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Backgrounds 
Model Integrated Computing (MIC, for short) is a software and system development approach 
that advocates the use of domain specific models to represent relevant aspects of a system. The 
models capturing the design are then used to synthesize executable systems, perform analysis or 
drive simulations. The advantage of this methodology is that it speeds up the design process, 
facilitates evolution, helps in system maintenance and reduces the cost of the development cycle 
[8].  

The MIC development cycle (see Figure 1) starts with the formal specification of a new 
application domain. The specification proceeds by identifying the concepts, their attributes, and 
relationships among them through a process called metamodeling. Metamodeling is enacted 
through the creation of metamodels that define the abstract syntax, static semantics and 
visualization rules of the domain. The visualization rules determine how domain models are to be 
visualized and manipulated in a visual modeling environment. Once the domain has been 
defined, the specification of the domain is used to generate a Domain Specific Design 
Environment (DSDE). The DSDE can then be used to create domain specific designs/models; for 
example, a particular state machine is a domain specific design that conforms to the rules 
specified in the metamodel of the state machine domain. However, to do something useful with 
these models such as synthesize executable code, perform analysis or drive simulators, we have 
to convert the models into another format like executable code, input format of some analysis tool 
or configuration files for simulators. This mapping of models to a more useful form is called model 
interpretation and is performed by model interpreters. Model interpreters are programs that 
convert models of a given domain into another format. For mapping each domain to output format 
a unique model interpreter is required. The output can be considered as another model that 
conforms to a different metamodel and thus these model interpreters can be considered to be 
mappings between models[8]. 

 
Figure 1: The MIC Development Cycle 

The premier MIC implementation is built around a metaprogrammable toolkit called 
Generic Modeling Environment (GME) developed at the Institute for Software Integrated Systems 
(ISIS), Vanderbilt University. It provides an environment for creating domain-specific modeling 
environments [9]. The metamodeling environment of GME is based on UML class diagrams [10]. 
It is used to describe a domain specific modeling language and a corresponding environment by 
capturing the syntax, semantics and visualization rules of the target environment. A tool called the 
meta-interpreter interprets the metamodels and generates a configuration file for GME. This 
configuration file acts as a meta-program for the (generic) GME editing engine, so that it makes 
GME behave like a specialized modeling environment supporting the target domain. Thus the 
core of GME is used both as the metamodeling environment and the target environment.  



GME has both a metamodeling environment and metamodel interpreter that generates a new 
modeling environment from the metamodels. However there are no generic tools or methods to 
automatically generate domain specific model interpreters. Each model interpreter is written by 
hand and this is the most time consuming and error prone phase of the MIC approach. There is a 
need to develop methods and tools to automate and speed up the process of creating model 
interpreters. 

The MIC approach described above is gaining a lot of attention recently with the advent 
of the Model Driven Architecture (MDA) by Object Management Group (OMG) [11]. The MDA is a 
particular application of the MIC approach where the domain language will be UML 2.0. However, 
a more general approach to the MDA problem will be to achieve domain specific model driven 
software development [12]. 

Graph grammars and graph rewriting [14][15] have been developed during the last 25+ 
years as techniques for formal modeling and tools for very high-level programming. Graph 
grammars are the natural extension of the generative grammars of Chomsky into the domain of 
graphs. The production rules for (string-) grammars could be generalized into production rules on 
graphs, which generatively enumerate all the sentences (i.e. the “graphs”) of a graph grammar. 
One can also define replacement rules on strings, which consist of a pattern and a replacement 
string. The replacement rule’s pattern is matched against an input string, and the matched sub-
string is replaced with the replacement string of the rule. Similarly, string rewriting can be 
generalized into graph rewriting as follows: a graph-rewriting rule consists of a pattern graph and 
a replacement graph. The application of a graph-rewriting rule is similar to the application of a 
string-rewriting rule on strings; only the matching sub-graph is replaced with another graph. For 
precise details see [14].  

