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Abstract 
Embedded computer-based systems are becoming 

highly complex and difficult to implement due to the large 
number of concerns designers must address. These systems 
are tightly coupled to their environments, requiring an 
integrated view that encompasses both the information 
system and its physical surroundings. Mathematical analysis 
of such systems necessitates formal modeling of both 
“sides,” including their interaction. There exist a number of 
suitable modeling techniques for describing the information 
system component and the physical environment, but the 
best choice changes from domain to domain. We propose a 
two-level approach to modeling that introduces a meta-level 
representation. Meta-level models define modeling 
languages, but they can also be used to capture subtle 
interactions between domain level models. We show how 
the two-level approach can be supported with computational 
tools, and what kinds of novel capabilities are offered. 
 

1. Introduction 
Effective and efficient design of control systems has 

challenged engineers since ancient times, when experience 
and intuition were the primary design tools. It was not until 
the late 19th century that intuition was augmented with 
mathematic formalism. Modern control theory can be traced 
to J.C. Maxwell’s seminal stability analysis of the flyball 
governor found on Watt’s steam engine, which resulted in 
the concept of a control system’s characteristic equation 
[1]. In the early- to mid-20th century, large advances in 
control theory were driven by the need to control artillery in 
both world wars [2]. The latter part of the 20th century was 
dominated by advances digital control techniques, 
incorporating digital computers as active control elements. 

Of course, the digital computer has affected all domains 
of engineering. Computer-based systems (CBSs), where 
functional, performance, and reliability requirements 
demand the tight integration of physical processes and 
information processing, are among the most significant 
technological developments of the past 20 years [3]. CBSs 
operate in ever-changing environments, where changes in 
mission requirements, personnel, hardware, support 
systems, etc., all drive changes to the CBS. Rapid 

reconfiguration via software has long been seen as a 
potential means to effect rapid change in such systems. 

A CBS is essentially a control system that consists of 
an information processing (IP) component, a physical 
environment (PE), and sensing and actuation mechanisms 
establishing an interface between the two (Figure 1). The 
behavior of the resulting system is determined by all the 
components in this ensemble: the hardware and the software 
of the IP component, the interfaces to the physical 
processes, the physical environment, and the interaction 
among all of these. We argue that to develop the 
engineering science of these systems one needs an 
integrated approach, where all aspects of the design can be 
analyzed. 

 

 
Figure 1: A Computer-based System 

 
In any engineering discipline the rigorous analysis of a 

design artifact happens through the manipulation and 
analysis of mathematical objects, called models. Frequently 
physical prototypes are also built for experimentation, but 
still the analysis—and the understanding—happens with the 
help of mathematical objects. We need a similar model-
based approach to CBS. These models, by the very nature 
of the CBS, must be able to represent both the IP and PE 
components, as well as the interaction between the two. 

An illustrative example can be found in the area of 
digital avionics. Let us consider a fly-by-wire system that 
transforms pilot commands and data from environmental 
inputs (e.g. from air data computers and motion sensors) 
into actuator commands that act on the aircraft’s control 
surfaces. When designing such a system, one uses the 
knowledge of control theory, aircraft dynamics, and other 
engineering disciplines to establish the control laws, to 
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calculate controller gains, etc. The physical environment—
aircraft body dynamics, actuator dynamics, etc.—determine 
how the IP component should behave. When implementing 
such a component one works with software abstractions: 
modules, tasks, synchronization, floating-point and fixed-
point variables, task timing, jitter, etc. The essential 
problem of CBS design is the subtle interaction between the 
IP and PE of the system. Hardware or software 
implementation decisions have an impact in terms of the 
physical environment. For instance, selecting a particular 
fixed-point representation for a physical quantity determines 
expected maximum and minimum values of that quantity. 
The IP will simply not work if these assumptions are 
violated by the physical environment. Conversely, time 
constants determined by the physical environment will have 
an impact on the hardware and software implementation. 
This leads to a vicious circle of interaction, where changes 
on one side impact the other and vice versa. In order to 
understand CBS it is not sufficient to model only the IP or 
PE components—we need techniques for simultaneous 
modeling that also support capturing the interactions.   

