
Specifying Graphical Modeling Systems Using
Constraint-based Metamodels

Gabor Karsai, Greg Nordstrom, Akos Ledeczi, Janos Sztipanovits

Institute for Software Integrated Systems
Vanderbilt University

230 Appleton Place, Suite 248
Nashville, TN 37203

Email: (gabor, gnordstr, akos, sztipaj)@vuse.vanderbilt.edu

Abstract
Embedded computer-based systems are becoming

highly complex and difficult to implement due to the large
number of concerns designers must address. These systems
are tightly coupled to their environments, requiring an
integrated view that encompasses both the information
system and its physical surroundings. Mathematical analysis
of such systems necessitates formal modeling of both
“sides,” including their interaction. There exist a number of
suitable modeling techniques for describing the information
system component and the physical environment, but the
best choice changes from domain to domain. We propose a
two-level approach to modeling that introduces a meta-level
representation. Meta-level models define modeling
languages, but they can also be used to capture subtle
interactions between domain level models. We show how
the two-level approach can be supported with computational
tools, and what kinds of novel capabilities are offered.

1. Introduction
Effective and efficient design of control systems has

challenged engineers since ancient times, when experience
and intuition were the primary design tools. It was not until
the late 19th century that intuition was augmented with
mathematic formalism. Modern control theory can be traced
to J.C. Maxwell’s seminal stability analysis of the flyball
governor found on Watt’s steam engine, which resulted in
the concept of a control system’s characteristic equation
[1]. In the early- to mid-20th century, large advances in
control theory were driven by the need to control artillery in
both world wars [2]. The latter part of the 20th century was
dominated by advances digital control techniques,
incorporating digital computers as active control elements.

Of course, the digital computer has affected all domains
of engineering. Computer-based systems (CBSs), where
functional, performance, and reliability requirements
demand the tight integration of physical processes and
information processing, are among the most significant
technological developments of the past 20 years [3]. CBSs
operate in ever-changing environments, where changes in
mission requirements, personnel, hardware, support
systems, etc., all drive changes to the CBS. Rapid

reconfiguration via software has long been seen as a
potential means to effect rapid change in such systems.

A CBS is essentially a control system that consists of
an information processing (IP) component, a physical
environment (PE), and sensing and actuation mechanisms
establishing an interface between the two (Figure 1). The
behavior of the resulting system is determined by all the
components in this ensemble: the hardware and the software
of the IP component, the interfaces to the physical
processes, the physical environment, and the interaction
among all of these. We argue that to develop the
engineering science of these systems one needs an
integrated approach, where all aspects of the design can be
analyzed.

Figure 1: A Computer-based System

In any engineering discipline the rigorous analysis of a

design artifact happens through the manipulation and
analysis of mathematical objects, called models. Frequently
physical prototypes are also built for experimentation, but
still the analysis—and the understanding—happens with the
help of mathematical objects. We need a similar model-
based approach to CBS. These models, by the very nature
of the CBS, must be able to represent both the IP and PE
components, as well as the interaction between the two.

An illustrative example can be found in the area of
digital avionics. Let us consider a fly-by-wire system that
transforms pilot commands and data from environmental
inputs (e.g. from air data computers and motion sensors)
into actuator commands that act on the aircraft’s control
surfaces. When designing such a system, one uses the
knowledge of control theory, aircraft dynamics, and other
engineering disciplines to establish the control laws, to

Physical
Environment

Information
Processing

System

Actuation

Sensing

Physical
Environment

Information
Processing

System

Actuation

Sensing

calculate controller gains, etc. The physical environment—
aircraft body dynamics, actuator dynamics, etc.—determine
how the IP component should behave. When implementing
such a component one works with software abstractions:
modules, tasks, synchronization, floating-point and fixed-
point variables, task timing, jitter, etc. The essential
problem of CBS design is the subtle interaction between the
IP and PE of the system. Hardware or software
implementation decisions have an impact in terms of the
physical environment. For instance, selecting a particular
fixed-point representation for a physical quantity determines
expected maximum and minimum values of that quantity.
The IP will simply not work if these assumptions are
violated by the physical environment. Conversely, time
constants determined by the physical environment will have
an impact on the hardware and software implementation.
This leads to a vicious circle of interaction, where changes
on one side impact the other and vice versa. In order to
understand CBS it is not sufficient to model only the IP or
PE components—we need techniques for simultaneous
modeling that also support capturing the interactions.

