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ABSTRACT 

In this paper we present an approach for 
combined fault diagnosis and reconfigurable 
control structure for a general class of hybrid 
systems. In this approach a plant is modeled using 
an extended version of bond graphs, namely 
hybrid bond graph, where discrete mode 
transitions are represented as binary switch 
junctions. A hybrid observer has been developed 
that uses this model to track the system behavior 
within and across modes. Two complementary 
approaches are used for fault detection and 
isolation.  The first diagnoser is based on hybrid 
models and uses the hybrid observer, qualitative 
reasoning techniques, and real-time parameter 
estimation.  The other diagnoser is based an 
abstracted discrete event model of the system that 
shows the causal and temporal relation between 
failure modes and corresponding abstract 
observations. To accommodate detected failure a 
new controller can be selected for a previously 
developed controller library based on the current 
condition. Control reconfiguration can be also 
achieved through online control techniques.  

INTRODUCTION 

Large engineering systems such as manufacturing 
systems, power networks, and chemical plants are 
usually designed for automated operation. Such 
automated systems are typically prone to physical 
(hardware) and/or logical (software) failures. In 
many situations, these system support critical 
services and failure can have serious economic, 
health, and security impacts. Consequently, 
automatic failure diagnosis forms a necessary part 
of these systems. Accurate and speedy diagnosis 
of faults is vital to the health and efficiency of the 
underlying system. In general, the diagnosis 

process aims to detect, isolate and predict 
possible failures by observing signals and 
measurements form the system sensors, 
comparing it with a mathematical model 
representing relevant nominal and/or faulty 
behavior, and explaining the observed behavior in 
terms of a hypothesis about possible abnormal 
changes to the state of the system components. 

To ensure a high degree of reliability and safety 
the effects of system failures must be mitigated 
and control must be maintained under a variety of 
fault scenarios. Sophisticated control techniques 
are usually implemented to support the system 
operation under nominal conditions.  If systems 
are designed with redundancy, control decisions 
have to be made about when and how backup 
systems should be activated, and how exactly the 
reconfiguration should be executed.  

A large class of contemporary engineering system 
can be classified as hybrid systems. Hybrid 
systems are dynamic systems with both discrete-
event and continuous-time based components. 
Considerable research work has been dedicated 
recently to the study of various aspects of hybrid 
systems dynamics including the issues of behavior 
tracking, diagnosis, and control. See for example34 
and the references therein. However, there has 
been very little work on integrating the diagnosis 
and control process in a formal way for hybrid 
system. Most fault-adaptive control techniques 
tend to take a pragmatic approach. Potential fault 
situations are pre-enumerated, and appropriate 
fault accommodation actions are built into the 
supervisory controller for each case. The 
approach works well for these cases, but may 
break down in unforeseen situations. Furthermore, 
fault-adaptive control techniques usually geared 
towards handling broken components.  In many 
realistic situations, the system suffers only partial 
degradation and failures. If we can build online 
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capabilities to detect and estimate these partial 
failures, more sophisticated control algorithms can 
be designed to keep the system operational under 
these conditions31,32,33. 

For the DARPA SEC project, we are developing a 
systematic model-based approach to the design 
and implementation of control systems that can 
accommodate faults. We call this approach Fault-
Adaptive Control Technology (FACT). Developing 
fault-adaptive control requires us to solve a 
number of technical problems beyond the 
capabilities of traditional control approaches. First, 
faults must be detected while the system is in 
operation. System dynamics is complex, and 
sensors can be noisy, therefore, differentiating 
degraded faulty behavior from nominal behavior of 
the plant quickly is a non-trivial problem. Fault 
detection must be followed by rapid fault isolation 
and estimation of the fault magnitude. Then a 
decision has to be made online on how to 
reconfigure the control system to accommodate 
the fault. Many alternatives may have to be 
evaluated, and metrics will have to be defined that 
either (1) select an optimal configuration, if it can 
be computed in a feasible manner, or (2) the best 
possible reconfiguration is derived under given 
time and resource constraints. Finally, the 
reconfiguration must be executed, which means 
that set points and control parameters may have 
to be changed, or a different controller may have 
to be selected to continue system operation. The 
challenge is bring together methodologies from 
fault diagnostics, control theory, signal processing, 
software engineering and systems engineering to 
build the integrated online FACT system.   

