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Abstract
In this paper, we address the problem of tracking co-

operative mobile nodes in wireless sensor networks. Aim-
ing at a resource efficient solution, we advocate the use of
sensors that maintain their location information and rely on
the tracking service only when their locations change. In
the proposed approach, the tracked node transmits a signal
and infrastructure nodes measure the Doppler shifts of the
transmitted signal. We show that Mica2 motes can measure
RF Doppler shifts with 0.2 Hz accuracy corresponding to a
0.14 m/s error in relative speed estimates using radio inter-
ferometric technique.

The tracking problem is modeled as a non-linear opti-
mization problem and an extended Kalman filter is used
to solve it accurately assuming Gaussian measurement er-
rors. However, this approach may fail if the tracked node
changes its speed or direction. We propose to update the
Kalman filter state by performing constrained least-squares
optimization when a maneuver is detected. The combined
approach achieves almost a 50% accuracy improvement over
the Kalman filter alone when the mobile node changes its
direction and speed frequently. We describe our proof-of-
concept implementation of the tracking service and evaluate
its performance experimentally and in simulation.
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Communications Networks]: Distributed Systems
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1 Introduction
Wireless sensor networks (WSNs) are recognized for

their potential to connect the physical world with the virtual
world of computers through integrated, low-power, resource-
constrained devices [8, 16]. In fact, the demonstrated success
of WSNs in detection, classification, monitoring and man-
agement of objects in the physical world [12, 17, 31, 4] is
due to the large number of sensors that can be embedded
in the environment close to the phenomena of interest over
wide areas. The main strength of WSNs is achieved through
distributed collaboration, thus overcoming the limitations of
a single sensor. Therefore, the spatio-temporal coordination
of sensors becomes important in many WSN applications.

In this paper, we consider the problem of keeping track of
the accurate locations and velocities of mobile sensors con-
tinuously over time. Tracking of mobile objects has been
an active area of research [2, 24, 6]. Generally, resource
constraints of WSNs limit the algorithms that can be imple-
mented as well as the amount of memory used and ranging
data exchanged.

We argue that the most power-efficient way to localize
mobile sensors is not to localize them at all when they are not
moving. Sensors should be responsible for maintaining their
state, including their location, and invoke the tracking ser-
vice only if they detect that the location has changed. Cheap
and power efficient accelerometers are well suited for this
purpose. In our approach, the initial locations of the sensors
are found at deployment time using one of the computation-
ally more expensive methods such as in [9, 26, 27]. When
a node detects that its location has changed, it notifies the
tracking service and a number of stationary sensors deployed
in the vicinity are assigned to participate in tracking. After-
wards, the location and velocity information are sent back to
the node, thus keeping its state estimate accurate at all times.

Recently, a radio interferometric technique was proposed
for the precise localization of stationary nodes [26, 20], as
well as for tracking mobile nodes [19]. The approach utilizes
interfering radio signals transmitted by two nodes simulta-
neously. The relative phase offset of the interference signal
at two different receivers can be used to estimate distances
among the four nodes involved.

We propose to utilize a similarly constructed interference
signal, but instead of measuring its phase, we measure the
Doppler shifts caused by moving nodes to estimate their ve-



locity and location simultaneously. Consequently, our ap-
proach allows for simpler and faster tracking:

1. Each of the receivers measures the Doppler shift only,
whereas the relative phase measurements need to be
carried out by pairs of receivers in [22], and

2. Doppler shifts are measured at a single carrier fre-
quency, whereas up to 21 different frequencies are re-
quired to obtain accurate ranging data from phase mea-
surements in [22].

The goal of our tracking algorithm is to estimate the loca-
tion and the velocity of the tracked node from Doppler shift
measurements. A Kalman Filter (KF) [18] can be used to
track the mobile sensor under a constant-velocity assump-
tion. However, it is a well known problem that KF fails to
track sudden maneuvers of the tracked object [6]. To im-
prove the tracking accuracy in the maneuvering case, we
propose a simple maneuver detection and compensation al-
gorithm and show that this improves the KF accuracy by
as much as 50%. Specifically, the maneuver is detected
based on a significant change of the heading or the speed
of the tracked node. Upon detection, we combine the Ex-
tended Kalman Filter (EKF) with Constrained Non-linear
Least Squares (CNLS) optimization as follows: EKF is used
to obtain the initial state estimate that predicts the region
where the tracked node is located. The CNLS optimization
is then used to find a more accurate state estimate within
the region of interest and the EKF is updated with the new
state estimate. Since the CNLS optimization is sensitive to
measurement errors, we only use it for a short time after the
maneuver was detected. Otherwise, EKF is used alone as it
works well under the constant-velocity assumption. We refer
to the combined approach as the CNLS-EKF algorithm.

We evaluated the CNLS-EKF algorithm both experimen-
tally and in simulation. The experimental data was collected
in an outdoor area by testing two scenarios: (a) the tracked
node was moving at a constant speed with infrequent direc-
tion changes, and (b) the node frequently changed both its
speed and direction. The corresponding location accuracy
achieved was 1.3 and 2.2 m, respectively, and the precision
of the speed and heading estimates were 0.1− 0.4 m/s and
7−18◦, respectively. We have also tested the CNLS-EKF al-
gorithm using thousands of simulated measurements, study-
ing how the tracking accuracy is affected by the number of
participating infrastructure nodes, the maximum speed of the
tracked node, and the tracking update rate.

The rest of the paper is organized as follows. We state
the problem and discuss the proposed approach in Section 2.
In Section 3, we describe the technique used to measure the
Doppler shifts. Next, we present the description of the CNLS
and EKF techniques and apply them to our tracking problem.
We provide implementation details in Section 5 and evaluate
our approach both in simulation and experimentally in Sec-
tion 6.
2 Tracking Service Design

Precise localization of wireless nodes have many current
and potential future applications. One of the driving ap-
plication we envision is the precise tracking of assets in a
warehouse. While passive RFID systems (and even barcode-

Figure 1. The Doppler effect gives us information on both
the velocity and the location of a moving object.

based solutions) exist, the location information they provide
is only the proximity to a reader at a time instant. We en-
vision a system that can locate boxes and pallets in a ware-
house within a meter in 3D at any given time.

Here is how the system could work. Simple and inexpen-
sive tags are attached to the boxes in a warehouse. Each tag
is in low-power mode until a simple accelerometer or me-
chanical movement sensor wakes it up. The tag broadcasts
its ID and waits for a command to start ranging measure-
ments which is repeated every few seconds. Once motion
is not detected, the tag goes back to sleep after a timeout.
The warehouse itself is instrumented with a network of in-
frastructure nodes. As they receive messages from tags, they
schedule ranging measurements. The localization algorithm
determines the tag location and stores it in a database. When
an inquiry is made for a given tag, its last position (or even
tracks of its past movement) is immediately available.

To summarize, we impose the following constraints on the
design of our tracking service: (a) a number of infrastructure
nodes are deployed at known locations in the area of inter-
est, (b) tracked nodes cooperate with the infrastructure nodes
to find their locations and velocity vectors, and (c) the hard-
ware capabilities of both the infrastructure and tracked nodes
are limited. Consequently, the design of our tracking service
mandates relatively low sampling rates and algorithms with
limited memory, computation, and communication require-
ments.
2.1 Approach

A well known phenomenon which is observed when ob-
jects move relative to each other is the Doppler effect. The
Doppler effect law states that if an object transmits a signal
and moves relative to an observer, the frequency of the ob-
served signal will be Doppler shifted and the magnitude of
the shift depends on the frequency of the signal and the ve-
locity of the transmitter and observer relative to each other.
We suggest the following approach: a moving node trans-
mits a signal at a known frequency and the frequency of the
Doppler shifted signal is measured by the stationary infras-
tructure nodes. The speed of the tracked node relative to all
infrastructure nodes can be calculated and used to find both
the velocity and the location of the node.