In order to analyze, validate, and predict the behavior
of the integrated system from such models, the modeling
language should be rich enough to capture all these aspects.
Additionally, if feasible, we desire to synthesize
(automatically generate) the implementation of the system
from the models and component libraries. This is made
possible by the development of various design automation
algorithms and tools. Design automation is very successful
in the hardware world but only recently have software
synthesis tools begun to emerge.

In this paper, we address the following questions: What
is the right way to model CBS? What is the “modeling
language” to be used? We argue that there is no single
modeling language which satisfies the requirements of all
CBS. Instead, we propose a two-level approach, where area-
specific modeling tools are used for creating domain-
specific models, and these tools are represented in terms of
(and built from) a higher-level metamodel.

2. The Vision
In designing CBS hardware and software, one must use

domain-specific terminology, concepts, and techniques. By
domain, we mean the larger engineering discipline within
which the CBS exists. CBS are often the result of
cooperation between domain engineers and hardware and
software designers. We argue that the common language
used by these participants should be that of the domain and
not necessarily that of computer engineering.

Modeling languages that capture interesting properties
of software systems (e.g. UML) are rarely suitable for
modeling an entire system. Note that the “entire system”
includes not only the hardware and the software, but the
environment as well. While there are some aspects of UML
that make it suitable for modeling dynamic, reactive systems
(e.g. state charts), it is inadequate for capturing models in

the form of Laplace transforms or differential equations.
Mature engineering disciplines (e.g. control theory or
chemical engineering) have their own languages—forcing
the use of another modeling language is not acceptable.

Another aspect of CBS is their integrated nature. They
integrate different disciplines: hardware design, software
engineering, performance modeling and engineering, in
addition to the “base” domain engineering discipline. When
one creates models for such systems, it is necessary that the
models be integrated. For example, models of the software
architecture should be considered in conjunction with
models of the hardware system to determine end-to-end
timing latencies. Therefore, while an engineering modeling
language dominates the modeling process, one must also
address the issue of integrating these models with models
that are closer to the domain of computer engineering. We
argue that integration of models is not only an opportunity
but a necessity for any kind of analysis and synthesis of
complex CBS.

3. The Solution
The vision presented above seems to introduce

significant difficulties. We know we need domain-specific
modeling approaches. We also need to integrate models of
differing disciplines. Both of these goals can be achieved by
using appropriate tools, but at a very high cost—the
development of customized modeling and integration
solutions is very expensive. To counter this, we present an
approach that is based on introducing a second level of
modeling, called the meta-level.

We propose to use a higher-level, meta-level modeling
language. The meta-language is not used for defining
domain models, but rather for defining domain-modeling
languages. Thus, “sentences” in the meta-language define
specific domain languages, while “sentences” of the domain
language define specific systems.

Figure 2: The four layers of modeling

Meta-Metamodels

Metamodels

Domain Models

Computer-Based System

describe

describe

describe

Meta-Metamodels

Metamodels

Domain Models

Computer-Based System

describe

describe

describe

Figure 2 shows the four layers of modeling that one can
achieve using this approach. The real CBS is described in
the form of various domain models. Metamodels describe
how domain models are organized: their ontology, syntax
and semantics; i.e. the language used to define domain
models. Additionally, meta-metamodels define how
metamodels are organized, their ontology, syntax and
semantics; i.e. the language used to define metamodels. The
key to this approach is that a lower layer is always described
in terms of the constructs of the higher layer.