In this paper, we present the developed fault 
adaptive control structure and describe the 
different techniques implemented for failure 
diagnosis and control reconfiguration. In Section 2, 
we present a reference-architecture for FACT 
systems. Section 3 presents the different models 
that are used to describe aspect of the system 
behavior and functionalities that are relevant to the 
fault adaptive control architecture. Section 4 
describes the hybrid observer scheme for tracking 
nominal system behavior. Section 5 discusses the 
fault isolation methodologies. Preliminary results 
that demonstrate the effectiveness of our 
approach are presented. Section 6 briefly 
discusses fault-adaptive control and controller 
reconfiguration.  The summary and conclusions 
appear in Section 7 of the paper. We illustrate the 
basic modeling concepts and our diagnosis 

algorithms using a two-tank system as the plant, 
with a supervisory controller.  

FAULT ADAPTIVE CONTROL 
ARCHITECTURE 

The fault adaptive control architecture, shown in 
Fig. 1, is an integrated structure of model-based 
and logical approaches for fault detection and 
isolation, parameter estimation, and control 
reconfiguration for a general class of hybrid 
systems. In this architecture, the plant is observed 
and managed through a set of monitoring and 
reconfigurable control modules. Hybrid models2, 
derived from hybrid bond graphs3 systematically 
integrate continuous and discrete system 
dynamics and discrete events to establish the core 
of the modeling framework. Supervisory 
controllers, modeled as an extended finite state 
machine, are used to generate the discrete events 
that cause reconfigurations in the continuous 
energy-based bond graph models of the plant. 
Fault detection involves comparison of the 
expected behavior of the system generated from 
the hybrid models with actual system behavior, to 
determine when discrepancies occur. This 
requires the design and implementation of hybrid 
observers that estimate the continuous dynamic 
states of the system and detect mode transitions 
in the system operation. Sophisticated signal 
analysis and filtering methods linked to the hybrid 
observers are used for detecting deviations from 
nominal behavior and triggering the fault isolation 
schemes.   

Our diagnostic schemes integrate the use of 
failure-propagation graph based techniques for 
discrete-event diagnosis4 and combined qualitative 
reasoning and quantitative parameter estimation 
methods for parameterized fault isolation5 of 
degraded components (sensors, actuators, and 
plant components). The dynamic system state 
accumulated from the observer (discrete system 
mode plus continuous state vector) and fault 
isolation units (status of faulty and degraded 
sensors, actuators, and plant components) define 
the active system state model. The tracking, fault 
detection, and fault isolation mechanisms, shown 
in Fig. 1, together constitute a bottom-up 
computational approach for estimating the 
dynamic system state (nominal or faulty) by 
monitoring plant and controller variables. 



 
American Institute of Aeronautics and Astronautics 

3

The reconfiguration controller uses this information 
to select from the controller library the controller 
that is most effective in maintaining desired 
system operation and performance. This requires 
the definition of metrics and decision criteria that 
govern the controller selection process. The 
selection and reconfiguration mechanisms operate 
in a top-down manner, using the dynamic state 
information to effect changes in supervisory 
control mechanisms, such as selection (not 
synthesis) of feedback control mechanisms, and 
re-tuning of low level regulators, such as PID or 
model-based controllers.  The overall 
computational architecture combines the bottom-
up and top-down computational schemes in a 
seamless manner, via the shared active model.  

 

Figure 1: Fault Adaptive Control Architecture 

Alternatively, online control and supervision can 
be implemented to ensure a given safety 
specification under both nominal and faulty 
conditions.  The safety control problem requires 
the system to move to a predetermined safe 
region from a given set of initial states in the state 
space of the system. The online approach does 
not require the existence of a finite quotient 
equivalent for the system and therefore is 
applicable to complex hybrid systems. Moreover, 
the approach can be adapted to accommodate 
possible changes in the system parameters that 
may occur as a result of a fault or parameter 
changes in time-varying systems. 