In order to analyze, validate, and predict the behavior 
of the integrated system from such models, the modeling 
language should be rich enough to capture all these aspects. 
Additionally, if feasible, we desire to synthesize 
(automatically generate) the implementation of the system 
from the models and component libraries. This is made 
possible by the development of various design automation 
algorithms and tools. Design automation is very successful 
in the hardware world but only recently have software 
synthesis tools begun to emerge. 

In this paper, we address the following questions: What 
is the right way to model CBS? What is the “modeling 
language” to be used?  We argue that there is no single 
modeling language which satisfies the requirements of all 
CBS. Instead, we propose a two-level approach, where area-
specific modeling tools are used for creating domain-
specific models, and these tools are represented in terms of 
(and built from) a higher-level metamodel. 
 

2. The Vision 
In designing CBS hardware and software, one must use 

domain-specific terminology, concepts, and techniques. By 
domain, we mean the larger engineering discipline within 
which the CBS exists. CBS are often the result of 
cooperation between domain engineers and hardware and 
software designers. We argue that the common language 
used by these participants should be that of the domain and 
not necessarily that of computer engineering. 

Modeling languages that capture interesting properties 
of software systems (e.g. UML) are rarely suitable for 
modeling an entire system. Note that the “entire system” 
includes not only the hardware and the software, but the 
environment as well. While there are some aspects of UML 
that make it suitable for modeling dynamic, reactive systems 
(e.g. state charts), it is inadequate for capturing models in 

the form of Laplace transforms or differential equations. 
Mature engineering disciplines (e.g. control theory or 
chemical engineering) have their own languages—forcing 
the use of another modeling language is not acceptable.  

Another aspect of CBS is their integrated nature. They 
integrate different disciplines: hardware design, software 
engineering, performance modeling and engineering, in 
addition to the “base” domain engineering discipline. When 
one creates models for such systems, it is necessary that the 
models be integrated. For example, models of the software 
architecture should be considered in conjunction with 
models of the hardware system to determine end-to-end 
timing latencies. Therefore, while an engineering modeling 
language dominates the modeling process, one must also 
address the issue of integrating these models with models 
that are closer to the domain of computer engineering. We 
argue that integration of models is not only an opportunity 
but a necessity for any kind of analysis and synthesis of 
complex CBS. 
 

3. The Solution 
The vision presented above seems to introduce 

significant difficulties. We know we need domain-specific 
modeling approaches. We also need to integrate models of 
differing disciplines. Both of these goals can be achieved by 
using appropriate tools, but at a very high cost—the 
development of customized modeling and integration 
solutions is very expensive. To counter this, we present an 
approach that is based on introducing a second level of 
modeling, called the meta-level. 

We propose to use a higher-level, meta-level modeling 
language. The meta-language is not used for defining 
domain models, but rather for defining domain-modeling 
languages. Thus, “sentences” in the meta-language define 
specific domain languages, while “sentences” of the domain 
language define specific systems. 

 

 
Figure 2: The four layers of modeling 
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Figure 2 shows the four layers of modeling that one can 
achieve using this approach. The real CBS is described in 
the form of various domain models. Metamodels describe 
how domain models are organized: their ontology, syntax 
and semantics; i.e. the language used to define domain 
models. Additionally, meta-metamodels define how 
metamodels are organized, their ontology, syntax and 
semantics; i.e. the language used to define metamodels. The 
key to this approach is that a lower layer is always described 
in terms of the constructs of the higher layer.  

Using the metamodel one creates a domain specific 
formal modeling language that is then used to create 
domain models of the actual system. Formally, a modeling 
language can be defined as a triplet of ontology, syntax, and 
interpretation: 

L = <O, S, I> 
The ontology defines the concepts and their 

relationships in the language, the syntax defines all the 
(syntactically) correct sentences of the language, and the 
interpretation defines the semantics: the meaning of those 
correct sentences. A domain-specific modeling language 
consists of domain-specific ontology, syntax, and 
interpretation: 

LD = <OD, SD, ID> 
The domain models—the syntactically and semantically 

correct sentences of LD built from instances of concepts and 
relationships defined in the domain ontology OD—represent 
the CBS: its IP and PE components, along with the 
interactions among them. A meta-level language 

LM = <OM, SM, IM> 
consists of the ontology for defining domain-level 
languages, the correct syntax of those domain-language 
definitions, and their interpretation. The metamodels—
syntactically and semantically correct sentences of LM built 
from instances of concepts and relationships defined in the 
meta-ontology OM—define LD in terms of <OM, SM, IM>. 
This implies that a meta-language must allow us to define 
ontologies, syntax, and interpretation in a mathematically 
precise way. 