Figure 1 shows tracked node T which is moving in an area
where six infrastructure nodes are deployed (Si). The veloc-
ity vector −→v of T is shown at two different locations in the
two figures. The magnitude of the Doppler shifts observed
at node Si depends on the relative speed of T and Si which
can be found by projecting the velocity −→v on the T Si line.



We plot the projected vectors for all sensors Si in both fig-
ures. The length of the projected vectors depends on both
the velocity vector −→v and the location of T . The vector −→v
is the same in both figures, yet, the corresponding projected
vectors have different lengths.

Note that there is an important difference between the in-
formation that is obtained by measuring Doppler shifts and
the well studied bearing-only tracking systems that use pas-
sive radar, sonar, or infrared sensors to determine the angle of
arrival of the signal. In our case, we can only determine the
length of the projection vectors, whereas the bearing of these
vectors remain unknown. Therefore, it is not possible to use
triangulation to find the target coordinates. However, we will
show that by measuring sufficiently many relative speeds,
both the location and the velocity vector of the tracked node
can be found accurately.

Our approach follows the general structure of many of the
existing localization and tracking algorithms [2, 27, 9]:
Coordination phase: infrastructure nodes are notified to

participate in tracking of a node in a certain region.
Both the timeframes and the local coordinate systems
of the participating nodes usually need to be synchro-
nized to enable the data fusion of spatially and tempo-
rally distributed measurements.

Measurement phase: ranging measurements that provide
information on the location, bearing, and/or speed of
the tracked object are collected. The low level data is
stored locally or handed off to a different node, for ex-
ample, a higher level data fusion node.

Tracking phase: non-linear optimization and filtering te-
chniques are used to smooth out the measurement noise
by combining the ranging data measured at multiple in-
frastructure nodes at subsequent time steps. The move-
ment of the tracked node can be predicted and the in-
frastructure nodes participating in the tracking can be
activated or deactivated accordingly.

Even though our algorithm follows this general structure,
there is a number of design choices and challenges left to be
solved when devising our approach.
2.1.1 Coordination Phase

We assume that the tracked node cooperates with the
tracking system which makes its detection trivial. However,
we still need to identify the infrastructure nodes that will par-
ticipate in the tracking. This is achieved by the tracked node
broadcasting a tracking-request. All infrastructure nodes that
receive the request will participate in the tracking. We will
later show that the effective range of our ranging method is
more than the actual communication range, therefore, all par-
ticipating nodes will acquire meaningful data.

We assume that the locations of the infrastructure nodes
are pre-surveyed with sufficient accuracy, thus avoiding the
need for localization. Since the infrastructure nodes are as-
sumed to be stationary, this is a one-time task which can be
done during the deployment of the tracking system. How-
ever, the tracked node and the participating infrastructure
nodes need to time synchronize with relatively high accu-
racy. This is required by the ranging method that we use as
well as to allow for the data fusion of the ranging data. It

was shown in [21] that a single radio message can be used
to accurately synchronize the transmitter and all recipients
of that message. We use a similar approach. The tracking-
request message broadcasted by the tracked node is used
as the synchronization point, allowing us to achieve a few-
microsecond accuracy.
2.1.2 Measurement Phase

The tracked node transmits a signal and multiple infras-
tructure nodes measure the Doppler shifts of this signal. The
main challenge here is to select the type of signal and the
measurement method, so that the Doppler shifts can be mea-
sured with sufficient accuracy using low-cost sensor network
hardware. We describe our measurement method in Sec-
tion 3 in more detail. The implementation on the Mica2 mote
platform is discussed in Section 5.
2.1.3 Tracking Phase

An Extended Kalman Filter (EKF) is used to estimate
the location and velocity of the tracked node from the
Doppler shift measurements obtained in the measurement
phase. When a maneuver is detected, we update the Kalman
filter state by running Constrained Non-linear Least Squares
(CNLS) optimization on the last set of collected measure-
ments. More details on how both the CNLS and EKF tech-
niques are applied to our tracking problem can be found in
Section 4.
3 Measuring Doppler Shifts

Measuring the frequency of a given signal with sufficient
accuracy becomes a challenge when resource constrained
hardware with limited sampling rate needs to be used. A
popular and efficient way to determine the frequency of the
signals is frequency domain analysis. However, it has been
shown in [10] that computing the frequency spectrum by
FFT is prohibitively expensive given our typical platforms.
In particular, it would take approximately 15 seconds to cal-
culate a 512-point FFT using an 8 MHz processor typically
available in many of the commercial sensor nodes.

Time domain analysis, on the other hand, requires the fre-
quency of the original signal to be relatively small due to the
sampling rate limitations of sensor network hardware. The
magnitude of the Doppler shift observed at a given velocity
is proportional to the frequency of the measured signal — the
higher the frequency, the larger the observed frequency shift.
Therefore, decreasing the frequency of the signal results in
smaller Doppler shift which in turn requires improved mea-
surement accuracy.

Sensor networks are well suited for two types of the trans-
mitted signals: acoustic and radio, as both can be generated
and detected by hardware with relatively low incremental
cost. The typical frequency of acoustic buzzers is 1−5 kHz
and the corresponding Doppler shift is 3− 15 Hz per 1 m/s
velocity. Due to the relatively low frequency of the acoustic
signals, they can be analyzed directly utilizing the resource
constrained WSN hardware.

Radio signals are favored over acoustic signals, because
sensor nodes are equipped with the radio transceivers for
wireless communication. Moreover, radio transmission is
unobtrusive and less prone to the interference from the envi-
ronment. The Doppler shift observed at the typical carrier ra-



Figure 2. Two transmitters A and B transmit at the same
time at two close frequencies. The interfere signal is ob-
served by receivers C,D, and E.

dio frequencies (400 MHz−2.4 GHz) is 1.3−8 Hz per 1 m/s
velocity. The problem is that these radio frequencies are too
high to be analyzed directly. Radio interferometry was pro-
posed in [26] as a technique that allows to indirectly analyze
high frequency radio signals with low-cost hardware. We
show that this technique can be used to measure RF Doppler
shifts with sufficient accuracy and consequently, utilize radio
signals for tracking in this paper.
3.1 Radio Interferometry

The radio Interferometric Positioning System (RIPS) was
proposed in [26] to derive location information by analyz-
ing the phase of radio signals with low cost hardware. In
this approach, two nodes transmit sine waves at different fre-
quencies at the same time, so that the two signals interfere
with each other. It can be shown that if fa and fb are the fre-
quencies of the two transmitted sine waves, then the result-
ing interference signal has a frequency of ( fa + fb)/2 and a
low frequency envelope of | fa− fb| (see [26]). Fig. 2 shows
an example of the interference signal and its low frequency
beats at node C. The theoretical model of the radio inter-
ference was developed in [26] to link the phase difference
of the interference signal at two different receivers to the so
called q-range quantity — a linear combination of distances
between the two transmitters and two receivers. By measur-
ing multiple of these q-ranges, it is possible to achieve high
accuracy localization.

