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Abstract. Networked embedded systems are composed of a large num-
ber of components that interact with the physical world via a set of
sensors and actuators, have their own computational capabilities, and
communicate with each other via a wired or wireless network. Such sys-
tems are best modeled by distributed hybrid systems that capture the
interaction between the physical and computational components. Mon-
itoring and diagnosis of any dynamical system depend crucially on the
ability to estimate the system state given the observations. Estimation for
distributed hybrid systems is particularly challenging because it requires
keeping track of multiple models and the transitions between them. This
paper presents a particle filtering based estimation algorithm for a class
of distributed hybrid systems. The hybrid estimation methodology is
demonstrated on a cryogenic propulsion system.

1 Introduction

The work in this paper is motivated by existing and emerging applications of
networked, embedded systems. Such systems contain a large number of dis-
tributed nodes, each of which performs a moderate amount of computation,
collaborates with other nodes via a wired or wireless network, and is embed-
ded in the physical world via a set of sensors and actuators. Examples include
complex electro-mechanical systems with embedded controllers [13] and smart
matter systems [6]. State estimation from the available measurements in such
systems presents a number of interesting new challenges. The system dynamics
are best described by hybrid models of computation and hybrid estimation tech-
niques are required. The complexity that arises from the distribution of both the
physical and computing components must be also addressed. A large amount of
computation is potentially available, but it may be partitioned into relatively
small, embedded chunks. Communication between nodes is available, but may
involve unreliable delivery, power-constrained wireless networks, or large, com-
plex topologies requiring multiple hops to connect two arbitrary nodes.



Estimation of hybrid systems is particularly challenging because keeping
track of multiple models and the autonomous transitions between them is com-
putationally very expensive. Simple extension of conventional estimation tech-
niques, like the Kalman filter, leads to algorithms that require tracking of all
possible trajectories, and therefore, are exponential in the number of time steps.
Approximation by Gaussians is often used to collapse the distributions for each
trajectory resulting in poor performance. A related approach to our work based
on banks of extended Kalman filters has been presented in [4] where only trajec-
tories with high confidence probability are traced. A methodology using both dis-
crete and continuous observers based on finite state machines and linear systems
has been proposed in [1]. Sequential Monte Carlo (or particle filtering) methods
can support process densities that contain both continuous and discrete dynam-
ics and have been explored for hybrid diagnosis in [11]. However, autonomous
transitions between modes triggered by the continuous dynamics have not been
considered. Particle filtering has been applied also for a class of hybrid systems
modeled by dynamic Bayesian networks in [7] where the autonomous transitions
between discrete states are defined using the so-called softmax conditional prob-
ability distributions. A fault modeling and diagnosis approach for hybrid systems
based on qualitative representation of the fault hypotheses has been presented
in [8]. A Bayesian approach for mode estimation of hybrid systems has been
presented in [13] and has been demonstrated for monitoring and diagnosis of
electro-mechanical systems. This approach uses continuous measurements and
prior from a temporal discrete event model to compute the likelihood functions
for the mode transitions.

In this paper, we present a particle filter based estimation algorithm that
addresses the challenge of the double-sided interaction between continuous and
discrete dynamics in hybrid systems. The algorithm is applicable to a large class
of hybrid systems, where the continuous dynamics and the guard conditions can
be nonlinear, and the noise can be represented by arbitrary multi-modal distri-
butions. We show how we can estimate autonomous transitions based on complex
guard conditions. We also describe how we can improve the performance and ro-
bustness of the algorithm by using guard conditions that cover the state space of
the system. In particle filters, complex integrals are computed efficiently by ap-
proximating the belief state by finitely many samples. General process densities
that can represent the interaction between discrete and continuous dynamics in
hybrid systems can be used in an efficient manner. Detailed descriptions of par-
ticle filtering methods for estimation of dynamical systems can be found in [3].
Our approach is similar to algorithms with mixed-state and automatic model
switching that have been successfully applied for tracking of motion boundaries
in video images [5, 2]. The centralized estimation algorithm and its application
to a two-tank system can be found in [9]. In this paper, we demonstrate the
algorithm for the estimation and fault detection of the rocket propulsion exam-
ple of an experimental NASA vehicle (X34) using simulation results. The hybrid
estimation approach presented in this paper is part of a distributed, hybrid di-



agnostic system that has been developed for the cryogenic propulsion system;
details can be found in [10].