Using the metamodel one creates a domain specific
formal modeling language that is then used to create
domain models of the actual system. Formally, a modeling
language can be defined as a triplet of ontology, syntax, and
interpretation:

L = <O, S, I>
The ontology defines the concepts and their

relationships in the language, the syntax defines all the
(syntactically) correct sentences of the language, and the
interpretation defines the semantics: the meaning of those
correct sentences. A domain-specific modeling language
consists of domain-specific ontology, syntax, and
interpretation:

LD = <OD, SD, ID>
The domain models—the syntactically and semantically

correct sentences of LD built from instances of concepts and
relationships defined in the domain ontology OD—represent
the CBS: its IP and PE components, along with the
interactions among them. A meta-level language

LM = <OM, SM, IM>
consists of the ontology for defining domain-level
languages, the correct syntax of those domain-language
definitions, and their interpretation. The metamodels—
syntactically and semantically correct sentences of LM built
from instances of concepts and relationships defined in the
meta-ontology OM—define LD in terms of <OM, SM, IM>.
This implies that a meta-language must allow us to define
ontologies, syntax, and interpretation in a mathematically
precise way.

Having an explicit meta-specification of the domain
modeling languages also helps when integrating models of
different domains. On the meta-level one can express the
relationships and dependencies among different domain-
specific concepts, thus specifying the rules for combining
different domain models. Formally, a metamodel may
define more than one LD, and may include <ODi,j, SDi,j, IDi,j>
that captures ontology, syntax and interpretation for the
crossing of domains Di and Dj. Obviously, the explicit
specification of these interdependencies can also be used to
constrain the domain specific modeling language to only
those constructs where the integration is meaningful.

Another important result of our approach is the ability
to evolve the modeling tools over time in a formally
verifiable manner. Just as domain experts evolve a
particular CBS by updating its domain models and
regenerating the CBS, the domain-specific modeling tools

themselves are evolved by modifying the metamodel and
regenerating the tools. Also, the “before and after”
metamodels provide a framework for providing an
automated domain model migration process.

To summarize, we advocate a two-step process for
modeling CBS. In phase one, a domain-specific modeling
language is described using a metamodeling language. We
call this development the metamodel of the domain. To
support reusability, metamodels of proven domain modeling
approaches (e.g. finite state models, data flow models, etc.)
should be available in a metamodel library to allow rapid
composition of metamodels. In phase two, the domain-
specific modeling language is used to build the models of
actual systems.

4. The Implementation
While conceptually clear, the approach described

above is useful only if appropriate tools are available. ISIS
has been engaged in developing the supporting
infrastructure for the two-level modeling approach since
1994. The detailed results of this research have been
reported elsewhere [4]. Here we give a summary of the
technical approach.

As mentioned earlier, the domain-level language LD =
<OD, SD, ID> used to specify CBS models is defined using
concepts provided by the ontology component OM of the
meta-level language LM = <OM, SM, IM>. Below we describe
the capabilities of the components of LM.

4.1 Metamodel ontology: OM

A metamodeling language must allow the definition of
the modeling concepts used to define systems within the
domain. Modeling concepts include not only the actual
concepts of the domain (e.g. data streams and stores,
processes, dataflow networks), but also standard modeling
abstractions—patterns that provide a prototypical solution
to a modeling problem—directly supported by the tools.
Many such modeling abstractions exist in engineering but
are often focused on a particular solution space or sub-
domain. We claim that a core set of fundamental modeling
abstractions exists and they are largely adequate to express
the design concepts, notions, and artifacts used across
engineering domains. Table 1 below lists the elements of
this set.

We have chosen a metamodeling approach where some
of these abstractions are first-class concepts (i.e. they can be
instantiated), while the remaining abstractions are supported
through special embellishments on the basic metamodeling
constructs.

4.2 Metamodel syntax: SM

Our metamodel syntax is essentially the same as that of
UML class diagrams [5] and OCL expressions [6].
Additional, non-UML syntactical constructs are used for
two purposes: (1) to indicate the use of other fundamental
modeling abstractions (e.g. module interconnection and

multiple aspects), and (2) to control how domain models are
to be visualized. Their specific capabilities and concrete
syntax is discussed elsewhere [8].

Table 1: Fundamental modeling abstractions

Classes

Specific classes of entities that exist in a given
system or domain. Domain models are entities
themselves and may contain other entities.
Entities are instances of classes. Classes (thus
entities) may have attributes.

Associations Binary and n-ary associations among classes
(and entities).

Specialization Binary association among classes with
inheritance semantics.

Hierarchy Binary association among classes with
“aggregation through containment” semantics.
Performs encapsulation and information hiding.