The main advantages of the RIPS approach are: (a) it re-
quires no extra hardware because common radio transceivers
can be utilized; (b) it utilizes resource constrained hardware
to analyze the interfering radio signals because the frequency
of the beats can be tuned to be low; and (c) it allows for large
range (about twice the radio range) because it is the phase of
the radio signals that is analyzed, rather than their amplitude.

We have recently shown that simultaneous tracking of
multiple nodes is possible using the RIPS technique and that
the tracking accuracy of mobile nodes can be significantly
improved by measuring the Doppler shifts in the interference
signal [22] as well. However, the Doppler shifts alone were
not and could not be used for tracking in this approach as
they did not carry enough information to calculate the lo-

cations of the tracked nodes. This was because the tracked
nodes were assigned to participate in RIPS as receivers, to
allow for simultaneous tracking of multiple nodes. Conse-
quently, each tracked node could only determine one speed-
related quantity per ranging measurement which is clearly
not enough to find its location. In this paper, we assign the
tracked node to be one of the transmitters and show that each
infrastructure receiver can calculate the relative speed of the
tracked node. Thus, a number of infrastructure nodes can
collect sufficiently many measurements to determine the lo-
cation of the tracked node from the Doppler shifts alone.
3.1.1 New contributions

We propose that the tracked node T is a transmitter
(Fig. 3). Let T transmit an unmodulated sine wave at fre-
quency ft and let an infrastructure node A transmit a sine
wave at frequency fa, such that ft > fa. The two sine waves
interfere with each other and create a signal with an envelope
frequency of ft− fa. The interference signal is measured by a
number of infrastructure nodes Si. Since T moves relative to
the infrastructure nodes, Doppler shifted frequencies will be
observed. The signal transmitted at ft will be Doppler shifted
by ∆ f i

t at each node Si where the magnitude of ∆ f i
t depends

on the relative speed of T and Si. Infrastructure nodes do not
move and the signal transmitted by A is not Doppler shifted.
Therefore, the measured envelope frequency fi of the inter-
ference signal at node Si is given by

fi = ft − fa +∆ f i
t . (1)

Eqn. 1 allows us to calculate the Doppler shift measured at
node Si and consequently, the relative speed of the tracked
node. We will later show that by measuring sufficiently many
frequencies fi, we can estimate the location and velocity of
the tracked node.

Our approach differs from the RIPS algorithm in that we
do not measure the phase of the interference signal. A disad-
vantage is that we loose the range information which can be
deduced from the relative phase of two receivers. However,
simpler and faster tracking algorithm can be implemented:
(a) measuring the frequency of the interference signal allows
for simpler and faster time-domain analysis of the interfer-
ence signal, (b) a single receiver can compute the Doppler
shift in our case, whereas a pair of receivers was required
to measure the range-yielding relative phase differences in
RIPS, thus allowing for a simpler data fusion algorithm, and
(c) it is sufficient to measure the Doppler shift at a single car-
rier frequency, whereas the RIPS approach utilized multiple
carrier frequencies. In fact, up to 50 different carrier fre-
quencies were used in large scale deployments of RIPS [20]
which significantly increased the measurement time.

One of the major advantages of our approach over RIPS is
that each tracked node is required to transmit only at a single
radio frequency. Consequently, each tracked node can be
assigned a unique frequency for the ranging measurements
and thus multiple nodes can be tracked in parallel in the same
area without interfering with each other.
3.2 Doppler Shifts of the Interference Signal

We express the Doppler shifted frequencies measured by
the infrastructure nodes as a function of the location and ve-



Figure 3. The mobile node T is being tracked by five in-
frastructure nodes Si. One other node, A co-transmits
with T . The receivers Si calculate the relative speed of T
(blue arrows) from the measured the Doppler shifts.

locity of the tracked node in this section. Suppose that −→v is
the velocity of the tracked node T and−→ui =

−→
SiT/‖SiT‖ is the

unit length vector pointing from sensor Si to T . The relative
speed of Si and T can be defined as the following dot product

vi =−→ui ·−→v . (2)

Note that vi is a scalar value with positive sign if −→v points
away from Si and negative sign otherwise.

The Doppler equation states that if f is the frequency
of the transmitted radio signal, c is the speed of light, and
v� c is the speed of the source with respect to the observer
(with negative sign of v if the source was going towards the
observer), then the observed frequency is f ′ = (1− v/c) f .
Therefore,

∆ f = f ′− f =−v f /c. (3)

We apply the Doppler equation (3) to the interferometric
equation (1). As mentioned before, only the Doppler shift
in the frequency ft will be observed (node A is stationary).
Using f̂ = ft − fa and λt = c/ ft , the node Si observes the
interference signal with frequency fi:

fi = f̂ − vi/λt . (4)

The frequency fi can be measured at node Si. Conse-
quently, Eqn. (4) allows us to compute the relative speed of
the tracked node T and the node Si, if the difference of the
two transmitted frequencies f̂ is known. Note that estimating
the frequency difference f̂ with sufficient accuracy becomes
a problem when using low-cost radio transceivers (see Sec-
tion 5 for more details). Therefore, we have to treat f̂ as an
unknown parameter in our tracking algorithm.
4 Tracking

Our tracking algorithm utilizes RF Doppler shifts mea-
sured by multiple infrastructure nodes to calculate the loca-
tion and the velocity of a tracked node. We model the track-
ing problem as a non-linear optimization problem and use a
combination of standard techniques to solve it.
4.1 Tracking as Optimization Problem

The parameters that need to be estimated are the loca-
tion (x,y) and the velocity vector −→v = (vx,vy) of the tracked

Figure 4. Tracked node T having velocity −→v transmits a
signal. Sensor Si measures the Doppler shift of the signal
which depends on vi, the relative speed of T and Si.

node. Also, one of the limitations of the low-cost radio chip
that we use is that the actually transmitted frequency differs
from the nominal frequency by up to a few kHz. This pre-
vents us from determining the exact value of the frequencies
ft and fa, hence their difference f̂ becomes one of our pa-
rameters. Consequently, we define the parameter vector x to
be estimated as

x = (x,y,vx,vy, f̂ )
T
.

Assuming that n infrastructure nodes measure the Do-
ppler shifted radio signal, we have n frequency observations
( fi). We define the observation vector c as

c = ( f1, f2, . . . , fn)
T.

The parameter vector x and the observation vector c are
related to each other. We formalize this relation through a
function H : R 5→ R n, such that

c = H(x).

The function H is a vector function consisting of n functions
Hi : R 5 → R , each of them calculating the Doppler shifted
interference frequency fi measured at an infrastructure node
Si. From Eqn. 4, Hi(x) is defined as

Hi(x) = f̂ − vi/λt .

The relative speed vi of the nodes T and Si can be calcu-
lated from the locations of the two nodes and the velocity −→v
of the tracked node T (see Fig. 4). We use the distributive
property of the dot product, and identities −→v = −→vx +−→vy and
|−→ui |= 1 (the length of a unit vector is 1) to express vi:

vi = −→ui ·−→v =−→ui ·−→vx +−→ui ·−→vy

= |−→vx |cosα+ |−→vy |sinα

Finally, sinα and cosα can be calculated using the co-
ordinates (x,y) and (xi,yi) of the nodes T and Si, respec-
tively. This allows us to calculate the expected measure-
ments fi = Hi(x) from the parameters x and the known quan-
tities λt ,xi,yi.