The remainder of the paper is organized as follows. The class of distributed
models and hybrid estimation problems considered in this paper are presented in
Section 2. Section 3 presents the cryogenic propulsion system used to illustrate
the approach. Our approach for distributed hybrid system estimation is described
in Section 4. The particle filtering algorithm is presented in Section 5. Simulation
results for the cryogenic propulsion system are presented in Section 6. Finally,
conclusions and future work are discussed in Section 7.

2 Problem Statement

Hybrid systems contain interacting discrete and continuous dynamics. The dis-
crete dynamics are usually described by discrete event models with a finite state
space Q. Every discrete state (or mode) q corresponds to a unique differential
(difference) equation ẋ = f(q, x) that governs the continuous dynamics. The
state of the hybrid system is described by s = (q, x). The state can change ei-
ther by time delay as described by the differential/difference equation or by a
transition. Mode transitions e = (q1, q2) may occur either upon receiving an ex-
ternal control command or when the continuous state satisfies a guard x ∈ G(e)
that labels the transition. The state may be reset after the occurrence of such a
transition according to the reset map x′ = R(e, x). Mode transitions that depend
on the continuous behavior of the system are called autonomous.

In the hybrid system literature, it is often assumed that the state is directly
observable. However, in real-world applications, the state has to be reconstructed
from the observations. In this paper, we follow a Bayesian state estimation ap-
proach using a discrete-time representation of the system dynamics. The contin-
uous dynamics of the system can be described, using zero-order hold sampling
for example, by the discrete-time model

xt+1 = fq(xt, ut) + νt

yt = gq(xt) + ξt

and νt and ξt denote process and measurement noise respectively. The evolution
of the discrete state can be described by the transition function

qt+1 = δ(qt, σt, xt)

where σt denotes events corresponding to the control commands. A discrete tran-
sition occurs when either the controller issues an appropriate command or when
the continuous state satisfies the guard of the transition. The hybrid estimation
problem is to compute the most likely hybrid state st = (qt, xt) given the obser-
vation sequence Yt = (y0, y1, . . . , yt), the sequence of continuous control inputs
Ut = (u0, u1, . . . , ut), and the history of control events (σ1, σ2, . . .) up to time t.

A distributed embedded system consists of multiple components that can be
described by interacting hybrid systems. In this paper, we consider a class of dis-
tributed hybrid systems where the coupling occurs only through the guards that



govern the mode transitions. We model such systems by a collection of subsys-
tems {Hn}, n = 1, . . . , N . The state of the nth subsystem is s(n) = (q(n), x(n)).
We assume that if there exists coupling between Hn and Hm, it can be described
by a guard condition of the form G(e(n), x(m)). Thus, a mode transition e(n) in
Hn can be triggered by a condition on the state x(m) of Hm. A cryogenic propul-
sion system that is modeled by such a distributed hybrid system is presented in
Section 3.

In distributed hybrid systems, the state st is the aggregate state of all the

subsystems {s
(1)
t , s

(2)
t , . . . , s

(N)
t }. Centralized estimation algorithms are compu-

tationally very expensive because they are based on high-dimensional models.
They also require high-bandwidth networks since all the remote measurements
must be communicated to a centralized location at every time step. Distributed
estimation algorithms offer significant computational advantages, especially, be-
cause they can exploit the computation that is embedded in several components
of the system. The local hybrid estimation problem at subsystem Hn is to com-

pute the most likely state s
(n)
t = (q

(n)
t , x

(n)
t ) using local or remote observations

and control inputs. For the class of systems considered in this paper, estimat-

ing the local state s
(n)
t = (q

(n)
t , x

(n)
t ) only requires knowledge of remote guard

conditions G(e(n), x(m)) that affect the local behavior.

3 The Propulsion System Domain

Space launch vehicles that reach Earth orbit do so by carrying large quantities of
oxygen which is combined with a fuel and burned to produce thrust. The oxygen
is stored in the form of liquid oxygen (LOX) at a temperature several hundred
degrees below that of the launch environment. Figure 1 illustrates the LOX
venting system for the X-34, an experimental, rocket-powered vehicle designed
for NASA. During flight, the tank absorbs heat and the LOX temperature and
pressure are increasing. A digital controller is responsible for keeping the LOX
pressure in a safe region. When the pneumatic valve is open, the LOX tank can
vent to the atmosphere. The vehicle’s control system does not directly actuate
the pneumatic valve. Instead, the pneumatic valve opens when it is pressurized
by the pneumatic system to its left. The pneumatic tank and regulators provide
high pressure gas to the solenoid valve. When the control system opens the
solenoid valve, the pneumatic valve is pressurized and opens.