Module inter-
connection

A specific pattern of relationships among
classes. Classes can be associated with each
other by connecting their ports (specially
marked atomic entities contained in the
classes).

Constraints A binary expression that defines the static
semantic correctness of a region of the model:
if the objects of the region are “correct,” the
expression evaluates to “TRUE.”

Multiple
aspects

Allows partitioning a complex model according
to part categories. Used for visibility control,
but may also be used for aggregating specific
properties of models with respect to specific
concerns.

4.3 Metamodel construction and semantics
We have created a metamodeling tool that supports the

visual construction of metamodels [9]. The metamodeler
uses this tool to first construct the core metamodel using
UML class diagrams and then embellishes it with special
“markers” to specify other properties of the domain
modeling language that couldn’t be expressed using the
class diagram. Additionally, the metamodeler specifies OCL
constraints that capture assertions that must be true for the
domain models to be semantically correct.

The meaning (i.e. the semantics) of a metamodel is
defined through a domain-modeling tool. We use the
following pragmatic definition for the semantics of a
metamodel: A metamodel is a program that, when
“executed,” configures a generic modeling environment
(GME) to support a domain-specific modeling language.
The domain-specialized instance of the GME allows only
the creation of syntactically and semantically correct
domain models, as defined by the metamodel. This concept
is illustrated in Figure 3 below. Interestingly, this principle
and approach makes possible a very high degree of reuse in
the modeling tools. In fact, we are using the same GME as
the foundation tool for metamodeling and domain modeling.
We have a meta-metamodel that configures the environment
to support metamodeling. Thus, we can extend our

metamodeling language, although this typically necessitates
changes in the GME as well.

Figure 3: Metamodeling and Domain Modeling

It is worthwhile to see how metamodel concepts map

into the specific capabilities of the domain-modeling
environment. Embellished UML classes are turned into
atoms (primitive, iconic components of a drawing that have
no structure, only attributes), models (complex
diagrammatic constructs that have structure and attributes,
and contain atoms, models, and connections), and
connections (attributed connectors on the diagrams that
relate precisely two atoms or models). The metamodel
specifies the composability constraints on these objects. If a
metamodel class embellished as a “model” aggregates
another class embellished as an “atom,” that means that the
domain models may contain atoms of that type. This
semantics is enforced in the domain-modeling environment
when the user attempts to add an atom to a model.
Connections are derived from associations on the UML
diagram: a connector is legal between any two domain
objects (model or atom) whose original classes in the UML
class diagram are connected (i.e. associated). Further details
of the interpretation of the UML class diagram as a
configurator for domain-modeling can be found in [8].
There are a few other modeling constructs not discussed
here. The interested reader is referred to the detailed
documentation of our tools [10].

The OCL constraints specified in metamodels are
checked at domain model construction time. When a
constraint evaluates to FALSE, it indicates that the current
model violates the static semantics of the domain modeling
language. This technique is best illustrated by a simple
example. Consider the following metamodel (Figure 4) of a
Hose, where the attribute threadSize is used to model

Metamodeling
Environment

Metamodel of
Domain

Domain Modeling
Environment

Domain-Specific
Models

creates

configures

creates

Metamodeler’s Tools

Domain Modeler’s Tools

Metamodeling
Environment

Metamodel of
Domain

Domain Modeling
Environment

Domain-Specific
Models

creates

configures

creates

Metamodeler’s Tools

Domain Modeler’s Tools

the size of the male and female connectors at the ends of the
Hose. A Hose can be connected to other Hoses to form a
chain via HoseConnections. Obviously, the connection
has a source and a destination Hose.

Figure 4: Metamodel of Hoses and HoseConnections

When connected together, each end of a Hose plays

the role of src or dst. Since the multiplicity of each
association end is zero or one, this implies that each end of
a Hose can connect to at most one other Hose. Let us
assume that we have two additional constraints when
connecting Hoses together. First, both Hoses must have
the same threadSize, and second, a Hose should not be
connected to itself. Note that neither of these constraints can
be stated using only UML class diagrams. We must specify
these constraints using OCL, as shown below:

HoseConnection.allInstances->

forAll(c|c.src.threadSize
= c.dst.threadSize)

HoseConnection.allInstances->
forAll(c|c.src <> c.dst)

When a domain model is edited, these expressions are

evaluated, and an error is signaled when they fail.