Hi(x) = f̂ − 1
λt

vx(xi− x)+ vy(yi− y)√
(xi− x)2 +(yi− y)2

(5)



Due to measurement errors, there may exist no x such that
H(x) = c. Instead, we estimate the parameters by finding
x ∈ R 5 such that ‖H(x)− c‖ is minimized. Note that com-
ponents of our objective function H are non-linear functions,
requiring the use of non-linear optimization methods.
4.2 Non-linear Least Squares

Non-linear optimization techniques typically start with an
initial approximation of the parameter vector x0 and itera-
tively update this parameter vector until it converges to a lo-
cal minimum of an objective function. We use the Gauss-
Newton method ([25]) which is based on a linear approxi-
mation of the objective function in the neighborhood of x.
For example, our objective function H(x)− c is linearized
by Taylor expansion as

H(x+∆)− c' l(∆) = H(x)− c+ J(x)∆,

where J ∈ R n×5 is the Jacobian of H(x)− c.
The detailed description of the Gauss-Newton algorithm

follows:
Assuming the i-th parameter vector xi is given,

(1) calculate Jacobian Ji = J(xi) and linearize the objective
function around xi (denoted by li(∆)),

(2) calculate a local minimizer ∆i of the function li(∆), and

(3) set xi+1 = xi + α∆i, where α is the step length influenc-
ing the convergence of the method. Stop if ∆i is small.

An additional problem is that H : R 5 → R n is a vector
function. Non-linear Least Squares (NLS) techniques define
a new objective function H : R 5→ R as

H (x) =
1
2

n

∑
i=1

(Hi(x)− ci)2

=
1
2
(H(x)− c)T(H(x)− c). (6)

H is linearized using Taylor expansion as follows

H (x+∆)' L(∆) =
1
2

l(∆)Tl(∆).

Consequently, the formula for the gradient of L is

L′(∆) = J(x)T(H(x)− c)+ J(x)TJ(x)∆,

which after letting L′(∆) = 0 gives us the solution for the
local minimizer of H around x

∆min = (J(x)TJ(x))−1J(x)T(c−H(x)). (7)

More detailed derivation of this equation can be found
in [25].
4.2.1 Constrained Optimization

In tracking, we are often able to constrain the area where
the tracked node is located. Therefore, applying constrained
non-linear least squares (CNLS) may yield more accurate re-
sults. One way to solve the constrained optimization is to
modify the objective function by adding a barrier function to
it, introducing zero penalty inside the region of interest and
positive penalty outside of it.
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Figure 5. The objective function H minimizes the least-
square error in the observation vector. Due to measure-
ment errors, the global minimum of H is not at the true
location of the tracked node.

We want to constrain the location of the tracked node to a
disk centered at (x0,y0), with radius r. A logarithmic barrier
function b(x) can be defined as

b(x) =− log(r−
√

(x− x0)2 +(y− y0)2),

where x = (x,y,vx,vy, f̂ ) is the parameter vector. Note that
as

√
(x− x0)2 +(y− y0)2 approaches the radius r, the loga-

rithm goes to −∞ and the penalty function goes to ∞.
The CNLS algorithm works as the NLS algorithm, except

it optimizes the function H (x)+ b(x). The derivatives used
in the NLS algorithm need to be adjusted by adding the term

B(x) =
∂b(x)

∂x
to L′(∆). Consequently, Eqn. (7) becomes

∆min = (J(x)TJ(x))−1[J(x)T(c−H(x))+B(x)]. (8)

4.2.2 Problems with NLS optimization
Non-linear least squares optimization may fail depending

on the starting point x0 and the measurement errors that cor-
rupt the observation vector c. This is because the solution
will converge to a local minimum of the objective function,
or because the observations are insufficient to determine the
parameter vector accurately.

We confirmed that our objective function H is suscepti-
ble to these problems experimentally. We placed eight in-
frastructure nodes in a 30× 50 m area on our campus and
measured the Doppler shifted frequency of the transmitted
signal. In Fig. 5, we show the locations of the infrastructure
nodes as black dots and the location of the transmitter as a
triangle. Recall that x consists of five parameters x,y,vx,vy,

and f̂ . The function plotted in the figure is obtained by find-
ing the minimum value of H (x) for the fixed coordinates
(x,y) (i.e., finding the best fit for the three remaining param-
eters). Figure 6 shows the best-fit velocities found at a given
location.



Figure 6. The best-fit velocities of the tracked node that
minimize the function H in Fig. 5 are shown.

We make two observations: (a) the function H indeed
contains multiple local minima close to the location of the
tracked node, thus the constrained NLS algorithm is re-
quired, and (b) the global minimum of H (square) is 5.6 m
away from the true location of the transmitter (triangle),
therefore, all optimization techniques will introduce a large
localization error in this particular case. Since the optimiza-
tion methods fail to find the correct location of the tracked
node in certain cases, we need to find alternate solutions to
our tracking problem.

On the positive side, the objective function is relatively
smooth and converges fast to the general area where the
tracked node is located. Also, the estimated velocity of the
tracked node, as shown in Fig. 6, is accurate in a relatively
large area around the true location of the tracked node. This
allows us to use the velocities calculated with the CNLS al-
gorithm with higher confidence than the locations.
4.3 Extended Kalman Filter

Noise corrupted observations may prevent us from solv-
ing the tracking problem with sufficient accuracy, as shown
in the previous section. Therefore, we resort to state esti-
mation techniques which model the dynamics of the tracked
node, estimate the state of the node based on its dynamics,
and update the state based on the new observations. The
Kalman filter (KF) is a widely used method for the state es-
timation of dynamic systems using a set of noisy measure-
ments. The current state xk of the system is calculated re-
cursively from the previous state xk−1 and a new observation
vector ck. An error covariance matrix P, a measure of the
accuracy of the estimated state x, is calculated along with x.

An important step in designing a KF is modeling the dy-
namics of the observed system. The KF framework requires
that the system state xk evolves according to

xk = Fxk−1 +wk,

where xk−1 is the previous state, F models the system dy-
namics, and wk is the process noise with covariance Q.

The KF framework also defines the model of the mea-
surement process which is non-linear with respect to x in
our case. An Extended Kalman Filter (EKF) can be ap-
plied which essentially linearizes the measurement function
by calculating its Jacobian around the current state estimate.

The observation ck of the current state is modeled as

ck = H(xk)+vk,

where H is the non-linear measurement function and vk is
normally distributed measurement noise with covariance R.

xk and Pk constitute the state S of the EKF. This state is
updated in two phases: (a) a time prediction phase during
which the current state is estimated based on the previous
state, and (b) a measurement update phase during which the
new measurements are used to refine the predicted state.

KF prediction phase. Given the previous state of the KF
(xk−1,Pk−1), the new state (x−k ,P−k ) is

x−k = Fxk−1

P−k = FPk−1FT +Q. (9)

EKF update phase. The predicted state (x−k ,P−k ) is up-
dated with ck and the new state (xk,Pk) is

Kk = P−k Jk
T(JkP−k Jk

T +R)−1

xk = x−k +Kk(ck−H(x−k ))

Pk = (I−KkJk)P−k , (10)

where R is the measurement noise, Kk is Kalman gain, and
Jk is the Jacobian matrix of H in xk−1.
4.3.1 Model of our system

The system state x = (x,y,vx,vy, f̂ ) and the measure-
ment vector c = ( f1, . . . , fn) are equivalent to the parameter
and observation vectors defined in Section 4.1, respectively.
Both, the process noise w and the measurement noise v are
assumed to have ”white noise” properties with zero mean
and their covariant matrices will be determined later experi-
mentally.

