
On the use of Graph Transformations in the
Formal Specification of Computer-Based Systems

kle

Introd

The rt a

odel-based engineering process. As it was discussed in a previous paper [1], there are several
 for doing this. (1) We want to use a model-based approach for development.

Usin ich
exp ludes
a si design-time analysis on the models. Early detection of problems
with here.
(3) synthesize/generate an implementation from the design, one has bridge the gap

etween the Domain-Specific Modeling Language (DSML) used in the design process and the
rdware infrastructure or platform.

h many
pac ined above. We
conj ibuted to that fact that, although tools for specific points in the
desi there is a lack of capabilities from moving design information from
ne tool to the other.

ustrate the point, let us consider a design flow based on UML. In this case, UML
d to create models of the application, and, provided they are available, code

gen e models. In practice, this latter step is often
replaced enerators do no
typically “kn e for.
Further in , one
has to r nguage of some analysis tool, like SMV [5] or KRONOS [6].

of CBS has motivated
us t
pro , these transformations can always be created by writing translators by hand,
but

ap
anslators in a correct-by-construction manner, we have to find approaches that allow the

 itself. Naturally, the formal specification must have an
exe the transformation —based on its formal
mod

the tween the design information captured in the tools. We claim, that in
add BS design process through the “semantic bridges” between the tools,
it ca lly define the semantics of DSML-s. The reasoning is as

llows: assume that a “base” semantics is defined for an underlying platform. For instance, we
ave the formal specification of a platform that supports Finite State Machines. We conjecture,
at given a DSML and its formal mapping to the semantics of the platform, one can formally
efine the semantics of the DSML. This idea has been presented in [7], in the context of

Statecharts, but it can be easily generalized.
The paper introduces the version of the model-based engineering process for CBS:

Model-Integrated Computing (MIC), and reviews various graph transformation techniques. Next it
introduces a graph transformation language we have developed, and it shows how it can be used

Gabor Karsai, Aditya Agrawal, Feng Shi, Jonathan Sprin
Institute for Software-Integrated Systems

Vanderbilt University
Nashville, TN 37235

uction

 engineering of complex, computer-based systems requires formal approaches that suppo
m
motivating factors

g models implies the use of precisely defined, domain-specific modeling languages, wh
ress the formal spec for the system being designed. (2) The model-based approach inc
gnificant effort to perform
 the design allows saving time at integration, and can significantly decrease the effort t

In order to
b
semantics of the underlying software/ha

In the practice, there are very no full-blown model-based tool-suites yet, althoug
kages [2][3][4] support portions of the model-based design process outl
ecture that this can be attr
gn process are available,

o
To ill

tools are use
erator tools will generate the application from th

 by (or at least augmented with) hand-produced code, as current code g
ow” about the particulars of the execution platform they have to generate cod

y, for instance the state mach e models for the systemmore, if one wants to verif
ebuild those in the input la
The lack of these capabilities in practical model-based engineering

o look for solutions that allow the transformation of design information in the engineering
cess. Obviously
this approach, in addition to being inefficient, has yet another serious drawback: the semantic
ping between the input and the output is vaguely specified. In order to create the design m

tr
formalization of the transformation

cutable semantics, too, as we would like to facilitate
el.

In this paper, we present a formal approach for specifying translators that allow capturing
semantic mapping be
ition to supporting the C
n actually also be used to forma

fo
h
th
d

for representing specific transformations. The paper concludes with a summary and suggestions
for further research.

Backgrounds
Model Integrated Computing (MIC, for short) is a software and system development approach
that advocates the use of domain specific models to represent relevant aspects of a system. The
models capturing the design are then used to synthesize executable systems, perform analysis or
drive simulations. The advantage of this methodology is that it speeds up the design process,
facilitates evolution, helps in system maintenance and reduces the cost of the development cycle
[8].