4.4 Metamodel- and domain-model semantics: IM and ID
The semantics of a metamodel as discussed above is

limited to an interpretation in the context of the GME. This
allows us to build syntactically and semantically correct
domain-specific models, but not much else. We want to
build a system from the domain models and determine
properties of that system via various engineering tools. The
domain models play a crucial role, as they are the subject of
(or input to) various analysis and synthesis procedures.
These procedures assign a dynamic semantics to the
domain models.

Specifically, the dynamic, or operational, semantics of
a domain model is determined in two steps in our system
[4][11]. We assume that an execution platform is available,
which has an “instruction set” with clearly defined
semantics. The platform can be an analysis engine (e.g. a
simulator package), an execution environment (e.g. a real-
time operating system), or any other operational

computational system. In step one, the domain models are
processed by a software component called a model
interpreter that transform the models into the “instruction
set” of the execution platform. In the second step, the
execution platform executes those “instructions.” Thus, the
domain model semantics, ID, is realized by a transformation
engine and an execution engine, as shown in Figure 5.

Figure 5: Assigning semantics to domain models

It seems natural that the semantics of domain models

should also be captured in the metamodel of the domain.
That is, IM specifies how to map a particular metamodel into
a specific ID that determines exactly how a model interpreter
works and how the execution platform processes the result
of the transformation phase. As discussed above, the
metamodel should not only specify the ontology, syntax,
and static semantics of the domain models, but also their
interpretation—their dynamic semantics. In our approach,
the latter involves the formal specification of the execution
platform and that of the transformation of domain models
into the “instruction set” of the execution platform.

Currently, we are conducting research activities to
address the formal specification of the dynamic semantics of
domain models. The above two-phase scheme has been
applied in many applications, by hand-crafting the model
interpreters for specific execution platforms. However, this
is a difficult and error-prone process. Developing a formal
language for capturing the properties of the model
transformation and the execution platform, and developing
the semantics of that language, will allow us to speed up the
development of domain-specific modeling languages and
make their interpretation mathematically precise. Some of
our preliminary work on the theoretical foundations of
formalizing these specifications can be found in [12].

Hose

threadSize:Int

HoseConnection

src

dst 0..1
0..1

Hose

threadSize:Int

Hose

threadSize:Int

HoseConnectionHoseConnection

src

dst 0..1
0..1

Domain
Models

Model Interpreter

“Executable”

Execution Platform

Transformation
Phase

Execution
Phase

Domain
Models

Model InterpreterModel Interpreter

“Executable”

Execution Platform

Transformation
Phase

Execution
Phase

5. Comparison with Other Approaches
Many concepts and techniques in our approach are based on
groundwork done by a large community of modeling
experts, academic and industrial researchers. The use of
metamodels for defining modeling concepts and domains
can be found in many proposed engineering standards. For
example, CDIF [13] proposes the use of the four-layer
modeling approach. The static semantics of UML is
specified using a similar approach, using UML as its own
metalanguage [7]. Metamodeling is an idea that has been
addressed in many research workshops and projects (e.g.
[14] and [15]). Some of the relevant research activities and
industry efforts are related to integrating data from various
sources (e.g. MetaData coalition [16]) as well as creating
domain-oriented tools for building original types of models
(e.g. DOME [17]).

In comparison, our effort has focused on developing
meta-level tools—modeling techniques, modeling
environments, metamodel interpreters, etc.— that associate
a highly pragmatic and operational semantics to the
metamodel. Furthermore, our research is addressing the
specific needs of CBS, where domain-specific modeling
languages are often given, and we have to integrate them
with other domain-specific modeling approaches.