The cryogenic propulsion system can be best modeled as a distributed hybrid
system consisting of the LOX tank subsystem and the pneumatic subsystem. The
dynamics of the LOX tank follow a multi-modal behavior that represents if LOX
is boiling to gas oxygen (GOX) or not and if GOX is venting in the atmosphere
or not. The continuous dynamics are governed by mass and energy conservation
laws. The discrete dynamics include the behavior of the solenoid valve which is
controlled by a digital controller that monitors the output pressure of the LOX
tank. In the following, we present a dynamical model of the system. The notation
including units and constants can be found in Table 1.
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Fig. 1. LOX Tank System

The dynamics of the LOX tank are described by the following set of nonlinear
differential equations:

ṁlox = −B

ṁgox = B − rvent

Ṫlox =
qlox − hvB

cpmlox

u̇gox =
1

mgox
(Bhgoxin

− rventhgoxout
+ qgox + Bugox)

Liquid oxygen is boiling if its saturation pressure is larger than the pressure of
the GOX inside the tank according to

B =

{

0, if Pgox > Psat

rvent + rvent

2 (Psat − Pgox)− 0.001, if Psat ≥ Pgox

where the saturation pressure is a function of the LOX temperature approxi-
mated by

Psat(Tlox) = 272.968− 9.83445Tlox + 0.139169T 2
lox− 9.4813× 10−4T 3

lox

+2.9745× 10−6T 4
lox − 3.00628× 10−9T 5

lox

and the GOX pressure is given using the ideal gas law

Pgox =
mgox

wgox
R

Tgox

Vgox
.

The GOX temperature is computed using the internal energy as Tgox = (ugox−
54.503)/0.1606. The GOX volume is computed by Vgox = Vtank − Vlox where



PARAMETER DESCRIPTION VALUE (for constants) UNITS
mlox mass of LOX lbm
mgox mass of GOX lbm
Tlox temperature of LOX deg R
Tlox temperature of LOX deg R
ugox internal energy of GOX BTU/lbm
B boil rate lbm/s
rvent venting mass rate lbm/s
qgox heat dissipation of GOX BTU/s
qlox heat dissipation of LOX BTU/s
qtotal total heat dissipation BTU/s
hv heat of vaporization of LOX 91.5 BTU/lbm
Cp specific heat of LOX 0.4 BTU/deg R
hgoxin input enthalpy of GOX BTU/lbm
hgoxout output enthalpy of GOX BTU/lbm
Plox pressure of LOX psi
Pgox pressure of GOX psi
Psat saturation pressure of LOX psi
wgox molecular weight of GOX 0.0705 lbm/mol
Vlox volume of LOX ft3

Vgox volume of GOX ft3

Vtank volume of LOX tank 16800 ft3

dlox density of LOX 71.5 lbm/ft3

dgox density of GOX lbm/ft3

mP V T mass of He in PVT lbm
TP V T temperature of He in PVT deg R
PP V T pressure of PVT psi
rin PVT input mass rate lbm/s
hP V T input enthalpy of He in PVT BTU/lbm
VP V T volume of PVT 0.04 ft3

d diameter of the pneumatic valve 0.065 ft
α loss coefficient 2
whe molecular weight of He 0.00882 lbm/mol

R gas constant 2.365 × 10−2 psi ft3

mol mol
Table 1. Nomenclature

Vlox = mlox/dlox. The input and output enthalpy are given by

hgoxin
= 0.2184Tlox + 56.906

hgoxout
= 0.2184Tgox + 56.906

and the GOX and LOX head dissipation are defined by

qgox = 1.75× 10−5(550− Tgox)qtotal

qlox = qtotal − qgox.