The MIC development cycle (see Figure 1) starts with the formal specification of a new
application domain. The specification proceeds by identifying the concepts, their attributes, and
relationships among them through a process called metamodeling. Metamodeling is enacted
through the creation of metamodels that define the abstract syntax, static semantics and
visualization rules of the domain. The visualization rules determine how domain models are to be
visualized and manipulated in a visual modeling environment. Once the domain has been
defined, the specification of the domain is used to generate a Domain Specific Design
Environment (DSDE). The DSDE can then be used to create domain specific designs/models; for
example, a particular state machine is a domain specific design that conforms to the rules
specified in the metamodel of the state machine domain. However, to do something useful with
these models such as synthesize executable code, perform analysis or drive simulators, we have
to convert the models into another format like executable code, input format of some analysis tool
or configuration files for simulators. This mapping of models to a more useful form is called model
interpretation and is performed by model interpreters. Model interpreters are programs that
convert models of a given domain into another format. For mapping each domain to output format
a unique model interpreter is required. The output can be considered as another model that
conforms to a different metamodel and thus these model interpreters can be considered to be
mappings between models[8].

Figure 1: The MIC Development Cycle

The premier MIC implementation is built around a metaprogrammable toolkit called
Generic Modeling Environment (GME) developed at the Institute for Software Integrated Systems
(ISIS), Vanderbilt University. It provides an environment for creating domain-specific modeling
environments [9]. The metamodeling environment of GME is based on UML class diagrams [10].
It is used to describe a domain specific modeling language and a corresponding environment by
capturing the syntax, semantics and visualization rules of the target environment. A tool called the
meta-interpreter interprets the metamodels and generates a configuration file for GME. This
configuration file acts as a meta-program for the (generic) GME editing engine, so that it makes
GME behave like a specialized modeling environment supporting the target domain. Thus the
core of GME is used both as the metamodeling environment and the target environment.

GME has both a metamodeling environment and metamodel interpreter that generates a new
modeling environment from the metamodels. However there are no generic tools or methods to
automatically generate domain specific model interpreters. Each model interpreter is written by
hand and this is the most time consuming and error prone phase of the MIC approach. There is a
need to develop methods and tools to automate and speed up the process of creating model
interpreters.

The MIC approach described above is gaining a lot of attention recently with the advent
of the Model Driven Architecture (MDA) by Object Management Group (OMG) [11]. The MDA is a
particular application of the MIC approach where the domain language will be UML 2.0. However,
a more general approach to the MDA problem will be to achieve domain specific model driven
software development [12].

Graph grammars and graph rewriting [14][15] have been developed during the last 25+
years as techniques for formal modeling and tools for very high-level programming. Graph
grammars are the natural extension of the generative grammars of Chomsky into the domain of
graphs. The production rules for (string-) grammars could be generalized into production rules on
graphs, which generatively enumerate all the sentences (i.e. the “graphs”) of a graph grammar.
One can also define replacement rules on strings, which consist of a pattern and a replacement
string. The replacement rule’s pattern is matched against an input string, and the matched sub-
string is replaced with the replacement string of the rule. Similarly, string rewriting can be
generalized into graph rewriting as follows: a graph-rewriting rule consists of a pattern graph and
a replacement graph. The application of a graph-rewriting rule is similar to the application of a
string-rewriting rule on strings; only the matching sub-graph is replaced with another graph. For
precise details see [14].

Beyond the ground-laying work in the theory of graph grammars and rewriting, the
approach has found several applications as well. Graph rewriting has been used in formalizing
the semantics of StateCharts [18], as well as various concurrency models [14]. Several tools —
including programming environments— have been developed [16][17] that illustrate the practical
applicability of the graph rewriting approach. These environments have demonstrated that (1)
complex transformations can be expressed in the form of rewriting rules, and (2) graph rewriting
rules can be compiled into efficient code. Programming via graph transformations has been
applied in some domains [15] with reasonable success. In this paper, we argue that the graph
transformation techniques offer not only a solid, well-defined foundation for model
transformations, but they can be also applied in the practice.

