenge is to adopt 
model-based approaches to representing supervisory con-
trol programs, and to develop reconfiguration procedures 
governed by different kinds of fault conditions. At the 
lower (continuous) level of control, the system relies on 
regulators, which can range from simple switching control-
lers to PID mechanisms to model-based controllers. (This 
is obviously not an exhaustive list.)  Reconfiguration at 
this level can take on three different forms.  
1. Set point changes for handling simple fault situations, 

such as a partially degraded component.  

2. Controller tuning for handling cases where the fault 
changes the plant dynamics (e.g., changes   in the ca-
pacitive and inertial parameters in the plant), and the 
retuning of the controller is a viable solution.  

3. Structural changes (i.e., rewiring or replacing the 
regulators) may compensate for complex faults where 
the current controller architecture is unable to main-
tain the desired control because of a significant fault 
(e.g. sensor fault, actuator fault, major structural 
change in the plant, such as a pump failure or a valve 
stuck at closed). The switching of controllers in plant 
feedback loops is discussed in greater detail in the 
next section. 

All of the above cases may lead to the introduction of large 
switching transients into the system. We are investigating 
two ways to manage the reconfiguration.  
1. The Blender approach. In this technique, a “new” con-

troller gradually replaces the “old” controller. Upon 
the start of the reconfiguration, the old and new con-
trollers are connected to a tapered switch, which ini-
tially connects the output of the "old" controller to the 
plant. As time proceeds, the switch is gradually moved 
from the old to the new controller. At the end of the 

process, the controller completely replaces the old 
one. Interesting research issues that we have to deal 
with here, include design of the blending function for 
control signals at intermediate stages of the tapered 
switching process and the speed (and thus the dynam-
ics) at which the switching is accomplished to avoid 
unnecessary transients in the plant dynamics during 
the reconfiguration process. 

2. The State Initialization approach. If rapid reconfigura-
tion is required, the tapered switch approach may not 
be fast enough. In this case, the new controller should 
replace the old one, possibly within the sampling in-
terval set for the system. To avoid large bumps, the in-
ternal state of the new controller should be initialized 
in such a way that it generates a control signal after 
reconfiguration that is minimally different from the 
last signal generated by the old controller. We will in-
vestigate how these initial states of the new controller 
can be calculated based on the state of the old control-
ler, and the state of the plant. 

There is an interesting and highly relevant aspect of con-
troller reconfiguration that may need to be addressed in a 
later stage of the project, i.e., explicit management of re-
configuration transients. Early results [24,25] show that 
there are a number of techniques available for mitigating 
reconfiguration transients in control systems. If the pro-
posed approach of controller re-initialization and/or blend-
ing does not meet the requirements for the reconfiguration 
dynamics other, explicit transient suppressions techniques 
can be applied to mitigate the effects of switching.  

3.5 An application domain: aircraft fuel system 
Modern aircraft are equipped with sophisticated control 
systems in support of their fuel systems. The fuel system 
consist of a number of tanks, interconnecting pipes, valves, 
and pumps, whose tasks are manifold. First, the system 
should supply fuel to the engines under all flight condi-
tions.  Second, the center of gravity of the aircraft has to be 
maintained. To achieve this, the fuel may have to be 
pumped from tank to tank during flight. Third, in case of 
failures (e.g. pump failures, leakage in the tanks, valves 
getting stuck), the system should utilize the built-in redun-
dancy to compensate for the failure, and to maintain con-
trol. We are currently working on creating models of a 
generic aircraft fuel system, and testing the FACT tools 
and techniques we have developed with the help of this 
example.  

4. Results, Conclusions and Future Work 
We have applied our continuous and discrete FDI method-
ology to diagnosing faults in a three-tank system with a 
number of valves.  A simple supervisory controller model 
was implemented that took the system through a number of 
tank filling, emptying, and mixing cycles. We were suc-
cessful in tracking continuous system behavior through 



   
 

discrete mode changes, and isolating faults when the oc-
curred, with the discrete and continuous diagnostics algo-
rithms. 
As a next step, we would like to extend the two diagnostic 
algorithms to work in a more cohesive fashion, and inform 
each other as they come up with fault hypotheses. The idea 
is to come up with schemes where we can track and ana-
lyze behaviors of complex systems at multiple levels of 
detail. Once this step is completed, we will integrate in the 
controller selection mechanisms to complete our imple-
mentation of the FACT architecture that has been pre-
sented in this paper. 
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