The pneumatic subsystem consists of a pneumatic tank with high pressure
helium (He), two pressure regulators, a three-way solenoid valve, and a pneu-
matic valve as shown in Figure 1. When the solenoid valve is open, high pressure
He flows from the pneumatic tank and pressurizes the pneumatic valve. We omit
the dynamical model of the pneumatic subsystem due to space limitations and
we focus on the pneumatic valve that directly affects the behavior of the LOX
tank subsystem.

The pneumatic valve includes a tank called pneumatic valve tank (PVT)
whose dynamics are

ṁPV T = rin



ṪPV T =
rinhPV T

13.2 + 3.125mPV T

where hPV T = 5.2TPV T + 30.2 is the input enthalpy. The pressure in the PVT
is

PPV T =
mPV T

whe
R

TPV T

VPV T
.

The behavior of the pneumatic valve is described using the pressure PPV T as
follows:

pneumatic valve =

{

open, if PPV T < 410
closed, if PPV T ≥ 410

The above guard conditions on the pressure PPV T define the coupling between
the pneumatic system and the LOX tank. If PPV T < 410 then the valve is open
and LOX is venting in the atmosphere. The venting mass rate is given by

rvent =
πd2

√

2(Pgox−Patm)4636.8
αdgox

4
dgox.

If the valve is closed then there is no venting. We also assume that the flow goes
only in one direction through the valve.

The venting of GOX is monitored by pressure and temperature sensors. A
digital controller is used to actuate the solenoid valve based on the GOX pressure
measurements using the following rule: if the pressure Pgox falls below 12.2,
the controller closes the solenoid valve and if the pressure exceeds 18, then
the controller opens the solenoid valve. The overall system can be modeled as
a distributed hybrid system composed of the LOX tank and the pneumatic
subsystem coupled by the guards that define the operation of the pneumatic
valve and the controller. The hybrid system model for the LOX tank is shown
in Figure 2. The hybrid estimation problem is to compute the most likely state
including the LOX mass and temperature from the pressure and temperature
measurements and the commands of the controller.

4 Hybrid System Estimation

The most challenging aspect of every hybrid estimation algorithm is monitoring
the autonomous mode transitions and using the appropriate mode q for updat-
ing the estimate of the continuous state x. The probability of mode transitions
triggered by control commands can be usually computed by discrete estima-
tion techniques based, for example, on hidden Markov models. Our estimation
algorithm is based on the following decomposition of the process density

p(qt, xt|qt−1, xt−1) = p(xt|qt, qt−1, xt−1)P (qt|qt−1, xt−1)

where the density p(xt|qt, qt−1, xt−1) describes the evolution of the continuous
state conditioned on the mode and the distribution P (qt|qt−1, xt−1) describes
the mode transition probability conditioned on the continuous state.
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Fig. 2. Hybrid system model for the LOX tank

We define the mode transition probability matrix with elements

Tij(t) = p(qt = j|xt−1, qt−1 = i), i, j = 1, . . . , |Q|.

Let Gij be the guard corresponding to the transition from mode i to mode j.
Assuming that the system is at mode qi and that the probability of the transition
qi → qj is equal to the probability the guard Gij is satisfied, the mode transition
probability matrix can be computed as

Tij(t) =

∫

Gij

p(xt−1|Yt−1, Ut−1, qt−1 = i)dxt−1 (1)

where p(xt−1|Yt−1, Ut−1, qt−1 = i) is the conditional density of the continuous
state at time t− 1.

The above integral represents the probability of switching from mode qi to
mode qj . The general idea of our estimation algorithm is that at every time
step we evaluate the transition probability matrix based on the estimate of the
continuous state. Then, we focus on the most likely modes and we update the
continuous estimate by conditioning our belief on the new measurements. Our
current implementation is based on a particle filtering approach described in
Section 5. This approach allows the efficient computation of the transition prob-
abilities using Monte Carlo methods. The transition probabilities are then used
to dynamically assign particles to the discrete modes, thus focusing on the most
likely transitions.

In the distributed algorithm proposed in this paper, local estimators com-
municate with each other by messages that contain the probability values of the
guard conditions that define the coupling between the subsystems. Consider a
local mode transition e(n) of the nth subsystem Hn. Based on our assumptions
regarding the coupling between subsystems, the mode transition probability may
depend on the remote continuous state x(m) according to the guard condition
G(e(n), x(m)). In this case, the probability that this guard condition is satisfied



can be computed at the remote subsystem Hm. This value is the only informa-
tion needed at the local node in order to compute the probability of the mode
transition e(n). Note that it’s possible that the guard G(e(n)) is a logical com-
bination of multiple conditions of the form G(e(n), x(m)) representing coupling
between multiple components.