The need for techniques for model transformations has been recently recognized in the
UML world. For examples, see [21], [22], [23], [26], and [27]. Model transformation is an essential
tool for many applications, including translating abstract design models into concrete
implementation models [26], for specification techniques [23], translation of UML into semantic
domains [27], and even for the application of design patterns [29]. The new developments in UML
(see [24], [25]) emphasize the use of meta-models, and provide solid foundation for the precise
specification of semantics. Related efforts, like aspect-oriented programming [19] or intentional
programming [20] could also benefit from using transformation technique based on graph
rewriting. A natural extension of these concepts is to use transformational techniques for
translating models into semantic domains: a task for which graph transformation techniques are
—arguably— well-suited.

The graph transformation language
In this paper we will focus on a generalized graph transformation system called the Graph
Rewrite Engine (GRE) that is able to transform models based upon a description of a
transformation provided to it. The transformation itself is specified in a visual language.

Before describing the transformation language we introduce some terminology that will
be used extensively in this paper. A Metamodel is the UML class diagram that describes a
domain specific modeling language (DSML). The word Paradigm is interchangeable with DSML.
Models are sentences of a particular modeling language. For example, UML instance diagrams
can be called models. Input Graph or Input Model refers to the models to be transformed by the
transformer. Output Graph or Output Model refers to the output of the transformer. Usually the
metamodel describing the input graph differs from that of the output graph.

The transformation language used by GRE consists of three major components (1) rules, (2) test-
cases, and (3) sequencing for the rules. A rule is an atomic transformation operation, which
describes a single transformation step. A rule consists of the basic parts: (1) input subgraph (also
referred to as the pattern, or the LHS), (2) output subgraph (also called the RHS), (3) mapping of
input graph elements to output graph elements and (4) actions. A rule specifies the actions to
perform if the described input subgraph exists in the input graph. One of the features of this
language is that it allows one to associate input vertices and edges (of the input graph) with
output vertices and edges (of the output graph). Thus an input vertex can associate with a
corresponding vertex in the output graph. In order to apply a rule we need to find the matching
input subgraph in the input graph.It is well-known that subgraph isomorphism is NP-complete with
order complexity)(2

1
nnO , where n1 is the number of vertices of the host graph and n2 is the

number of vertices in the pattern graph. However, for a particular rule the pattern graph will not
change and thus n2 can be considered a constant and thus making the search actually
polynomial, though the exponent of the polynomial can vary from one rule to another. Since the
time complexity is an exponent in terms of the pattern the matching algorithm is an expensive
operation. In order to avoid this problem, we allow users to specify initial bindings between some
pattern vertices and input graph vertices. This helps to reduce the size of the host graph to
consider and the exponent is reduced to only the number of unbound vertices in the pattern.
Another issue is the sequencing of rule execution. This is left to the user and he/she can specify
the order of execution for these rules. The user can also specify different sequences based upon
conditional test-case steps, which differ from the rules as they have only patterns but no actions.
Furthermore, input and output graph objects can be passed from one rule to another one. This is
necessary, as each rule needs to have at least one pattern vertex bound to the input graph for
efficiency. Thus, by choosing which objects to pass along the user can choose the traversal of the
graph. For instance, the user could choose depth first traversal or he/she could choose to
traverse the spanning tree of the graph.

(a) Input metamodel (b) Output metamodel

Figure 2: Input and Output metamodels

Let us consider a simple example. The input and output metamodels are shown in Figure 2.
Suppose, the transformation needs to create an object graph such that for each instance of
ClassA in the input there will be a corresponding instance of ClassC in the output. Similarly for
each ClassB instance a ClassD instance should be created. The starting point of the
transformation is an instance of ClassA in the input model. The transformation will look like Figure
3. Init is the starting point of the transformation and it refers to the instance of ClassA. This is then
passed to Rule1. Rule1 specifies a pattern of the input graph and specifies that the corresponding
objects should be created in the output graph. There are edges form the input graph to the output
graph; these are called the action edges. The CreateNew action specifies that a new object
should be created in the output graph. The action edge will also establish a reference between
the source and destination object. Thus, in this example the particular instance of ClassA that
was matched will have a reference to the newly created instance of ClassC. This is useful for
subsequent operations: once the “image” of an input object is created, subsequent rules can
access that. Another type of action edge is called Refer that asserts that the output object has
been previously created and the same object is to be used.