The state transition matrix F of our linear state space is

F =


1 0 t 0 0
0 1 0 t 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

where t is the time elapsed from the previous state. The non-
linear observation function H was defined in Eqn. (5).
4.3.2 Problems with the Kalman filter

We applied the EKF to our tracking problem and found
that the filter tracks the mobile nodes accurately, mitigating
the effects of the measurement noise. However, this only
works well if the tracked node moves at a constant speed and
does not change its direction. Situations, when the tracked
node changes its direction significantly, for example by 180◦,
are potentially the most severe. We illustrate this problem in
Fig.7. We deployed a number of infrastructure nodes (black
dots) and moved the tracked node at a constant speed. Af-
ter some time, we changed both the direction and the speed
of the tracked node and observed how the EKF handles this
situation (dotted line). The track that the node followed con-
sisted of two ∼ 30 m segments. As we can see, the filter re-
quires six measurement rounds to converge back to the true
location, introducing significant errors in the location esti-
mates in this transitional period.



Figure 7. The EKF fails if the tracked node makes sudden
maneuvers. The CNLS-EKF outperforms the EKF in
the maneuvering case, while keeping good performance
in the non-maneuvering case.

The divergence of the EKF in tracking maneuvering
nodes is a well known problem. A simple solution is to
increase the process noise covariance Q, assigning more
weight to the measurements than to the prediction model.
This, however, degrades the overall tracking accuracy as
the effects of the measurement noise become more signifi-
cant. Other techniques propose to simultaneously use mul-
tiple Kalman filters which are set up with different models
of the tracked node dynamics. Also, the EKF update algo-
rithm can be executed iteratively, to better approximate the
error function locally. The disadvantage of these techniques
is their higher computational complexity, as the KF predic-
tion and update need to be executed multiple times per ob-
servation.
4.3.3 Solving the maneuvering case

We propose to combine the EKF and the CNLS tech-
niques in a way that significantly improves the tracking ac-
curacy in the maneuvering case, while maintaining the good
performance of the EKF in the non-maneuvering case. The
combined algorithm is referred to as the CNLS-EKF algo-
rithm. The main motivation for choosing CNLS is its fast
convergence, given a good initial estimate of the parameters.

The CNLS-EKF algorithm proceeds in three steps:
1. Given a new observation vector c, calculate the new

EKF state S = (x,P) using Eqns. (9) and (10),

2. If a maneuver is detected, find a new system state x∗ by
running the CNLS optimization initiated at x, and

3. Use the new system state x∗ to update the EKF state S .
Maneuver detection algorithm:
In our experience, maneuvers can be detected reliably when
the direction and the speed of the tracked node change signif-
icantly from their last estimates. This is because the velocity
estimates are relatively robust to both measurement errors
and the errors in predicted location (see Fig. 6).

CNLS-based EKF update:
Let x∗ be the solution of CNLS. The EKF state S = (x,P)
is updated by running the linear KF update algorithm using
x∗ as the observation vector and the identity matrix I5 as the
measurement matrix. In particular, the Kalman gain K′k and
the updated state S ′ = (x′,P′) are

K′k = P(P+R∗)−1

S ′ = ( x+K′k(x
∗−x),(I−K′k)P ).

The covariance matrix R∗ determines how much the
CNLS solution x∗ influences the state S ′. Since the CNLS
optimization was shown to be sensitive to measurement er-
rors, we need to limit its influence in the non-maneuvering
case. Therefore, we define the covariance matrix R∗ with
exponentially increasing values over time. The more time
has passed since the maneuver, the smaller the influence of
x∗ on the state S ′. If the time elapsed from the last detected
maneuver is ∆t seconds, we define R∗ as

R∗ = ρ


5∆t 0 0 0 0
0 5∆t 0 0 0
0 0 2∆t 0 0
0 0 0 2∆t 0
0 0 0 0 2∆t

 .

The base of the exponential function is higher for the loca-
tion coordinates than the velocity coordinates because the
velocity estimates are less prone to measurement errors and
the initial state choice (see Fig. 6). We keep the error of the
interference frequency f̂ small, because it does not change
significantly between consecutive measurements. The scal-
ing factor ρ allows us to fine-tune the weight of the CNLS
solution.

The improvement of the CNLS-EKF algorithm over reg-
ular EKF can be seen in Fig. 7. The tracking accuracy can
improve by as much as 50% (see Section 6).
5 Implementation

We have implemented the proposed tracking system using
the TinyOS operating system [23]. Our hardware platform is
the popular Mica2 mote [15] which is a low-power, battery-
operated wireless platform with an 8 MHz CPU, 4 kB mem-
ory and the CC1000 Chipcon radio transceiver [5]. The most
important criterium for our platform choice is the functional-
ity provided by the CC1000 radio chip (allowing implemen-
tation of the radio interferometric technique). During the ac-
tual field tests, we have used ExScal nodes [7] which are
Mica2 compatible motes enclosed in a weather-proof pack-
aging. In the current proof-of-concept implementation, the
CNLS-EKF algorithm runs on a PC-class device, utilizing
the Doppler shifts measured by the sensor nodes.
5.1 Creating the Interference Signal

The interference signal is created when two transmitters
transmit simultaneously at different frequencies. If the two
frequencies are almost the same, the resulting signal has a
low frequency envelope which can be observed at the Radio
Signal Strength Indicator (RSSI) pin of the radio chip. Since
the frequency of the envelope equals the difference of the
two transmitted frequencies, we need to set the frequencies



precisely in order to control the frequency of the observed
interference signal. In fact, we need to keep the interfer-
ence frequency in a relatively narrow range (300− 400 Hz)
to be able to analyze the signal using our computationally
constrained hardware.

Note that the low-cost radio transceiver that we use does
not allow for setting the transmission frequency accurately.
We have observed ten parts-per-million (ppm) clock oscilla-
tor errors corresponding to ±4 kHz frequency errors at the
400 MHz operating frequency of our radios. However, we
need to know the actual radio frequencies ft and fa of the
two transmitting nodes accurately as the measured Doppler
shift is calculated from their difference ft − fa and the ob-
served interference frequency fi, according to Eqn. (1). For
this reason, we had to treat f̂ = ft− fa as one of the unknown
parameters in our algorithm. Note that the accurate value of
the wavelength λt = c/ ft is also required in our equations to
calculate the relative velocities from the Doppler frequency
shifts (Eqn. (4)). However, it is easily seen that 4 kHz er-
ror at 400 MHz corresponds to a small wavelength error
(∼ 10−3cm) and using the approximate wavelength is suf-
ficient.

Calibrating two nodes to transmit at the same frequency
is an easier problem than calibrating both nodes to trans-
mit at accurate absolute frequencies. For example, radio
interference can be used to calibrate two transmitters as fol-
lows. One node transmits at its un-calibrated (thus arbitrarily
shifted) radio frequency, while the second transmitter sweeps
a relatively large frequency band around this frequency. A
close-by receiver observes the interference of the two waves
and can determine the time when the two nodes transmit at
the same frequency which allows the second transmitter to
calibrate its radio. This technique requires that the radio fre-
quency of the transceiver can be changed in relatively small
steps. The CC1000 radio chip allows to tune the transmit-
ted frequency in 65 Hz steps which is sufficient (see [19] for
more details).
5.2 Measuring Doppler Shifts

The radio signal that we analyze is sampled at 8.862 kHz
at the RSSI pin of the CC1000 radio chip. The RSSI circuit
applies a low pass filter to the incoming signal thus removing
high frequency components from it. Therefore, only the beat
frequency will be visible in the RSSI signal.