Next, we discuss how we can improve the performance of the algorithm by
transforming the guard conditions so that they form a cover of the state space.
The probability of occurrence of the autonomous transitions is represented by
the transition probability matrix that can be computed at every time step. The
estimation algorithm will be robust if small changes in the continuous state do
not result in large changes in the probabilities Tij . Practically, it is desirable to
(1) avoid chattering phenomena, where the probability mass oscillates between
modes at every time step, and (2) allow enough time after a mode change for
the transient to converge to the steady state behavior for that particular mode.
These aspects of the algorithm can be considerably improved by transforming
the guard conditions so that they form a cover of the continuous state space as
explained in the following.
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Fig. 3. Guard conditions that cover the state space

Figure 3 shows a simple example of a continuous state trajectory and a
guard condition. The system switches from q1 to q2 if x(t) > .3 and from q2 to
q1 if x(t) < .3. Our estimation algorithm returns a probability distribution over
possible continuous states that approximates the actual state x(t) at every time
step. If the transition probability matrix T is computed using the original guard
conditions, the performance of the algorithm is degraded by the fast switching
around t = 1380 and leads to chattering between modes q1 and q2. While the



most likely discrete state oscillates between q1 and q2, the estimation of the
continuous state is unreliable.

Hybrid estimation can be considerably improved by transforming the guard
conditions to form a cover of the state space as illustrated in Figure 3. The
transition q1 → q2 occurs if x(t) > .3 + ε. Similarly, the transition q2 → q1

occurs if x(t) < .3 − ε. The small variations of the state around x(t) = .3 − ε,
for example, will not trigger any transitions since the system is not in mode
q2. The design parameter ε depends on the process and measurement noise.
The transition probability matrix can be represented by the transformed guard
conditions by equation (1). This method has been used also for removing Zeno
behavior from hybrid system models. The guard transformation is desirable,
however, even for non-Zeno hybrid systems in order to improve the robustness
of the estimation algorithm in the presence of process and measurement noise.
It should be noted that the continuity of analog-to-digital maps based on covers
of the state space has been studied using small topologies in [12].

5 Particle Filtering Methods

In the following, we describe the particle filtering algorithm for distributed hybrid
estimation. To simplify the notation, first we consider only one subsystem and
we assume that there are not any control inputs. Then, we describe the step
where communication between subsystems is required and how the coordination
between the local estimators is accomplished. Note that detailed descriptions
of particle filtering methods for estimation of dynamical systems can be found
in [3].

Let {s
(k)
t−1, w

(k)
t−1, k = 1, . . . , N} denote the sample set at time t − 1 where

s
(k)
t−1 = (q

(k)
t−1, x

(k)
t−1) is the kth sample of the local hybrid state and w

(k)
t−1 its

probability weight. The kth sample of the predicted local state at time t is

denoted by s̃
(k)
t = (q̃

(k)
t , x̃

(k)
t ). The estimation algorithm consists of the following

steps:

1. Initialization t = 0.

a. sample s
(k)
0 = (q

(k)
0 , x

(k)
0 ), k = 1, 2, . . . , N from p(q0) and p(x0) and set t = 1.

2. Prediction

a. apply p(st|s
(k)
t−1) to compute each s̃

(k)
t .

i. compute Tij(t) = p(qt = j|xt−1, qt−1 = i) from s
(k)
t−1 = (q

(k)
t−1, x

(k)
t−1) and w

(k)
t−1.

ii. sample q̃
(k)
t from Tij(t).

iii. apply p(xt|x
(k)
t−1, q

(k)
t−1, q̃

(k)
t ) to compute x̃

(k)
t .

b. evaluate the importance weights w
(k)
t = p(yt|s̃

(k)
t ).

c. normalize the weights.
3. Re-sampling

a. re-sample N particles s
(k)
t from s̃

(k)
t .

b. set t← t + 1 and go to step 2.