The implementation and support for the online 
FACT architecture is based on our model-
integrated computing paradigm1. To achieve this, 
we have created (1) a graphical modeling 
environment that facilitates building hybrid models 
of the plant and controllers, and (2) a set of run-
time components that can execute the code 
synthesized from the models. This code, when 

integrated with the generic FACT run-time 
components, instantiate the architecture for a 
specific application domain. 

THE MODELING PARADIGMS 

In general, different aspect of the systems 
behavior and functionalities can be used for failure 
analysis and control reconfiguration. The FACT 
architecture supports two basic modeling 
paradigms that can capture essential system 
dynamics from different but related prospective. 
The detailed mixed continuous and discrete 
behavior in the plant components is captured 
through Hybrid bond graphs. Fault propagation 
graph, on the other hand, focuses on the causal 
and temporal relationship between different 
operation regions (typically corresponds to failure 
modes) and the associated abstract observations. 
In addition to these two modeling structure, we 
use extended state machine to model the high 
level supervisor. 

Hybrid Bond Graphs 

In the FACT architecture plant components are 
modeled as bond graphs. Bond graphs represent 
energy-based models of the system in terms of the 
effort and flow variables of the system. Bonds 
specify interconnections between elements that 
exchange energy, which is given by the rate of 
flow of energy, power = effort x flow. Bond graphs 
represent a generic modeling language that can 
be applied to a multitude of physical systems, 
such as electrical, mechanical, and thermal 
systems. There exist standard techniques to build 
bond graph models of systems based on physical 
principles. State equations can be systematically 
derived from the bond graph representation of the 
system. Temporal causal graphs, the models for 
qualitative diagnostic analysis, can be 
systematically produced from bond graphs15. An 
extended version of bond graphs, referred to as 
hybrid bond graphs (HBG)3 is used to model 
possible discrete transitions in system behavior 

Timed Failure Propagation Graphs 

Timed failure propagation graphs (TFPG)4 are 
causal models that describe the system behavior 
in presence of faults. The timed failure 
propagation graph is a labeled directed graph 
where the nodes represent either failure modes - 
which are fault causes - or discrepancies - which 
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are off-nominal conditions that are the effects of 
failure modes. Discrepancies can either be 
monitored (attached to alarms) or silent, and 
depending on the way it is triggered by the 
incoming signals it is further classified as either 
``AND" or ``OR" discrepancy. Attributed edges 
between nodes in the graph represent causality, 
and the attributes specify the temporality of 
causation given by an upper and lower time 
constraints on the propagation of failure between 
nodes.  

An extended version of TFPG model, referred to 
as hybrid failure propagation graph, is 
implemented. The hybrid failure propagation graph 
allows the representation of failure propagation in 
multi-mode (switching) systems in which the 
failure propagation depends on the current mode 
of the system. To this ends, edges in the graph 
model can be constrained to a subset of the set of 
possible operation modes of the system. Formally, 
a hybrid failure propagation graph model is 
represented as a tuple $G = (F, D, E, M, ET, EM, 
DC, DS), where F is a nonempty set of failure 
nodes, D is a nonempty set of discrepancy nodes, 
with F ∩ D = ∅, E ⊆ V × V is a set of edges 
connecting the set of all nodes V = F ∪ D, M is a 
nonempty set of system modes,  ET: E → I is a 
map that associate every edge in E with a time 
interval, EM: E → M is a map that associate every 
edge in E with a set of modes in M, DC: D → 
{AND,OR} is a map defining the class of each 
discrepancy as either AND or an OR node, DS : D 
→ {ON, OFF} is a map defining the monitoring 
status of the discrepancy.   An example of a hybrid 
failure propagation graph is shown in the above 
figure. 

Supervisory Controllers Models 

In the FACT architecture, the reconfigurable 
monitoring and control component represents all 
the traditional monitoring and control functions in 
an application. We envision that this component is 
implemented mainly in software, although some 
components might utilize dedicated hardware 
components. This component is also 
“reconfigurable”: its sub-components, their 
parameters, and their interconnection can be 
changed during system operation.  