Having an explicit meta-specification of the domain 
modeling languages also helps when integrating models of 
different domains. On the meta-level one can express the 
relationships and dependencies among different domain-
specific concepts, thus specifying the rules for combining 
different domain models. Formally, a metamodel may 
define more than one LD, and may include <ODi,j, SDi,j, IDi,j> 
that captures ontology, syntax and interpretation for the 
crossing of domains Di and Dj. Obviously, the explicit 
specification of these interdependencies can also be used to 
constrain the domain specific modeling language to only 
those constructs where the integration is meaningful. 

Another important result of our approach is the ability 
to evolve the modeling tools over time in a formally 
verifiable manner. Just as domain experts evolve a 
particular CBS by updating its domain models and 
regenerating the CBS, the domain-specific modeling tools 

themselves are evolved by modifying the metamodel and 
regenerating the tools. Also, the “before and after” 
metamodels provide a framework for providing an 
automated domain model migration process. 

To summarize, we advocate a two-step process for 
modeling CBS. In phase one, a domain-specific modeling 
language is described using a metamodeling language. We 
call this development the metamodel of the domain. To 
support reusability, metamodels of proven domain modeling 
approaches (e.g. finite state models, data flow models, etc.) 
should be available in a metamodel library to allow rapid 
composition of metamodels. In phase two, the domain-
specific modeling language is used to build the models of 
actual systems. 
 

4. The Implementation 
While conceptually clear, the approach described 

above is useful only if appropriate tools are available. ISIS 
has been engaged in developing the supporting 
infrastructure for the two-level modeling approach since 
1994. The detailed results of this research have been 
reported elsewhere [4]. Here we give a summary of the 
technical approach. 

As mentioned earlier, the domain-level language LD = 
<OD, SD, ID> used to specify CBS models is defined using 
concepts provided by the ontology component OM of the 
meta-level language LM = <OM, SM, IM>. Below we describe 
the capabilities of the components of LM. 

 
4.1 Metamodel ontology: OM 

A metamodeling language must allow the definition of 
the modeling concepts used to define systems within the 
domain. Modeling concepts include not only the actual 
concepts of the domain (e.g. data streams and stores, 
processes, dataflow networks), but also standard modeling 
abstractions—patterns that provide a prototypical solution 
to a modeling problem—directly supported by the tools. 
Many such modeling abstractions exist in engineering but 
are often focused on a particular solution space or sub-
domain. We claim that a core set of fundamental modeling 
abstractions exists and they are largely adequate to express 
the design concepts, notions, and artifacts used across 
engineering domains. Table 1 below lists the elements of 
this set. 

We have chosen a metamodeling approach where some 
of these abstractions are first-class concepts (i.e. they can be 
instantiated), while the remaining abstractions are supported 
through special embellishments on the basic metamodeling 
constructs. 

 
4.2 Metamodel syntax: SM 

Our metamodel syntax is essentially the same as that of 
UML class diagrams [5] and OCL expressions [6]. 
Additional, non-UML syntactical constructs are used for 
two purposes: (1) to indicate the use of other fundamental 
modeling abstractions (e.g. module interconnection and 



multiple aspects), and (2) to control how domain models are 
to be visualized. Their specific capabilities and concrete 
syntax is discussed elsewhere [8]. 

 
Table 1: Fundamental modeling abstractions 

Classes 
 

 

Specific classes of entities that exist in a given 
system or domain. Domain models are entities 
themselves and may contain other entities. 
Entities are instances of classes. Classes (thus 
entities) may have attributes. 

Associations Binary and n-ary associations among classes 
(and entities).  

Specialization Binary association among classes with 
inheritance semantics.  