The interaction between the discrete and continuous dynamics is addressed at
the prediction step of the algorithm in order to compute the distribution of the

predicted state s̃
(k)
t . Consider that at time t the prediction p(qt−1, xt−1|Yt−1)

is represented by the sample set {q
(k)
t−1, x

(k)
t−1, w

(k)
t−1, k = 1, . . . , N}. The mode

transition probability matrix can be computed by

Tij(t) =















∑

k∈Ĝij
w

(k)

t−1
∑

k∈Î
w

(k)

t−1

, i 6= j

1−
∑

`6=i Ti`(t), i = j

(2)

where k ∈ Ĝij ⇔ q
(k)
t−1 = i ∧ x

(k)
t−1 ∈ Gij and k ∈ Î ⇔ q

(k)
t−1 = i.

The computation of the mode transition probability matrix is the only step of
the distributed algorithm that requires communication between subsystems. For
the class of distributed hybrid systems studied in this paper, a mode transition
e = (qi, qj) in subsystem Hn can be triggered by either a guard condition on the
local continuous state or a guard condition on the continuous state of another
subsystem Hm. In both cases, the probability for each mode transition can be
computed locally at each subsystem. In order to proceed with the prediction of
its local state, however, each subsystem must assemble the probabilities for all
the local mode transitions. Therefore, at every time step each subsystem must
receive messages with the probabilities of the local mode transitions that depend
on the continuous state of remote subsystems.

Let (q
(k)
t−1, x

(k)
t−1, w

(k)
t−1) be the kth particle and assume q

(k)
t−1 = i, then we

sample from the ith row of the mode transition probability matrix to select the

kth sample q̃
(k)
t for the discrete mode. Suppose that q̃

(k)
t = j, then we sample

from the density pij(xt|x
(k)
t−1) = p(xt|x

(k)
t−1, qt−1 = i, qt = j) to compute the kth

sample x̃
(k)
t for the continuous state. Next, we compute that importance weights,

normalize, reinforce the predicted state using the observations, and re-sample the
particles as described in the above algorithm.

At each subsystem, the estimated mode is computed as the most likely mode
at every time step and the continuous state is computed using only particles
from the most likely mode, that is

q̂t = argmax
i

∑

k∈Q̂i

w
(k)
t (3)

and

x̂t =

∑

k∈Q̂ w
(k)
t x

(k)
t

∑

k∈Q̂ w
(k)
t

(4)

where Q̂i = {k|q
(k)
t = i} and Q̂ = {k|q

(k)
t = q̂t}.

Estimation of the hybrid state based on the most likely mode is selected
for computational reasons. Our objective is the development of estimation algo-
rithms suitable for the cryogenic propulsion system and applications with real-
time requirements. Particle filter methods can also support multiple hypotheses



where the continuous state is estimated for every mode. However, keeping track
of multiple hypotheses requires a sufficient number of particles to be assigned to
each mode at every time step, thus increasing the computational requirements.
A possible improvement of the algorithm is to keep multiple hypotheses using
the most likely modes if they have sufficient number of particles.

6 Simulation Results

The particle filtering algorithm presented in Section 5 is used for fault detec-
tion using an observer-like scheme. The particle filter algorithm plays the role
of a hybrid observer which is computing the most likely discrete mode q̂ and
continuous state x̂ and is generating the expected output ŷ based on the plant
model. The residual signal rt = yt − ŷt is low-pass filtered and thresholded to
detect possible failures. Fault detection and isolation is performed by consider-
ing both the residual rt and the mode q̂t. For example, the observer may not
be able to perfectly track fast transients after each mode transition and there-
fore, the residual exceeding the threshold immediately after a mode transition
does not necessarily correspond to a fault. Also information about the modes
for which the discrepancy is present can be used for fault isolation. A leakage
in a pneumatic valve, for example, will cause a discrepancy only if the valve is
closed.

The particle filtering algorithm was implemented in C++ and integrated into
a distributed fault detection and diagnosis system for the X34. For the purposes
of distribution, we considered the LOX tank, its pneumatic valve, and the as-
sociated sensors to be one subsystem, and the pneumatic tank and remaining
components to be another. The mode of the LOX tank depends upon the mode
of the solenoid valve of the pneumatic subsystem. In practice, the task of the
particle filter for the LOX subsystem is thus to estimate the state of the LOX
tank given the observations from the pressure and temperature sensors attached
to the LOX subsystem and a distribution on the current mode of the venting
valve provided by the pneumatic subsystem. In the current implementation, the
LOX particle filter is provided with the most likely mode of the venting valve
at each sampling point, rather than a probability distribution over its mode. In
addition, in our experiments the role of the vehicle and its sensors was played
by a Matlab simulation developed from a model of the X34 provided by NASA.