To represent this reconfigurable monitoring and 
control component, we have developed a 
modeling language, called Controller Modeling 
Language (CML). The approach followed here is 
that of Model-Integrated Computing1. CML 
represents controllers on two levels; the regulatory 
level, and the supervision level. On the regulatory 
level, it represents controllers using computational 
blocks that form a signal flow diagram. The signal 
flow diagram has process-network semantics: 
each block is a process that is scheduled for 
execution upon arrival of data on its inputs. Then 
the process performs some calculations and may 
generate output data that is sent to downstream 
blocks. After finishing processing, the process 
terminates and waits for the next triggering data. 
On the supervisory level, it represents controllers 
using an extended finite state machine model 
similar to that of Statecharts22.  

REGULATORY 
CONTROLLERS 

DISCRETE SENSOR VALUES 

SAMPLED SENSOR VALUES 

DISCRETE ACTUATOR SIGNALS  

SAMPLED ACTUATOR SIGNALS 

SUPERVISORY 
CONTROLLER 

sampled data values, 
events

data values for parameters, 
discrete control signals, actions

OPERATOR
GUI 

(OPTIONAL)
RECONFIG. 
MANAGER 

Reconfig.
events 

 

Figure 3: Relationship between the 
supervisory and regulatory controllers 

The relationship between the two controller layers: 
supervisory and regulatory, is shown in Fig. 3. The 
regulatory layer operates in a discrete-time 
fashion, i.e., it receives discrete (sporadic) and 
sampled data from the plant, and it generates 
discrete (sporadic) and sampled data for the 
actuators. On the other hand, the supervisory 
controller operates in a discrete-event mode, i.e., it 
has no explicit notion of time. It receives sampled 

Figure 2: A hybrid failure propagation graph
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data values and discrete events generated in the 
regulatory layer, and sends new data values for 
parameters, and events in the form of discrete 
control signals to the regulatory layer. The 
supervisory controller can also trigger the 
execution of reconfiguration actions. As mentioned 
above, during reconfiguration the design 
procedures associated with the regulatory blocks 
will be triggered to recalculate parameter values. 

THE HYBRID OBSERVER 

The hybrid observer tracks the system behavior 
across different modes of operation. This involves 
two steps: Tracking continuous system behavior in 
individual modes of operation, and Identifying and 
executing all mode changes including controlled 
and autonomous jumps. Transitioning from one 
mode to the other involves: (i) switching the state 
equation model that defines continuous behavior 
in a mode, and (ii) applying the reset function to 
derive the initial state in the new mode. 

The observer uses the state equations models - 
derived by symbolic analysis from the hybrid bond 
graph model - for tracking the continuous behavior 
in a particular mode of operation. The analysis 
also derives the controlled and autonomous 
events that define mode transition conditions as 
the system behavior evolves in time. Solving for 
the mode transitions requires access to controller 
signals for controlled jumps, and predictions of 
state variable values for autonomous jumps. We 
rewrite all autonomous jump conditions in terms of 
the state variables of the system. The state 
variable estimates are obtained from the hybrid 
observer, and these values are used to determine 
if autonomous jumps have occurred. If a mode 
change occurs in the system, the observer 
switches the tracking model (to a different set of 
state space equations), initializes the state 
variables in the new mode (using a “reset” 
function, again derived from the hybrid bond graph 
model), and continues to track system behavior 
with the new model13. Since the input and output 
of the system may be affected by processor 
disturbances and measurement noise, we use a 
Kalman filter23 to track system behavior in a single 
mode of operation. For a given state space model 
the Kalman gain matrix can be computed from the 
covariance matrices, as usual.  