Beyond the ground-laying work in the theory of graph grammars and rewriting, the 
approach has found several applications as well. Graph rewriting has been used in formalizing 
the semantics of StateCharts [18], as well as various concurrency models [14]. Several tools —
including programming environments— have been developed [16][17] that illustrate the practical 
applicability of the graph rewriting approach.  These environments have demonstrated that (1) 
complex transformations can be expressed in the form of rewriting rules, and (2) graph rewriting 
rules can be compiled into efficient code. Programming via graph transformations has been 
applied in some domains [15] with reasonable success. In this paper, we argue that the graph 
transformation techniques offer not only a solid, well-defined foundation for model 
transformations, but they can be also applied in the practice.  

The need for techniques for model transformations has been recently recognized in the 
UML world. For examples, see [21], [22], [23], [26], and [27]. Model transformation is an essential 
tool for many applications, including translating abstract design models into concrete 
implementation models [26], for specification techniques [23], translation of UML into semantic 
domains [27], and even for the application of design patterns [29]. The new developments in UML 
(see [24], [25]) emphasize the use of meta-models, and provide solid foundation for the precise 
specification of semantics. Related efforts, like aspect-oriented programming [19] or intentional 
programming [20] could also benefit from using transformation technique based on graph 
rewriting.  A natural extension of these concepts is to use transformational techniques for 
translating models into semantic domains: a task for which graph transformation techniques are 
—arguably— well-suited.  
 
The graph transformation language 
In this paper we will focus on a generalized graph transformation system called the Graph 
Rewrite Engine (GRE) that is able to transform models based upon a description of a 
transformation provided to it. The transformation itself is specified in a visual language. 

Before describing the transformation language we introduce some terminology that will 
be used extensively in this paper. A Metamodel is the UML class diagram that describes a 
domain specific modeling language (DSML). The word Paradigm is interchangeable with DSML. 
Models are sentences of a particular modeling language. For example, UML instance diagrams 
can be called models. Input Graph or Input Model refers to the models to be transformed by the 
transformer. Output Graph or Output Model refers to the output of the transformer. Usually the 
metamodel describing the input graph differs from that of the output graph.  



 
The transformation language used by GRE consists of three major components (1) rules, (2) test-
cases, and (3) sequencing for the rules. A rule is an atomic transformation operation, which 
describes a single transformation step. A rule consists of the basic parts: (1) input subgraph (also 
referred to as the pattern, or the LHS), (2) output subgraph (also called the RHS), (3) mapping of 
input graph elements to output graph elements and (4) actions. A rule specifies the actions to 
perform if the described input subgraph exists in the input graph. One of the features of this 
language is that it allows one to associate input vertices and edges (of the input graph) with 
output vertices and edges (of the output graph). Thus an input vertex can associate with a 
corresponding vertex in the output graph. In order to apply a rule we need to find the matching 
input subgraph in the input graph.It is well-known that subgraph isomorphism is NP-complete with 
order complexity )( 2

1
nnO , where n1 is the number of vertices of the host graph and n2 is the 

number of vertices in the pattern graph. However, for a particular rule the pattern graph will not 
change and thus n2 can be considered a constant and thus making the search actually 
polynomial, though the exponent of the polynomial can vary from one rule to another. Since the 
time complexity is an exponent in terms of the pattern the matching algorithm is an expensive 
operation. In order to avoid this problem, we allow users to specify initial bindings between some 
pattern vertices and input graph vertices. This helps to reduce the size of the host graph to 
consider and the exponent is reduced to only the number of unbound vertices in the pattern. 
Another issue is the sequencing of rule execution. This is left to the user and he/she can specify 
the order of execution for these rules. The user can also specify different sequences based upon 
conditional test-case steps, which differ from the rules as they have only patterns but no actions. 
Furthermore, input and output graph objects can be passed from one rule to another one. This is 
necessary, as each rule needs to have at least one pattern vertex bound to the input graph for 
efficiency. Thus, by choosing which objects to pass along the user can choose the traversal of the 
graph. For instance, the user could choose depth first traversal or he/she could choose to 
traverse the spanning tree of the graph.  
 