Hierarchy Binary association among classes with 
“aggregation through containment” semantics. 
Performs encapsulation and information hiding. 

Module inter-
connection 

A specific pattern of relationships among 
classes. Classes can be associated with each 
other by connecting their ports (specially 
marked atomic entities contained in the 
classes). 

Constraints A binary expression that defines the static 
semantic correctness of a region of the model: 
if the objects of the region are “correct,” the 
expression evaluates to “TRUE.” 

Multiple 
aspects 

Allows partitioning a complex model according 
to part categories. Used for visibility control, 
but may also be used for aggregating specific 
properties of models with respect to specific 
concerns. 

 
 

4.3 Metamodel construction and semantics  
We have created a metamodeling tool that supports the 

visual construction of metamodels [9]. The metamodeler 
uses this tool to first construct the core metamodel using 
UML class diagrams and then embellishes it with special 
“markers” to specify other properties of the domain 
modeling language that couldn’t be expressed using the 
class diagram. Additionally, the metamodeler specifies OCL 
constraints that capture assertions that must be true for the 
domain models to be semantically correct.  

The meaning (i.e. the semantics) of a metamodel is 
defined through a domain-modeling tool. We use the 
following pragmatic definition for the semantics of a 
metamodel: A metamodel is a program that, when 
“executed,” configures a generic modeling environment 
(GME) to support a domain-specific modeling language. 
The domain-specialized instance of the GME allows only 
the creation of syntactically and semantically correct 
domain models, as defined by the metamodel. This concept 
is illustrated in Figure 3 below. Interestingly, this principle 
and approach makes possible a very high degree of reuse in 
the modeling tools. In fact, we are using the same GME as 
the foundation tool for metamodeling and domain modeling. 
We have a meta-metamodel that configures the environment 
to support metamodeling. Thus, we can extend our 

metamodeling language, although this typically necessitates 
changes in the GME as well. 

 

 
Figure 3: Metamodeling and Domain Modeling 

 
It is worthwhile to see how metamodel concepts map 

into the specific capabilities of the domain-modeling 
environment. Embellished UML classes are turned into 
atoms (primitive, iconic components of a drawing that have 
no structure, only attributes), models (complex 
diagrammatic constructs that have structure and attributes, 
and contain atoms, models, and connections), and 
connections (attributed connectors on the diagrams that 
relate precisely two atoms or models). The metamodel 
specifies the composability constraints on these objects. If a 
metamodel class embellished as a “model” aggregates 
another class embellished as an “atom,” that means that the 
domain models may contain atoms of that type. This 
semantics is enforced in the domain-modeling environment 
when the user attempts to add an atom to a model. 
Connections are derived from associations on the UML 
diagram: a connector is legal between any two domain 
objects (model or atom) whose original classes in the UML 
class diagram are connected (i.e. associated). Further details 
of the interpretation of the UML class diagram as a 
configurator for domain-modeling can be found in [8]. 
There are a few other modeling constructs not discussed 
here. The interested reader is referred to the detailed 
documentation of our tools [10]. 

The OCL constraints specified in metamodels are 
checked at domain model construction time. When a 
constraint evaluates to FALSE, it indicates that the current 
model violates the static semantics of the domain modeling 
language. This technique is best illustrated by a simple 
example. Consider the following metamodel (Figure 4) of a 
Hose, where the attribute threadSize is used to model 
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the size of the male and female connectors at the ends of the 
Hose. A Hose can be connected to other Hoses to form a 
chain via HoseConnections. Obviously, the connection 
has a source and a destination Hose. 

 

 
Figure 4: Metamodel of Hoses and HoseConnections 

 
When connected together, each end of a Hose plays 

the role of src or dst. Since the multiplicity of each 
association end is zero or one, this implies that each end of 
a Hose can connect to at most one other Hose. Let us 
assume that we have two additional constraints when 
connecting Hoses together. First, both Hoses must have 
the same threadSize, and second, a Hose should not be 
connected to itself. Note that neither of these constraints can 
be stated using only UML class diagrams. We must specify 
these constraints using OCL, as shown below: 
 
HoseConnection.allInstances->

forAll(c|c.src.threadSize
= c.dst.threadSize)

HoseConnection.allInstances->
forAll(c|c.src <> c.dst) 

 
When a domain model is edited, these expressions are 

evaluated, and an error is signaled when they fail. 
 