FAULT DETECTION AND ISOLATION 

A primary component of our system is the model-
based fault detection and isolation (FDI) 
subsystem that can deal with sensor, actuator, 
and parametric faults in the system.  Traditional 
FDI methods6,24,25,26 are primarily directed toward 
additive faults that include failures in sensors and 
actuators. Isolation of parametric component 
faults, which are multiplicative, requires the use of 
sophisticated parameter estimation techniques26. 
Numerical techniques for state and parameter 
estimation often face convergence and accuracy 
problems when dealing with high-order models 
that may contain non-linearities7,26. Parameter 
estimation techniques are often biased by 
measurement noise, and may need specialized 
approaches to compensate for these 
situations26,29. Accurate parameter estimation also 
requires persistent excitation of the input, and this 
may not always be true during system operation. 
Furthermore, these schemes are applicable in 
continuous real-valued spaces, and they do not 
easily extend to situations where mode transitions 
cause discontinuous changes in the system 
models and system variables. Discrete-event 
based diagnosis techniques have been proposed, 
but they require the pre-compiling of the fault 
models and fault trajectories into Finite State 
Machines (FSM-s) for tracking nominal and faulty 
system behavior8,9. In the section below we will 
show how an alternative representation form can 
be used which does not require the explicit 
construction of FSMs. 

When one deals with hybrid systems that include 
discrete transitions, extending these continuous 
methodologies becomes intractable, because the 
residual transformation functions have to be pre-
computed for all modes of operation.  Further, 
when faults occur, predicting the true system 
mode in itself becomes a challenging task. The 
fault isolation problem becomes even more 
complex, when the fault occurs in an earlier mode, 
but is detected in a later mode of operation. The 
predicted mode sequence may no longer be the 
true mode sequence the system goes through 
after the occurrence of the fault. Additional 
methods have to be introduced for detecting mode 
transitions, switching the system model when such 
transitions occur, and correctly initializing the 
system state, so that the fault observers perform 
correctly. Typically mode changes introduce 
discrete effects that cause transients, and it may 
be difficult to separate the fault transients from the 
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transients caused by mode changes.  Therefore, 
extending continuous FDI schemes to hybrid 
systems is a non-trivial task.  

We use two approaches to the FDI problem that 
generalize traditional approaches: (i) the use of a 
robust qualitative fault isolation scheme based on 
tracking fault transients combined with a 
parameter estimation scheme for refining fault 
hypotheses, and (ii) fault diagnostics based on 
discrete event models represented as fault 
propagation graphs.  We discuss each of these 
methodologies in greater detail next. 

Diagnosis using Hybrid Models 

Our diagnosis methodology consists of three 
mains steps, (i) using a hybrid observer to track 
system behavior, (ii) detecting fault occurrences, 
and (iii) isolating faults in the system. The hybrid 
observer, discussed in the last section, uses the 
models of the system to track system behavior. 
The fault detection schemes that compare the 
measurements made on the system and the 
predictions from the observer to look for significant 
deviations in the observed signals are discussed 
elsewhere14. Our fault detectors for continuous 
systems have to be modified to signal faults only 
when abrupt changes cannot be attributed to 
mode changes11,13.  

The overall scheme for hybrid diagnosis is 
illustrated in Fig. 6. We overcome limitations of 
quantitative schemes by combining robust 
qualitative reasoning mechanisms with 
quantitative parameter estimation schemes for 
parametric fault isolation5. Hybrid bond graphs 
models discussed in Section 3 form the basis for 
generating parameterized Timed Causal Graphs 
(TCG-s), a representation that captures system 
dynamics as causal links between system 
variables, annotated by temporal relations, such 
as instantaneous effects and integral 
relationships9. The bond graph representation 
explicitly includes component parameters that 
govern system dynamics as resistive, capacitive, 
inertial, transformation, and signal propagation 
elements.  The TCG representation makes explicit 
the effect of changes in parameter values on the 
dynamics of system variables. The fault isolation 
methodology for hybrid systems is broken down 
into three steps. It includes 

1. A fast roll back process using qualitative 
reasoning techniques to generate possible 

fault hypotheses. Since the fault could have 
occurred in a mode earlier than the current 
mode, fault hypotheses need to be 
characterized as a two-tuple <mode, fault 
parameter>, where mode indicates the mode 
in which the fault occurs, and fault parameter 
is parameter of the implicated component 
whose deviation possibly explains the 
observed discrepancies in behavior. 