Figure 3: The transformation

The run-time system architecture of GRE

The Graph Rewrite Engine (GRE) is an experimental testbed developed for testing the
transformation language to validate that the language is powerful enough to express most
common transformation problems. The GRE takes the input graph, applies the transformations to
it, and generates the output graph. Inputs to the GRE are (1) the UML class diagrams for the
input and output graphs (also known as meta-models), (2) the transformation specification and (3)
the input graph. The GRE executes the rules according to the sequencing and produces an
output graph based upon the actions of the rules.

The architecture of the run time system is shown in Figure 4. The GRE accesses the
input and output graph with the help of a common API that allows the traversal of the input and
the construction of the output graph. The rewrite rules are stored using a common data structure,
which is constructed from the visual models of transformation steps and can be accessed using
yet another common API. The GRE is fully meta-model-driven, and uses a reflective/persistent
data structure package, called UDM [30].

Figure 4: Run time architecture of the Graph Rewrite Engine

The GRE is composed of two major components, (1) Sequencer, (2) Rule Executor (RE).
The Rule Executor is further broken down into (1) Pattern Matcher (PM) and (2) Effector (or
“Output generator”). The Sequencer determines the order of execution for the rules from the
specification of the transformation, and for each rule it calls the RE. The RE internally calls the
PM with the LHS of the rule. The matches found by the PM are used by the Effector to
manipulate the output graph by performing the actions specified in the rules.

The Sequencer traverses the transformation rules according to the sequencing
information to determine the next rule to execute. It also has to evaluate Test-Cases (if they are
used) to determine the next rule for execution.

The Pattern Matcher finds the subgraph(s) in the input graph that are isomorphic to the
pattern specification. In case of a match, it binds a vertex/edge in the pattern to a corresponding
vertex/edge in the input graph. The matcher starts with an initial binding supplied to it by the
Sequencer. Then it incrementally extends the bindings till there are no unbound edges/vertices in
the pattern. At each step it first checks every unbound edge that has both its vertices bound and
tries to bind these. After it succeeds to bind all such edges, then finds an edge with one vertex
bound and then binds the edge and its unbound vertex. This process is repeated till all the
vertices and edges are bound.

The output generator (which is called after the matches are found) creates and extends
the output graph corresponding to each rule. The generator determines whether new objects
should be created, or existing objects referenced, if there is a need to insert new associations,
and how attributes of output objects and associations has to be calculated.

Figure 5: Two different design iterations of a publisher/subscriber CBS

Example
The creation of a CBS rarely occurs in one step. Rather, several design iterations usually take
place, and different tools are used at different stages of the design. As is true with any system
implementation, the functional interface of the system should not be dependent on its low-level
implementation – thus design tools that can interoperate can increase the productivity of
designers by not requiring them to perform hand entry of the system models for each tool, but
rather using the same models for all design tools.

An example of the benefit of a working tool chain can be found in the following example
of a CBS that implements the canonical client/server relationship. The exact implementation of
the publish/subscribe relationships of the client and server is not important to the client (e.g., the
user does not care that the mailing list to which he is subscribed is hosted on one machine or
several), but the implementation may be important to the CBS designers, who are interested in

(b)

(a)

the performance of the system, as well as warehousing of data, and the scheduling algorithm of
notification tasks.

Figure 5 shows two different metamodels of a client/server framework. The top is the
interface metamodel – the information important to a subscriber. The subscriber can subscribe to
one or more publishers, and the publisher must be able to notify zero or more subscribers when
updates are available. According to this diagram, the only players in the CBS are a publisher and
subscriber. The bottom metamodel shows a more advanced design of the same CBS. In this
design, the subscriber can still subscribe to one or more publishers, but the publisher does not
directly notify the subscribers in the event of an available update. Instead, the publisher server
delegates this responsibility to a different machine, which in turn publishes the available data, as
determined by a scheduler.