 
(a) Input metamodel   (b) Output metamodel 

Figure 2: Input and Output metamodels 

Let us consider a simple example. The input and output metamodels are shown in Figure 2. 
Suppose, the transformation needs to create an object graph such that for each instance of 
ClassA in the input there will be a corresponding instance of ClassC in the output. Similarly for 
each ClassB instance a ClassD instance should be created. The starting point of the 
transformation is an instance of ClassA in the input model. The transformation will look like Figure 
3. Init is the starting point of the transformation and it refers to the instance of ClassA. This is then 
passed to Rule1. Rule1 specifies a pattern of the input graph and specifies that the corresponding 
objects should be created in the output graph. There are edges form the input graph to the output 
graph; these are called the action edges. The CreateNew action specifies that a new object 
should be created in the output graph. The action edge will also establish a reference between 
the source and destination object. Thus, in this example the particular instance of ClassA that 
was matched will have a reference to the newly created instance of ClassC. This is useful for 
subsequent operations: once the “image” of an input object is created, subsequent rules can 
access that. Another type of action edge is called Refer that asserts that the output object has 
been previously created and the same object is to be used.  



 
Figure 3: The transformation 

 
The run-time system architecture of GRE 

The Graph Rewrite Engine (GRE) is an experimental testbed developed for testing the 
transformation language to validate that the language is powerful enough to express most 
common transformation problems. The GRE takes the input graph, applies the transformations to 
it, and generates the output graph. Inputs to the GRE are (1) the UML class diagrams for the 
input and output graphs (also known as meta-models), (2) the transformation specification and (3) 
the input graph. The GRE executes the rules according to the sequencing and produces an 
output graph based upon the actions of the rules. 

The architecture of the run time system is shown in Figure 4. The GRE accesses the 
input and output graph with the help of a common API that allows the traversal of the input and 
the construction of the output graph. The rewrite rules are stored using a common data structure, 
which is constructed from the visual models of transformation steps and can be accessed using 
yet another common API. The GRE is fully meta-model-driven, and uses a reflective/persistent 
data structure package, called UDM [30]. 

 
Figure 4: Run time architecture of the Graph Rewrite Engine 

The GRE is composed of two major components, (1) Sequencer, (2) Rule Executor (RE). 
The Rule Executor is further broken down into (1) Pattern Matcher (PM) and (2) Effector (or 
“Output generator”). The Sequencer determines the order of execution for the rules from the 
specification of the transformation, and for each rule it calls the RE. The RE internally calls the 
PM with the LHS of the rule. The matches found by the PM are used by the Effector to 
manipulate the output graph by performing the actions specified in the rules.  



The Sequencer traverses the transformation rules according to the sequencing 
information to determine the next rule to execute. It also has to evaluate Test-Cases (if they are 
used) to determine the next rule for execution. 

The Pattern Matcher finds the subgraph(s) in the input graph that are isomorphic to the 
pattern specification. In case of a match, it binds a vertex/edge in the pattern to a corresponding 
vertex/edge in the input graph. The matcher starts with an initial binding supplied to it by the 
Sequencer. Then it incrementally extends the bindings till there are no unbound edges/vertices in 
the pattern. At each step it first checks every unbound edge that has both its vertices bound and 
tries to bind these. After it succeeds to bind all such edges, then finds an edge with one vertex 
bound and then binds the edge and its unbound vertex. This process is repeated till all the 
vertices and edges are bound. 

The output generator (which is called after the matches are found) creates and extends 
the output graph corresponding to each rule. The generator determines whether new objects 
should be created, or existing objects referenced, if there is a need to insert new associations, 
and how attributes of output objects and associations has to be calculated.  
 