2. A quick roll forward process using progressive 
monitoring techniques to refine the possible 
fault candidates. The goal is to retain only 
those candidates whose fault signatures are 
consistent with the current sequence of 
measurements. After the occurrence of a fault, 
the observer’s predictions of autonomous 
mode transitions may no longer be correct, 
therefore, determining the consistency of fault 
hypotheses also requires the fault isolation 
unit to roll forward to the correct current mode 
of system operation. 

3. A real-time parameter estimation process 
using quantitative parameter estimation 
schemes. The qualitative reasoning schemes 
are inherently imprecise. As a result a number 
of fault hypotheses may still be active after 
Step 2. We employ a least squares estimation 
technique on the input-output form of the 
system model to estimate consistent values of 
the fault parameter that is consistent with the 
sequence of measurements made on the 
system. 

Diagnosing using Timed Failure Propagation 
Graphs 

The diagnostic system operates on the TFPG 
model and characterizes the fault status (actual 
current state) of the system by hypothesizing 
about the faults in components and sensors based 
on the signals received from the sensors and the 
current mode of the system. The diagnoser uses 
the TFPG model and the timed sensor/mode-
switching signals to generate a set of logically 
valid hypotheses of the current state of the 
system. The hypotheses are then ranked 
according to certain criterion based on the number 
of supporting alarms versus the number of 
inconsistent one. The set of hypotheses with the 
highest rank are selected as the most plausible 
estimations of the current state of the system. 
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The diagnoser is implemented as a reactive 
module that is triggered by signals from the set of 
active sensors and well as mode-switching 
signals. A diagnoser input signal is represented by 
an event structure (e, t), where e denoted a 
monitored alarm being activated or a mode-
switching signal and t is the time at witch the 
signal is observed. The event structure (e,t) is 
triggered whenever the state of a discrepancy is 
changed or the system changes mode. he 
diagnoser responds to input signals by generating 
hypothesis. Each hypothesis is an evaluation of 
the status of a failure mode. The hypothesis 
structure contains information about the 
corresponding failure mode, the estimated time of 
failure, and the set of supporting and inconsistent 
alarms as conceived based on the failure graph 
structure. In addition to generating and updating 
hypotheses, the diagnoser also generates a list of 
false alarms, namely those alarms that could not 
be explained by any hypothesis based on the 
timing and structure of the failure propagation 
graph. Figure 4 shows a simplified UML diagram 
of the basic elements of the TFPG diagnosis 
system and the relation between them. 

In reasoning about the faults the diagnoser uses 
the principles of parsimony. In general, due to 
possible structural redundancy in the TFPG 
model, there can be several explanations of a give 
sequence of sensor signals. The principle of 
parsimony suggests that the simplest explanation 
is the best. By simplest we mean the one that 
involve the least number of faulty components. In 
general, there may not be a unique simplest 
explanation. In this situation the diagnoser will 
provide all the simplest explanations to the user. 
At the occurrence of every event, the diagnoser 
updates the set of hypothesis and the faulty 

components will be identified. The diagnoser 
updates the set of possible hypotheses about the 
system state based on the causal and timing 
consistency between the discrepancies.  

CONTROLLER IMPLEMENTATION 

Our approach is to develop a library of controllers, 
which is indexed by sets of characteristics. The 
goal is to use the information about current system 
state, i.e., the current mode of operation and 
system state vector along with failed and 
degraded states of components and subsystems 
to select a controller that best suits current and 
long term performance objectives.  

We address the controller reconfiguration task on 
two levels. At the supervisory (discrete) level, 
reconfiguration implies modification of high-level 
control actions. This can take the form of replacing 
a current action sequence by a new sequence, or 
altering the sequence of actions in the current set. 
This type of reconfiguration requires that the 
supervisory control logic be explicitly represented 
as a data structure. Our challenge is to adopt 
model-based approaches to representing 
supervisory control programs, and to develop 
reconfiguration procedures governed by different 
kinds of fault conditions. At the lower (continuous) 
level of control, the system relies on regulators, 
which can range from simple switching controllers, 
to PID mechanisms, and then model-based 
controllers. Reconfiguration at this level can take 
on three different forms.  