4.4 Metamodel- and domain-model semantics:  IM  and  ID 
The semantics of a metamodel as discussed above is 

limited to an interpretation in the context of the GME. This 
allows us to build syntactically and semantically correct 
domain-specific models, but not much else. We want to 
build a system from the domain models and determine 
properties of that system via various engineering tools. The 
domain models play a crucial role, as they are the subject of 
(or input to) various analysis and synthesis procedures. 
These procedures assign a dynamic semantics to the 
domain models.  

Specifically, the dynamic, or operational, semantics of 
a domain model is determined in two steps in our system 
[4][11]. We assume that an execution platform is available, 
which has an “instruction set” with clearly defined 
semantics. The platform can be an analysis engine (e.g. a 
simulator package), an execution environment (e.g. a real-
time operating system), or any other operational 

computational system. In step one, the domain models are 
processed by a software component called a model 
interpreter that transform the models into the “instruction 
set” of the execution platform. In the second step, the 
execution platform executes those “instructions.” Thus, the 
domain model semantics, ID, is realized by a transformation 
engine and an execution engine, as shown in Figure 5. 

 

 
Figure 5: Assigning semantics to domain models 

 
It seems natural that the semantics of domain models 

should also be captured in the metamodel of the domain. 
That is, IM specifies how to map a particular metamodel into 
a specific ID that determines exactly how a model interpreter 
works and how the execution platform processes the result 
of the transformation phase. As discussed above, the 
metamodel should not only specify the ontology, syntax, 
and static semantics of the domain models, but also their 
interpretation—their dynamic semantics. In our approach, 
the latter involves the formal specification of the execution 
platform and that of the transformation of domain models 
into the “instruction set” of the execution platform. 

Currently, we are conducting research activities to 
address the formal specification of the dynamic semantics of 
domain models. The above two-phase scheme has been 
applied in many applications, by hand-crafting the model 
interpreters for specific execution platforms. However, this 
is a difficult and error-prone process. Developing a formal 
language for capturing the properties of the model 
transformation and the execution platform, and developing 
the semantics of that language, will allow us to speed up the 
development of domain-specific modeling languages and 
make their interpretation mathematically precise. Some of 
our preliminary work on the theoretical foundations of 
formalizing these specifications can be found in [12]. 
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5. Comparison with Other Approaches 
Many concepts and techniques in our approach are based on 
groundwork done by a large community of modeling 
experts, academic and industrial researchers. The use of 
metamodels for defining modeling concepts and domains 
can be found in many proposed engineering standards. For 
example, CDIF [13] proposes the use of the four-layer 
modeling approach. The static semantics of UML is 
specified using a similar approach, using UML as its own 
metalanguage [7]. Metamodeling is an idea that has been 
addressed in many research workshops and projects (e.g. 
[14] and [15]). Some of the relevant research activities and 
industry efforts are related to integrating data from various 
sources (e.g. MetaData coalition [16]) as well as creating 
domain-oriented tools for building original types of models 
(e.g. DOME [17]). 

In comparison, our effort has focused on developing 
meta-level tools—modeling techniques, modeling 
environments, metamodel interpreters, etc.— that associate 
a highly pragmatic and operational semantics to the 
metamodel. Furthermore, our research is addressing the 
specific needs of CBS, where domain-specific modeling 
languages are often given, and we have to integrate them 
with other domain-specific modeling approaches. 
 

6. Conclusions and Future Work 
The two-level approach to the specification of domain-

specific modeling languages (DSML) and modeling 
environment generation has several advantages. By 
specifying the entities, relationships, attributes, and 
constraints at the metamodeling level, the DSML can be 
described with mathematical precision, can be safely 
evolved over time, and can be used to configure a GME for 
use in designing CBS within a particular domain. Once 
configured, the domain modeling environment ensures valid 
model creation through the use of constraint specifications 
obtained from the metamodel, enforcing the formal static 
semantics of the domain at model editing time. Also, if the 
metamodel captures the mapping of domain models into the 
“instruction-set” of an execution platform, a transformation 
engine can be synthesized to facilitate that mapping. 