 
Figure 5: Two different design iterations of a publisher/subscriber CBS 

Example  
The creation of a CBS rarely occurs in one step.  Rather, several design iterations usually take 
place, and different tools are used at different stages of the design.  As is true with any system 
implementation, the functional interface of the system should not be dependent on its low-level 
implementation – thus design tools that can interoperate can increase the productivity of 
designers by not requiring them to perform hand entry of the system models for each tool, but 
rather using the same models for all design tools. 

An example of the benefit of a working tool chain can be found in the following example 
of a CBS that implements the canonical client/server relationship.  The exact implementation of 
the publish/subscribe relationships of the client and server is not important to the client (e.g., the 
user does not care that the mailing list to which he is subscribed is hosted on one machine or 
several), but the implementation may be important to the CBS designers, who are interested in 

(b) 

(a) 



the performance of the system, as well as warehousing of data, and the scheduling algorithm of 
notification tasks. 

Figure 5 shows two different metamodels of a client/server framework.  The top is the 
interface metamodel – the information important to a subscriber.  The subscriber can subscribe to 
one or more publishers, and the publisher must be able to notify zero or more subscribers when 
updates are available.  According to this diagram, the only players in the CBS are a publisher and 
subscriber.  The bottom metamodel shows a more advanced design of the same CBS.  In this 
design, the subscriber can still subscribe to one or more publishers, but the publisher does not 
directly notify the subscribers in the event of an available update.  Instead, the publisher server 
delegates this responsibility to a different machine, which in turn publishes the available data, as 
determined by a scheduler. 

 
Figure 6: GRE formalization of the publisher/subscriber specialization 

An observant designer of CBS will notice the similarities of the second design with the first.  It 
is possible to use the GRE to transform models that were built using the first formal specification 
into models that use the second formal specification.  In this way the design is specialized, and 
the design artifacts produced in previous evolutions are modified to pass down the tool chain.  
The algorithm for migrating from the first to the second design is as follows: 

1. For each server, create two servers, one of type A, and one of type B 
2. Create a scheduler that will be in charge of executing server A when data becomes 

available for publication 
3. Create a new client that replaces the old one 
The formal description of this algorithm is found in Figure 6.  The sequence of the algorithm is 

shown in the top of the figure (the connected rewriting rules).  Each of these rewriting rules 
contains a specification that formalizes exactly how models are to be transformed.  The bottom 
portion of Figure 6 shows how the two servers are created.  The semantics are that each 
publisher should be replaced with two servers – one to handle the subscriptions, and the other to 
handle the publications. 

This example shows that when a design evolution occurs models created in earlier stages of 
the design need not be abandoned or rebuilt simply due to the complexities of transforming the 



models.  The GRE can be used to rapidly produce a translation that will enable multiple design 
evolutions throughout the formal specification process of a CBS. 
 
Summary and conclusions 
In this paper we have illustrated how meta-model-based graph transformations can be used in 
the construction of CBS. We claim that the design transformation process specified this way are 
completely formal, and it assigns a semantics to the input models in terms of the target domain. 
We believe that one can also formally reason about the transformation programs, prove 
interesting properties about them, and verify their correctness with respect to some criteria. This 
type of formally-specified model transformations are also useful in various other steps, for 
instance when transforming models into artifacts suitable for verification.  

Currently we have a well-defined method for building model transformers, and we have 
created a set of tools that allow experimentation with the approach. In the next stage, we will look 
into addressing the performance aspect of the transformations, and try to generate code from the 
transformation specs (thus bypassing the need for the GRE-like interpreter).  

Formally specified transformations on models are a fruitful area of research. Graph 
transformations, in addition to providing a very high-level programming language for specifying 
complex algorithms, offer the opportunity for formally reasoning about those algorithms. One of 
the goals of applying formal techniques in CBS is to achieve the “correct-by-construction” 
property. It is conceivable that if the constructions steps are formally specified, then the 
correctness of a design can be verified based on the correctness of the steps. We believe that the 
technique we have described in this paper provides the first steps in this direction, but further 
research is necessary to provide a full solution.  
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