Figure 6: GRE formalization of the publisher/subscriber specialization

An observant designer of CBS will notice the similarities of the second design with the first. It
is possible to use the GRE to transform models that were built using the first formal specification
into models that use the second formal specification. In this way the design is specialized, and
the design artifacts produced in previous evolutions are modified to pass down the tool chain.
The algorithm for migrating from the first to the second design is as follows:

1. For each server, create two servers, one of type A, and one of type B
2. Create a scheduler that will be in charge of executing server A when data becomes

available for publication
3. Create a new client that replaces the old one
The formal description of this algorithm is found in Figure 6. The sequence of the algorithm is

shown in the top of the figure (the connected rewriting rules). Each of these rewriting rules
contains a specification that formalizes exactly how models are to be transformed. The bottom
portion of Figure 6 shows how the two servers are created. The semantics are that each
publisher should be replaced with two servers – one to handle the subscriptions, and the other to
handle the publications.

This example shows that when a design evolution occurs models created in earlier stages of
the design need not be abandoned or rebuilt simply due to the complexities of transforming the

models. The GRE can be used to rapidly produce a translation that will enable multiple design
evolutions throughout the formal specification process of a CBS.

Summary and conclusions
In this paper we have illustrated how meta-model-based graph transformations can be used in
the construction of CBS. We claim that the design transformation process specified this way are
completely formal, and it assigns a semantics to the input models in terms of the target domain.
We believe that one can also formally reason about the transformation programs, prove
interesting properties about them, and verify their correctness with respect to some criteria. This
type of formally-specified model transformations are also useful in various other steps, for
instance when transforming models into artifacts suitable for verification.

Currently we have a well-defined method for building model transformers, and we have
created a set of tools that allow experimentation with the approach. In the next stage, we will look
into addressing the performance aspect of the transformations, and try to generate code from the
transformation specs (thus bypassing the need for the GRE-like interpreter).

Formally specified transformations on models are a fruitful area of research. Graph
transformations, in addition to providing a very high-level programming language for specifying
complex algorithms, offer the opportunity for formally reasoning about those algorithms. One of
the goals of applying formal techniques in CBS is to achieve the “correct-by-construction”
property. It is conceivable that if the constructions steps are formally specified, then the
correctness of a design can be verified based on the correctness of the steps. We believe that the
technique we have described in this paper provides the first steps in this direction, but further
research is necessary to provide a full solution.

Acknowledgement
The DARPA/IXO MOBIES program and USAF/AFRL has supported under contract F30602-00-1-
0580, in part, the activities described in this paper.

References

[1] Karsai G., Nordstrom G., Ledeczi A., Sztipanovits J.: Towards Two-Level Formal
Modeling of Computer-Based Systems, Journal of Universal Computer Science, Vol. 6,
No. 11, pp. 1131-1144, November, 2000.

[2] Matlab/Simulink/Stateflow tools from Mathworks,Inc.
[3] POLIS: A Framework for Hardware-Software Co-Design of Embedded Systems,

available from http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/abstract.html
[4] RHAPSODY, available from http://www.ilogix.com
[5] K. L. McMillan, Symbolic Model Checking: an approach to the state explosion problem,

CMU Tech Rpt. CMU-CS-92-131.
[6] KRONOS, available from http://www-verimag.imag.fr/TEMPORISE/kronos/
[7] Maggiolo-Schettini, A., Peron, A.: Semantics of Full Statecharts Based on Graph

Rewriting, Springer LNCS 776, 1994, pp. 265--279.
[8] J. Sztipanovits, and G. Karsai, “Model-Integrated Computing”, Computer, Apr. 1997, pp.

110-112
[9] A. Ledeczi, et al., “Composing Domain-Specific Design Environments”, Computer, Nov.