Using the metamodeling technology described in this 
paper domain-specific modeling tools have been created, 
and have been in constant use for many years, in many 
engineering application areas and domains [18]. Our current 
work focuses on more efficient methods for mapping the 
abstract syntax of a metamodel onto the graphical idioms of 
the GME.  
 

7. Acknowledgements 
The DARPA/ITO EDCS program (F30602-96-2-0227) 

and the DARPA/ITO SEC program (F33615-99-C-3611) 
has supported, in part, the activities described in this paper. 
 
 

References 
[1] J. C. Maxwell, "On Governors," Proc. Royal Soc. 
London, vol. 16, pp. 270-283, 1868. 

[2] N. Wiener, Cybernetics: or Control and 
Communication in the Animal and the Machine, 
Cambridge: MIT Press, 1948. 

[3] J. Sztipanovits, “Engineering of Computer-Based 
Systems: An Emerging Discipline,” Proceedings of the 
IEEE ECBS’98 Conference, 1998. 

[4] J. Sztipanovits, G. Karsai, “Model-Integrated 
Computing,” IEEE Computer, pp. 110-112, April, 1997. 

[5] UML Summary, ver. 1.0.1, Rational Software 
Corporation, March, 1997 

[6] Object Constraint Language Specification, ver. 1.1, 
Rational Software Corporation, et al., Sept. 1997. 

[7] UML Semantics, ver. 1.1, Rational Software 
Corporation, et al., September 1997. 

[8] Nordstrom G.: "Metamodeling - Rapid Design and 
Evolution of Domain-Specific Modeling Environments", 
Ph.D. Dissertation, Vanderbilt University, 1999. 

[9] A. Ledeczi, et al., “Metaprogrammable Toolkit for 
Model-Integrated Computing," Proceedings of the IEEE 
ECBS’99 Conference, 1999. 

[10] Generic Modeling Environment documents. 
http://www.isis.vanderbilt.edu/projects/gme/Doc.html 

[11] J. Sztipanovits, et al.: “MULTIGRAPH: An 
Architecture for Model-Integrated Computing,” 
Proceedings of the IEEE ICECCS’95, pp. 361-368, Nov. 
1995. 

[12] G. Karsai, et al., “Towards Specification of Program 
Synthesis in Model-Integrated Computing," Proceedings of 
the IEEE ECBS’98 Conference, 1998. 

[13] CDIF Meta Model documentation.  
http://www.metamodel.com/cdif-metamodel.html 

[14] Metamodeling in OO (OOPSLA'95 Workshop) 
October 15, 1995, http://saturne.info.uqam.ca/ 
Labo_Recherche/Larc/MetamodelingWorkshop/metamodeli
ng-agenda.html 

[15] 43rd Annual Meeting of the International Society for 
Systems Sciences, at the Asilomar Conference Center, 
Pacific Grove, California, June 26 to July 2, 1999, 
http://www.isss.org/1999meet/sigs/sigmodel.htm  

[16] MetaData coalition. http://www.mdcinfo.com/ 

[17] Dome Official Web Site, Honeywell, 2000, 
http://www.src.honeywell.com/dome/  

[18] Model-Integrated Computing documents. 
http://www.isis.vanderbilt.edu/projects/ 

http://www.isis.vanderbilt.edu/projects/gme/Doc.html
http://www.metamodel.com/cdif-metamodel.html
http://saturne.info.uqam.ca/ Labo_Recherche/Larc/MetamodelingWorkshop/metamodeling-agenda.html
http://saturne.info.uqam.ca/ Labo_Recherche/Larc/MetamodelingWorkshop/metamodeling-agenda.html
http://saturne.info.uqam.ca/ Labo_Recherche/Larc/MetamodelingWorkshop/metamodeling-agenda.html
http://www.isss.org/1999meet/sigs/sigmodel.htm
http://www.mdcinfo.com/
http://www.src.honeywell.com/dome/
http://www.isis.vanderbilt.edu/projects/