1. Set point changes for handling simple fault 
situations, such as a partially degraded 
component.  

2. Controller tuning for handling cases where the 
fault changes the plant dynamics (e.g., 
changes   in the capacitive and inertial 
parameters in the plant), and the re-tuning of 
the controller is a viable solution.  

3. Structural changes (i.e., rewiring or replacing 
the regulators) may compensate for complex 
faults where the current controller architecture 
is unable to maintain the desired control 
because of a significant fault (e.g., sensor 
faults, actuator faults, and major structural 
changes in the plant, such as pump failures or 
valves stuck at closed).  

There is an interesting and highly relevant aspect 
of controller reconfiguration that is also being 

Figure 4: Core classes and their operations 
in the TFPG diagnosis system 
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addressed: the explicit management of 
reconfiguration transients. Early results24,25 show 
that there are a number of techniques available for 
mitigating reconfiguration transients in control 
systems. If the selected approach of controller re-
initialization and/or blending does not meet the 
requirements for the reconfiguration dynamics 
other, more explicit transient suppression 
techniques can be applied to mitigate the effects 
of switching.  

Online Safety Control  

An online approach to the safety control of hybrid 
systems has been developed in34. The safety 
control problem requires the system to move to a 
predetermined safe region from a given set of 
initial states in the state space of the system. The 
proposed approach can be applied efficiently for 
hybrid systems with small number of switching 
inputs. Moreover, the approach is robust to limited 
domain changes in the system parameters that 
may occur as a result of a fault or parameter 
changes in time-varying systems. The proposed 
online supervision algorithm explores only a 
limited part of the system state space and selects 
the next input based on the available information 
about the current state. For the safety control 
problem, the selection of the next step is based on 
a given distance map that defines how close the 
current state is to the safe region.  

The online supervision algorithm starts by 
constructing the tree of all possible future states 
from the current state up to a specified depth. To 
avoid the Zeno effect, in which the controller may 
try to preempt time indefinitely through continuous 
switching, we require that any input switching 
event is followed by at least one sampling period. 
The exploration procedure identifies the set of 
states with the minimal distance from the safe 
region based on the given distance map. A state is 
then chosen from this set based on certain 
optimality criterion (for example, minimal input 
switching), or simply picked at random. The 
chosen state is then traced back to the current 
state and the event leading to the least distance is 
used for the next step. Conditions for the online 
controllability of system with respect to the safety 
specifications is established and used to provide 
an upper limit for the accuracy error of the online 
controller. 

CONCLUSIONS AND FUTURE WORK 

We have applied our continuous and discrete FDI 
methodology to diagnosing faults in a two-tank 
system with a number of valves.  A simple 
supervisory controller model took the system 
through a number of filling, emptying, and mixing 
cycles. We were successful in tracking continuous 
system behavior through discrete mode changes, 
and isolating faults when they occurred, with the 
discrete and continuous diagnostics algorithms. As 
a next step, we would like to extend the two 
diagnostic algorithms to work in a more cohesive 
fashion, and inform each other as they come up 
with fault hypotheses. Once this step is completed, 
we will introduce the controller selection 
mechanisms to have a comprehensive 
implementation of the FACT architecture that has 
been presented in this paper.  

We are also looking at applying this technology to 
more real-world applications, such as the fuel 
transfer system in modern aircraft. The physical 
components of the fuel system include a number 
of tanks, interconnecting pipes, valves, and 
pumps. In addition, the system is equipped with 
sophisticated controls to support reliable and 
robust fuel delivery under a variety of flight 
conditions, at the same time ensuring that the 
gravity of aircraft center of gravity is not 
compromised. In addition, the controllers have to 
deal with a number of fault scenarios, such as 
pump failure and pipe leaks. The goal under such 
conditions is not to compromise aircraft safety, but 
to save as much fuel as one can to continue the 
current mission. To achieve this, the system 
should utilize built-in redundancy mechanisms to 
compensate for the failure, and at the same time, 
maintain control. We are currently developing 
models of a generic aircraft fuel system, and 
testing and validating the FACT tools and 
techniques on a number of example scenarios that 
have been generated using a high fidelity 
simulator. 
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