The calibration algorithm described in the previous sec-
tion will maintain the beat frequency in a pre-defined oper-
ating range, such as 300− 400 Hz. We have implemented
a simple time-domain algorithm that computes the average
period of the beat signal in a fixed time window. We apply
a moving average filter to smooth the incoming signal and,
consequently, find all peaks in the filtered signal. A period is
defined as the number of samples between any two consec-
utive peaks. Since we know the expected period (i.e., 22–30
samples given the 8.9 kHz sampling and the 300–400 Hz
expected beat frequency), we do additional filtering by re-
moving the periods that are outside of the expected interval.
Consequently, the beat frequency is computed as the recip-
rocal of the average period p. This algorithm runs online and
does not require any post-processing.

The accuracy of the frequency measurement will improve
if we increase the fixed window in which we observe the sig-
nal. Alternatively, one can perform the frequency measure-
ment multiple times for smaller windows and average these
results to improve the precision. Thus, the accuracy of our
algorithm can be increased at the price of a longer measure-
ment time. On the other hand, the measurement time needs
to be relatively short because the Doppler shift is changing
as the tracked node moves. Based on these experiments, we
have chosen to have 450 samples in our observation window
and repeated the measurement 6 times. For these parameters,
the overall measurement time is 0.4 sec and the standard de-
viation of the observed measurements is 0.21 Hz. We have
also studied how the interference frequency changes over
time, observing 1 Hz standard deviation of the transmitted
frequency in consecutive measurements. Both the variance
of the measurement process and the variance of the interfer-
ence frequency are important design parameters for the EKF
algorithm.
6 Results

To evaluate our tracking algorithm we ran two experi-
ments outdoors and calculated the accuracy of the location
and velocity estimates of the tracked node. We further exam-
ined how the number of participating infrastructure nodes,
the maximum speed of the tracked node and the tracking up-
date rate influenced the tracking accuracy in a number of ran-
domly generated simulated scenarios.
6.1 Experiments

ExScal motes served both as stationary infrastructure
nodes and the mobile tracked node. An online version of our
tracking algorithm was running while a person was walking
or running with the tracked node.
6.1.1 Setup description

We have utilized eight infrastructure nodes that measured
the Doppler effect and deployed them in a 50× 30 m area
(see Fig. 8). Since two nodes are required to transmit in
our approach, one more infrastructure node was used to co-
transmit with the tracked node. We measured the ground
truth locations of the infrastructure nodes with an estimated
error of 0.5 m. The resulting network had two-hop diameter
for the duration of the experiment.

It is hard to estimate the ground truth for the moving
tracked node, both spatially and temporally. To simplify this
task, we have limited the node’s track to a series of straight
line segments, connected at their endpoints (gray lines in
Fig. 9). Moreover, the person carrying the node was walk-
ing or running at an approximately constant speed for each
of the segments and varied the speed somewhat for different
segments. The task of finding the ground truth of the whole
track is then reduced to finding the ground truth for each seg-
ment.

Estimating the location and speed in a given line segment
was accomplished by recording the times when the tracked
node passed the endpoints of the given segment. The speed
of the tracked node is calculated as the line segment length
over the time it took to cover the segment. The location of
the tracked node can be found by interpolating the segment



Figure 8. Experimental evaluation of the CNLS-EKF al-
gorithm. Eight anchor nodes are shown as black dots.
The location and the velocity of the tracked node are
shown as a black dot and an arrow, respectively. The
ground truth is shown in gray.

line, using the measurement time as the interpolation coeffi-
cient. The calculated ground truth is shown by gray arrows
in Fig. 8.

We believe that this process resulted in errors less than
1 m, 0.2 m/s, and 5◦ in the location, speed, and heading esti-
mates, respectively.
6.1.2 Measurements

The update interval that we achieved in our experiments
was 1.7 sec, coming from 0.3 sec coordination phase, 0.4 sec
measurement time, and 1 sec time to route the measurements
from the infrastructure nodes to a PC. The most computa-
tionally intensive is the 0.4 sec measurement phase, during
which the receivers analyze the RSSI signal sampled at ∼ 9
kHz, utilizing almost 100% of their CPU. However, apart
from the measurement phase, the tracking service does not
require significant system resources. This allows other WSN
applications to run in parallel on the same sensor node. Oc-
casionally, measurements from some of the nodes failed to
reach the PC due to the routing collisions. We have con-
sidered the measurement round invalid, if fewer than 50% of
the measurements were received. The CNLS-EKF algorithm
was not invoked for invalid measurements.

We ran experiments that evaluate our algorithm in two
cases: (a) the tracked object moves along straight lines for
substantial amounts of time at a constant speed, and (b)
the tracked object changes its speed and direction abruptly
and significantly after relatively short periods of time. The
Kalman filter assumption of constant speed is violated in
case (b), resulting in degraded performance.
Experiment 1: The deployment setup is shown in Fig 8.
The ground truth is shown in gray and the tracking algorithm
results are indicated by the black arrows. The tracked node
was moving at the mean speed of 1.3 m/s which was varying
at most 0.2 m/s. We ran the CNLS-EKF algorithm on this
data, setting the process noise covariance matrix Q with 0.5,
the measurement noise covariance matrix R with 0.2, and

Figure 9. We show the worst-case situation for the
Kalman filter: in a star-like topology, the tracked node
moved slowly away from the center and then fast towards
the center of the star. Results for only four out of seven
tracks are shown for clarity.

the radius r of the barrier function b(x) with 3 m. The mean
location, speed, and heading errors can be found in Table 1.
We also ran EKF alone on the same data set and found that
CNLS-EKF achieves only a modest accuracy improvement
in this case.

Mean Errors: Location Speed Heading
EKF algorithm 1.5 m 0.14 m/s 7.2◦
CNLS-EKF algorithm 1.3 m 0.13 m/s 6.9◦
Improvement over EKF 10% 1.7% 4.4%

Table 1. The mean errors were calculated based on 74
measurements collected during Experiment 1. The im-
provement over the EKF was modest.

Experiment 2: We evaluated the scenario which violated the
assumption of the linear dynamics of the tracked node, based
on which the Kalman filter was modeled. Both the speed and
the heading of the tracked node was changed frequently. We
selected a central point in our deployment area and designed
the path to be followed by the tracked node as a star graph
(see Fig 9). A person carrying the tracked node was walking
(1.2 m/s) when moving away from the center. Upon reach-
ing the outside endpoint, the person started running (up to
3 m/s) in the opposite direction, towards the center. We have
measured 94 data points in this case and show the results in
Table 2. The improvement over EKF with no maneuver cor-
rection was more significant this time. However, the speed
and heading errors of EKF were similar to those of CNLS-
EKF.
6.1.3 Discussion

Both EKF and CNLS-EKF algorithms perform well, if
the dynamics of the tracked node is consistent with the EKF
model. If the tracked node maneuvers relatively infrequently,
the EKF is able to converge to the true location of the tracked
node relatively fast after the maneuver. Consequently, the
small additional error of the filter is averaged out for the
whole track.



Mean Errors: Location Speed Heading
EKF algorithm 4.3 m 0.42 m/s 17.7◦
CNLS-EKF algorithm 2.2 m 0.35 m/s 17.5◦
Improvement over EKF 48.7% 16.3% 0.4%

Table 2. We collected 94 measurements in Experiment
2. The improvement over the EKF was more significant,
especially in location estimation.