2001, pp. 44-51.
[10] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified Modeling Language Reference

Manual”, Addison-Wesley, 1998.
[11] “The Model-Driven Architecture”, http://www.omg.org/mda/ , OMG, Needham, MA, 2002.
[12] “Request For Proposal: MOF 2.0 Query/Views/Transformations”, OMG Document:

ad/2002-04-10, 2002, OMG, Needham, MA.
[13] Agrawal A., Levendovszky T., Sprinkle J., Shi F., Karsai G., “Generative Programming

via Graph Transformations in the Model-Driven Architecture”, Workshop on Generative
Techniques in the Context of Model Driven Architecture, OOPSLA , Nov. 5, 2002,
Seattle, WA.

[14] Rozenberg,G. (ed.), “Handbook on Graph Grammars and Computing by Graph
Transformation: Foundations”, Vol.1-2. World Scientific, Singapore, 1997

[15] Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph Transformations.
Software - Practice and Experience 29(3): 197-217, 1999.

[16] U. Aßmann, ``How To Uniformly Specify Program Analysis and Transformation'', in: 6th
Int. Conf. on Compiler Construction (CC '96), T. Gyimóthy (réd.), Lect. Notes in Comp.
Sci., Springer-Verlag, Linköping, Sweden, 1996.

[17] A. Schürr. PROGRES for Beginners. RWTH Aachen, D-52056 Aachen, Germany.
[18] Taentzer, G.: AGG: A Tool Enviroment for Algebraic Graph Transformation, in Proc. of

Applications of Graph Transformation with Industrial Relevance, Kerkrade, The
Netherlands, LNCS,Springer, 2000.

[19] Maggiolo-Schettini, A., Peron, A.: Semantics of Full Statecharts Based on Graph
Rewriting, Springer LNCS 776, 1994, pp. 265--279.

[20] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C., Mendhekar, A., Murphy, G.: “ Aspect-
Oriented Programming,” ECOOP’97, LNCS 1241, Springer. (1997)

[21] Simonyi, C.: “Intentional Programming: Asymptotic Fun?” Position Paper, SDP Workshop
Vanderbilt University, December 13 - 14, 2001. http://isis.vanderbilt.edu/sdp

[22] Milicev, D., "Automatic Model Transformations Using Extended UML Object Diagrams in
Modeling Environments," IEEE Transaction on Software Engineering, Vol. 28, No. 4, April
2002, pp. 413-431

[23] Wai-Ming Ho, Jean-Marc Jézéquel, Alain Le Guennec, and François Pennaneac'h.:
UMLAUT: an extendible UML transformation framework, in Proc. Automated Software
Engineering, ASE'99, Florida, October 1999.

[24] David H. Akehurst: Model translation: A uml-based specification technique and active
implementation approach. PhD thesis, Computer Science at Kent University (UK),
December 2000.

[25] Tony Clark, Andy Evans, Stuart Kent: Engineering Modelling Languages: A Precise
Meta-Modelling Approach. FASE 2002: 159-173

[26] Tony Clark, Andy Evans, Stuart Kent: The Metamodelling Language Calculus:
Foundation Semantics for UML. FASE 2001: 17-31.

[27] Lemesle, R. Transformation Rules Based on Meta-Modeling EDOC,'98, La Jolla,
California, 3-5, November 1998, pp.113-122.

[28] Heckel, R. and Küster, J. and Taentzer, G.: Towards Automatic Translation of UML
Models into Semantic Domains, Proc. of APPLIGRAPH Workshop on Applied Graph
Transformation (AGT 2002), Grenoble, France, 2002, pp. 11 - 22.

[29] Karsai G.: Tool Support for Design Patterns, New Directions in Software Technology 4
Workshop, December, 2001. Available from http://www.isis.vanderbilt.edu .

[30] The UDM tools, available from http://www.isis.vanderbilt.edu/Projects/MoBIES/ .

	On the use of Graph Transformations in the
	Formal Specification of Computer-Based Systems
	Introduction
	Backgrounds
	The graph transformation language
	The run-time system architecture of GRE

	Example
	Summary and conclusions
	Acknowledgement
	References