6. Conclusions and Future Work
The two-level approach to the specification of domain-

specific modeling languages (DSML) and modeling
environment generation has several advantages. By
specifying the entities, relationships, attributes, and
constraints at the metamodeling level, the DSML can be
described with mathematical precision, can be safely
evolved over time, and can be used to configure a GME for
use in designing CBS within a particular domain. Once
configured, the domain modeling environment ensures valid
model creation through the use of constraint specifications
obtained from the metamodel, enforcing the formal static
semantics of the domain at model editing time. Also, if the
metamodel captures the mapping of domain models into the
“instruction-set” of an execution platform, a transformation
engine can be synthesized to facilitate that mapping.

Using the metamodeling technology described in this
paper domain-specific modeling tools have been created,
and have been in constant use for many years, in many
engineering application areas and domains [18]. Our current
work focuses on more efficient methods for mapping the
abstract syntax of a metamodel onto the graphical idioms of
the GME.

7. Acknowledgements
The DARPA/ITO EDCS program (F30602-96-2-0227)

and the DARPA/ITO SEC program (F33615-99-C-3611)
has supported, in part, the activities described in this paper.

References
[1] J. C. Maxwell, "On Governors," Proc. Royal Soc.
London, vol. 16, pp. 270-283, 1868.

[2] N. Wiener, Cybernetics: or Control and
Communication in the Animal and the Machine,
Cambridge: MIT Press, 1948.

[3] J. Sztipanovits, “Engineering of Computer-Based
Systems: An Emerging Discipline,” Proceedings of the
IEEE ECBS’98 Conference, 1998.

[4] J. Sztipanovits, G. Karsai, “Model-Integrated
Computing,” IEEE Computer, pp. 110-112, April, 1997.

[5] UML Summary, ver. 1.0.1, Rational Software
Corporation, March, 1997

[6] Object Constraint Language Specification, ver. 1.1,
Rational Software Corporation, et al., Sept. 1997.

[7] UML Semantics, ver. 1.1, Rational Software
Corporation, et al., September 1997.

[8] Nordstrom G.: "Metamodeling - Rapid Design and
Evolution of Domain-Specific Modeling Environments",
Ph.D. Dissertation, Vanderbilt University, 1999.

[9] A. Ledeczi, et al., “Metaprogrammable Toolkit for
Model-Integrated Computing," Proceedings of the IEEE
ECBS’99 Conference, 1999.

[10] Generic Modeling Environment documents.
http://www.isis.vanderbilt.edu/projects/gme/Doc.html

[11] J. Sztipanovits, et al.: “MULTIGRAPH: An
Architecture for Model-Integrated Computing,”
Proceedings of the IEEE ICECCS’95, pp. 361-368, Nov.
1995.

[12] G. Karsai, et al., “Towards Specification of Program
Synthesis in Model-Integrated Computing," Proceedings of
the IEEE ECBS’98 Conference, 1998.

[13] CDIF Meta Model documentation.
http://www.metamodel.com/cdif-metamodel.html

[14] Metamodeling in OO (OOPSLA'95 Workshop)
October 15, 1995, http://saturne.info.uqam.ca/
Labo_Recherche/Larc/MetamodelingWorkshop/metamodeli
ng-agenda.html

[15] 43rd Annual Meeting of the International Society for
Systems Sciences, at the Asilomar Conference Center,
Pacific Grove, California, June 26 to July 2, 1999,
http://www.isss.org/1999meet/sigs/sigmodel.htm

[16] MetaData coalition. http://www.mdcinfo.com/

[17] Dome Official Web Site, Honeywell, 2000,
http://www.src.honeywell.com/dome/

[18] Model-Integrated Computing documents.
http://www.isis.vanderbilt.edu/projects/

http://www.isis.vanderbilt.edu/projects/gme/Doc.html
http://www.metamodel.com/cdif-metamodel.html
http://saturne.info.uqam.ca/ Labo_Recherche/Larc/MetamodelingWorkshop/metamodeling-agenda.html
http://saturne.info.uqam.ca/ Labo_Recherche/Larc/MetamodelingWorkshop/metamodeling-agenda.html
http://saturne.info.uqam.ca/ Labo_Recherche/Larc/MetamodelingWorkshop/metamodeling-agenda.html
http://www.isss.org/1999meet/sigs/sigmodel.htm
http://www.mdcinfo.com/
http://www.src.honeywell.com/dome/
http://www.isis.vanderbilt.edu/projects/