However, if the tracked node changes its velocity signifi-
cantly and the maneuvers are frequent, the EKF takes a long
time to converge, or diverges completely. Consequently, the
location error grows significantly. The constrained optimiza-
tion is able to rapidly correct the Kalman filter state after a
maneuver which results in faster convergence of the CNLS-
EKF filter and in a better overall location accuracy. Notice
that the velocity estimates have approximately the same er-
rors for both EKF and CNLS-EKF. Intuitively, this is because
our measurement model is based on estimating the relative
velocities of the tracked node which gives us more informa-
tion on its velocity than its location. Therefore, even if we
optimize our objective function at a wrong location, the ve-
locity estimates are still relatively accurate (see Fig. 6).

0%5%10%15%20%25%30%35%40%
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Experiment 1Experiment 2
Figure 10. Distribution of the location estimation errors
of the CNLS-EKF algorithm for both experiments.

The distributions of the location estimate errors of both
experiments are shown in Fig. 10. The errors in the first
experiment are approximately normally distributed around
the mean error with a few outliers at 4 meters. Frequent
maneuvers in the second experiment caused relatively fre-
quent large errors due to the Kalman filter diverging from
the ground truth of the tracked node.
6.2 Simulation

The experimental evaluation of our tracking algorithm is
somewhat limited due to its complexity and it is a time con-
suming process. Therefore, we implemented a simulation
engine that can evaluate our tracking algorithm using thou-
sands of measurements. The parameters of the simulation
engine are:

1. 2D coordinates of infrastructure nodes Si,

2. the track of the mobile node (a set of timestamped 2D
points),

3. the wavelength λt of the transmitted signal,

4. σm standard deviation of the measurement noise,

5. σ f standard deviation of the change of the interference
frequency ( f̂ ) for consecutive measurements, and

6. the measurement update time tm.
The engine starts the simulation using the first timestamp

recorded in the track and simulates a measurement round ev-
ery tm seconds, until the last timestamp. For every measure-
ment round, the location and the velocity of the tracked node
is recalculated based on the track data, the relative speeds vi
of the tracked node with respect to Si nodes are calculated
and converted to the frequencies fi using Eqn. (4). Finally,
fi is corrupted with a normally distributed zero-mean noise
with standard deviation σm. For the subsequent measure-
ment round, the interference frequency f̂ used in Eqn. (4),
is corrupted by a normally distributed zero-mean noise with
standard deviation σ f to simulate its variance over time.

We have simulated both experiments described in the pre-
vious section to validate the simulation engine. The pa-
rameters of the simulation, λ = 0.67 cm, σm = 0.21 Hz,
σ f = 1.0 Hz, and tm = 1.7 sec, were measured experimen-
tally (see Section 5.2). The mean location error of the CNLS-
EKF algorithm in simulation was approximately 7% better
for the two experiments. A little bit better location accuracy
in the simulation is expected because we did not model the
routing message-loss in simulation. The speed and the head-
ing accuracy was much better in simulation than in the ex-
periments. We believe that this significant error increase was
due to the non-zero time that the maneuver takes in the ex-
periments as compared to the zero time in simulation. We
estimate that it takes about a second for a person to stop
turn around and accelerate to the desired speed. If we cal-
culate the experimental errors without considering the mea-
surements taken during the maneuvers, the experimental and
the simulated errors align within the ground truth measure-
ment error.
6.2.1 Measurements

Simulated data allows us to evaluate our algorithm com-
prehensively using thousands of measurements under differ-
ent deployment scenarios and tracks which were generated
randomly as follows.
Deployments. We assumed the deployment area to be a
50×30 m rectangle and randomly generated coordinates of
the infrastructure nodes from a uniform distribution inside
this area. To prevent degenerated cases, we placed four in-
frastructure nodes in the corners of the area in all deploy-
ments discussed in this section.
Tracks. We initialized the tracked node in the center of
the deployment area and generated a random 200-point
track. The track is defined as a series of timestamped (lo-
cation,velocity) pairs. The maximum speed of the tracked
node vm and the measurement time tm are parameters of the
simulation engine.

In the following three simulations, we have evaluated the
tracking accuracy of the CNLS-EKF algorithm while vary-
ing the number of infrastructure nodes, the maximum speed
of the tracked node and the tracking update rate.
Simulation 1: The dependance of the tracking accuracy on
the number of infrastructure nodes was studied. We gener-
ated five different random tracks Ti using vm = 2 m/s and



#receivers Location (m) Speed (m/s) Heading(◦)
12 1.4 0.07 5.5
10 1.6 0.08 5.8
8 1.8 0.08 6.2
6 2.3 0.09 8
4 3.3 0.09 8.6

Table 3. Tracking accuracy vs. the number of partici-
pating infrastructure nodes. For a given number of re-
ceivers, the tracking errors were computed using 5000
randomly generated data points.

tm = 1.7 sec and five different random deployments D j con-
taining 12 infrastructure nodes. Next, for each deployment
D j, we simulated our tracking algorithm on each of the tracks
Ti (collecting 5000 measurements in total). We repeated
these simulations by keeping only 4,6,8, or 10 infrastructure
nodes out of the 12 original nodes. We show the mean loca-
tion, speed, and heading accuracy in Table 3.

Simulation 1 shows that the locations of the infrastructure
nodes do not have to be specially selected, it is enough if
they uniformly cover the tracked area. Note, however, that
certain degenerate cases, such as positioning all anchors on
a line, can degrade the tracking accuracy of our system.

Speed Location (m) Speed (m/s) Heading(◦)
1 m/s 1.6 0.05 5.8
2 m/s 1.8 0.08 6.2
3 m/s 3.6 0.28 7.9
5 m/s 9.0 0.41 13.0

Table 4. Tracking accuracy vs. the maximum speed of
the tracked node. For a given maximum speed vm, the
track that the node follows was generated using random
speeds from the (0,vm) interval.

Simulation 2: The CNLS-EKF algorithm was evaluated for
different maximum speeds of the tracked node. We used five
different deployments which contained eight infrastructure
nodes. Also, tm = 1.7 sec stayed constant for the duration of
the simulation. We varied the maximum speed of the tracked
node vm, using values 1,2,3 and 5 m/s. For a given maxi-
mum speed, we generated five random tracks Ti, and simu-
lated each track with each deployment (again, 5000 measure-
ments were simulated). The performance of the CNLS-EKF
algorithm is shown in Table 4. Note that reducing the speed
of the tracked node further below 1 m/s would not improve
the tracking accuracy by much because the measurement er-
ror in the Doppler shift would become relatively large, com-
pared to the measured values.
Simulation 3: Finally, we evaluated the tracking accuracy
for different tracking update rates. Similarly to Simulation 2,
we kept the deployments constant. Next, we kept the maxi-
mum speed constant at vm = 5 m/s and simulated the tracks
with update rates of once every 0.4,0.8,1.2, and 1.7 seconds.
Results are shown in Table 5.
6.2.2 Discussion

In general, adding more receivers, limiting the maximum
speed of the tracked node and increasing the temporal reso-

Update rate Location (m) Speed (m/s) Heading(◦)
0.4 sec 1.4 0.15 3.8
0.8 sec 1.8 0.17 7.1
1.2 sec 2.1 0.20 4.8
1.7 sec 9.0 0.41 13.0

Table 5. Tracking accuracy vs. the tracking update rate.
For faster update rates, the random tracks were gener-
ated with a better temporal resolution which allows for
better tracking accuracy.

lution of the collected data help to improve the accuracy of
our tracking algorithm.