Using these observations, the particle filter estimates the most likely state of
its subsystem from a model that does not include failures. We next compute the
residual between the expected output of that non-failure state and the current
observations from the vehicle’s sensors. A diagnostic system then detects and di-
agnoses faults. It uses a feature extraction algorithm and a neuro-fuzzy classifier
to compute the probability of its fault hypotheses based on the residual signals.
Details are beyond the scope of this paper. These fault hypotheses would then
be reported to the vehicle operator or on-board control system.

The simulator, particle filter and diagnosis systems were integrated as a
multi-process distributed system using the Open Control Platform, a distributed



computing platform developed by Boeing for the DARPA Software Enabled Con-
trol program. The simulator and particle filter were separate OCP processes
while the diagnosis system was distributed between two OCP processes. The
simulation and particle filter processes each ran on a 1.7GHz Pentium 4 proces-
sor within a dual-processor PC while the diagnostic processes ran on a second
600MHz PC connected by a a 100Mbit/second Ethernet LAN. The use of OCP
made the location of each process reconfigurable and transparent. The obser-
vations were sampled in the simulator and fed into the particle filter via OCP,
where particle filtering was performed using N = 100 particles. The simulated
sampling rate was 10Hz (i.e., ten samples per simulated second) but for our ex-
periments the LOX particle filter could be reliably run 10 times faster than real
time. In the following, we present simulation results for the LOX hybrid esti-
mation portion of the distributed diagnosis system for two scenarios (1) normal
behavior, and (2) leakage in the pneumatic valve.

Normal behavior. We have demonstrated that the algorithm can track the state
in the case when there are no faults in the system. The continuous states cor-
responding to the LOX and GOX masses are shown in figure 4. The system
is discretized using a sampling period T = 100ms. The outputs are the GOX
pressure and temperature and are contaminated with Gaussian noise. Figure 5
shows when the LOX is boiling or not and the expected venting pressure, as com-
puted using the estimated state, plotted versus the actual venting pressure. The
expected pressure is tracking closely the actual pressure. The GOX pressure is
increasing because the tank absorbs heat from the atmosphere. The LOX starts
boiling increasing the GOX pressure above 18 psi which triggers the controller
to open the venting valve. GOX is venting in the atmosphere and the pressure
is decreasing although LOX is still boiling in the tank. When the pressure falls
below 12 psi the controller closes the solenoid valve.
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Fig. 4. LOX and GOX mass
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Fig. 5. Discrete mode and venting pressure

Pneumatic valve leakage. The estimation algorithm can be used also to detect
continuous faults such as leakage in the pneumatic valve. The valve leakage was
simulated by including an additive term in the equation that represents the flow
balance when the pneumatic valve is closed. Figure 6 shows the expected and
the actual venting pressure. The estimated discrete mode and the residual signal
computed as the difference between the actual GOX pressure and the expected
are also shown. Whenever there is no boiling then the actual pressure is less
than the expected one and a fault is detected.
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the case of leakage



7 Discussion and Future Work

Monitoring and diagnosis of embedded systems depends crucially on the ability
to estimate the hidden hybrid state from the available measurements. In this
paper, we have presented a particle filtering based method and demonstrate the
algorithm using a rocket propulsion system. The algorithm can be applied to
a large class of distributed hybrid systems with autonomous transitions, non-
linear system dynamics, and non-Gaussian noise. Performance characterization
of the algorithm is an important and open problem. Convergence of the algo-
rithm depends crucially on the number of particles that, in turn, depends on
the dimension of the continuous state space and number of discrete modes. We
have observed that the time interval between discrete transitions also affects
the performance of the algorithm. Currently, we address some of these problems
by increasing the number of particles and assigning a small number of particles
at every mode even if the measurements indicate that some of the modes are
not probable. Theoretical aspects regarding the performance characterization of
the approach are subjects of current and future research. Currently, we use the
estimation algorithm for diagnosis of embedded systems. However, the compu-
tational performance allows real-time estimation of the state, and therefore, the
algorithm can be used for feedback control as well.
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