However, improving the accuracy by increasing the num-
ber of infrastructure nodes becomes inefficient relatively
soon. In fact, the 8 infrastructure nodes that were deployed
in the 1500 m2 area seems to be a good tradeoff between the
tracking accuracy and the required density of the infrastruc-
ture nodes. The algorithm quickly becomes inaccurate, if
the speed of the tracked node increases, up to a point when
the Kalman filter completely diverges from the true location
of the tracked node. The tracking accuracy in this case can
be improved by increasing the update rate. Improving the
update rate to once per 1.2 sec was sufficient to prevent the
Kalman filter from diverging when the tracked node moved
up to 5 m/s. However, we estimate that on the Mica2 plat-
form, the limitations of the CPU and the low communication
speed of the radio chip would prevent us from running the
tracking algorithm faster than once every 1 sec. Therefore,
our Mica2 implementation will not scale in the case of ma-
neuvering nodes moving at speeds over 5 m/s.
7 Related Work

Accurate location estimation is an essential technology
for numerous sensor network applications including track-
ing people, asset management, and environmental moni-
toring [13, 11]. Current approaches can be categorized
along several dimensions: dedicated network infrastructure
vs. existing wireless network infrastructure, self- vs. remote-
positioning, anchor-based vs. anchor-free, range-based vs.
range-free, centralized vs. localized computation, and sig-
nal modality (radio-frequency, infrared, ultrasonic, visual,
audio, electromagnetic, laser). Further details can be found
in [14] and other surveys that have appeared in the network-
ing, ubiquitous computing, and signal processing literature.

In localization, the position of a node is estimated from
static snapshot measurements. Tracking of mobile nodes
can be achieved by sequentially estimating the location of
a node [1]. Such methods are not accurate because of the un-
avoidable measurement errors associated with mobility, and
further, require real-time performance. Alternatively, mo-
bility allows the use of sampled temporal measurements and
motion models that can enhance estimation accuracy and im-
prove sensor localization [11].

The ultrasound-based Cricket location system has been
used for tracking mobile nodes in [30]. Each mobile node
runs a Kalman filter to estimate its location using distance
measurements from the infrastructure nodes. Similarly to
our approach, accuracy of the filter is monitored and the



Kalman filter is reset by running least-squares minimization.
Since in our case the relative speeds are measured, the least-
squares are more sensitive to measurement error, potentially
resetting the Kalman filter to a wrong state. Therefore, more
careful update of the Kalman filter and the constrained least-
squares method were used in our CNLS-EKF algorithm. The
accuracy of the Cricket algorithm was evaluated for different
speeds and the median error was 15 cm at 1.4 m/s. However,
the test area was limited to 3×1.5 meters and the track was
limited to an ellipse with no significant changes in the speed
of the tracked node.

A distributed localization based on robust quadrilaterals
was described in [27]. The method utilizes Cricket’s TDOA
ultrasound measurements to estimate pairwise distances be-
tween the nodes. Weighted least-squares optimization is
used to redistribute the measurement errors in the localiza-
tion process. Since the TDOA methods measure inconsistent
distances for mobile nodes, the authors run a simple Kalman
filter for each distance measurement before using it in the
optimization. In contrast, our CNLS-EKF algorithm uses
Kalman filter to process all measurements collected from
multiple infrastructure nodes. Similarly to the Cricket ap-
proach, the errors reported in this work were in a centimeter
range, but the experimental setup was limited to a 2× 2 m
area.

Radio-frequency (RF) based methods have been pre-
viously proposed for tracking mobile users in buildings.
RADAR reduces the tracking problem to a sequence of lo-
cation problems of a nearly stationary user [1]. It combines
empirical measurements with signal propagation modeling
resulting in 2 to 3 meters accuracy. A few commercial sys-
tems such as PinPoint [29] and PalTrack [28], based on TOA
and RSS measurements respectively, have been also devel-
oped with meter-scale accuracy.

The key idea in tracking mobile nodes using filtering tech-
niques is to include a dynamic model for predicting the po-
sition at the next time step. Any model suggested in tar-
get tracking using sensor networks is also plausible for this
application (see, for instance, [3, 32] and the references
therein). Because of the limited computational resources,
we use a simple model that assumes constant velocity and
direction.

Finally, the Doppler effect has been used extensively to
estimate the velocity of tracked objects or to improve the ac-
curacy of tracking systems. However, we are not aware of
any sensor network system that uses RF Doppler shifts for
tracking mobile objects.
8 Conclusions and Future Work

We have introduced a novel tracking algorithm for wire-
less sensor networks that utilizes Doppler shifts of the ra-
dio signal transmitted by a tracked node. We assumed that
a number of stationary infrastructure nodes were deployed
around the tracked node and that the tracked node cooper-
ated with the tracking system. We showed that the Doppler
shifts can be measured accurately using radio interferome-
try, allowing the infrastructure nodes to determine the rela-
tive speed of the tracked node with 0.14 m/s accuracy using
low-cost hardware.

The tracking problem was formulated as an optimization
problem with the location and the velocity of the tracked
node being the parameters and the measured relative speeds
being the constraints of the optimization. We showed that the
measurement errors and the non-linearity of our optimization
problem can result in poor tracking accuracy in certain cases.
The extended Kalman filter (EKF) is a computationally effi-
cient technique that can remove the effects of the measure-
ment errors. We showed that it works well in our case. How-
ever, if the node is maneuvering, the accuracy of the EKF
becomes poor up to the point of complete divergence of the
filter. We suggested to use the constrained non-linear least
squares (CNLS) technique to update the state of the EKF if
a maneuver was detected. The combined CNLS-EKF algo-
rithm was evaluated both experimentally and in simulation
and achieved a location accuracy of 1.3− 2.2 m in the best
and the worst case, respectively. The accuracy of the speed
and bearing estimates were 0.1− 0.4 m/s and 7− 18◦, re-
spectively and the location accuracy improvement of our al-
gorithm over the EKF filter was up to 50%.

Currently, only the Doppler shift measurements are run-
ning on the sensor nodes. We plan to implement a version of
the EKF and the CNLS algorithm on the tracked nodes in the
future. The time to route the ranging data to the tracked node
as opposed to the central node will improve, thus faster track-
ing update rates will be possible. In addition, both the EKF
and CNLS techniques are computationally efficient, require
a small number of steps to converge and a small amount of
information to store. Therefore, they are well suited for im-
plementation in sensor networks. The second area of future
work is the scheduling algorithm. In our proof-of-concept
implementation, all infrastructure nodes up to two hops away
participate in the tracking algorithm. Clearly, this approach
wastes resources of the infrastructure nodes and does not al-
low for the simultaneous tracking of multiple nodes in the
same physical area. Also, if the second transmitter is lo-
cated far from the tracked node, its signal gets attenuated by
the time it gets to the tracked node and thus, the interfer-
ence signal would have a low amplitude. We plan to address
these problems by designing a scheduling algorithm which
activates and deactivates infrastructure nodes participating in
tracking and which selects the second transmitter close to the
estimated location of the tracked node.

Finally, our approach is less susceptible to multipath
propagation than the radio interferometric technique, since
reflections do not change the frequency of the signal. There-
fore, additional Doppler shifts can only be introduced by
multipath between the mobile node and a single receiver.
The phase of the signal, however, can be distorted by multi-
path propagation between all four transmitter-receiver pairs.
Consequently, we plan to evaluate our algorithm in strong
multipath environments.
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