
Domain Independent Generative Modeling

Branislav Kusy1, Ákos Lédeczi1, Miklós Maróti1, Péter Völgyesi2
1Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN, USA

{branislav.kusy, akos.ledeczi, miklos.maroti}@vanderbilt.edu
http://www.isis.vanderbilt.edu

2Embedded Information Technology Research Group – Hungarian Academy of Sciences
Budapest University of Technology and Economics, Budapest, Hungary

volgyesi@mit.bme.hu

Abstract

Model Integrated Computing employs domain-

specific modeling languages for the design of
Computer Based Systems and automatically generates
their implementation. These system models are
declarative in nature. However, for complex systems
with regular structure, as well as for adaptive systems,
a more algorithmic approach is better suited.
Generative modeling employs architectural
parameters and generator scripts to specify model
structure. This paper describes an approach that
enables the addition of generative modeling
capabilities to any domain-specific modeling language
using metamodel composition. The approach is
illustrated through an image processing application
using the Generic Modeling Environment (GME).

1. Introduction

Modeling and automatic code generation is the most

promising way to increase software productivity. One
approach employs a single modeling language developed
specifically for software modeling to capture the
important characteristics of the system under
development and then generate a portion of the
implementation automatically. The most prominent
representative of this technique is the UML. Another
approach advocates the use of domain-specific modeling
languages, where the language is tailored for the unique
needs of the target application domain. This approach
enables the modeling of not only the software, but all
other aspects of the target system, including its hardware,
environment and their relationship.

Model-Integrated Computing (MIC) is a
representative of the latter approach. Both techniques
need tool support to enable their practical application. If
the language is fixed, in case of the UML for example, a
single toolset is sufficient. However, creating domain-
specific visual model building, constraint management,
and automatic program synthesis components for each
new domain would be cost-prohibitive for most domains.
The Generic Modeling Environment (GME) is a
configurable environment that makes it possible to create
highly domain-specific environments rapidly.

The configuration is accomplished through UML and
OCL-based [3,4] metamodels that specify the modeling
paradigm (modeling language) of the application domain.
The modeling paradigm contains all syntactic, semantic,
and presentation information regarding the domain;
which concepts will be used to construct models, what
relationships may exist among these concepts, how the
concepts may be organized and viewed by the modeler,
and what rules govern the construction of the models.
The modeling paradigm defines the family of models that
can be created using the resulting modeling environment.

The metamodels specifying the modeling paradigm
are used to automatically generate the target domain-
specific environment. The generated domain-specific
environment is then used to build domain models that are
stored in a model database. These models are used to
automatically generate the applications or to synthesize
input to different COTS analysis tools. GME has an open
component-based architecture. It allows access to
metamodels, models and model modification events
through a set of Microsoft COM interfaces.

Just like most software models, models captured in
GME are declarative. They describe a particular solution
to a particular problem in the given engineering domain
in a declarative manner. While this works very well most

of the time, there are two cases where a more flexible
approach is called for. When the models are large and
have a regular, repetitive structure it is more natural to
capture the information in an algorithmic manner.
Similarly, adaptive systems are cumbersome, if not
impossible to capture in a declarative way.

One solution is to represent these architectures in a
generative manner. Here, the components of the
architecture are prepared, but their number and
connectivity patterns are not fully specified. Instead, a
generative description is provided that specify how the
architecture should be generated "on-the-fly." A
generative architecture specification is similar to the
generate statement used in VHDL: it is essentially a
program that, when executed, generates an architecture
by instantiating components and connecting them
together.

The generative description is especially powerful
when it is combined with architectural parameters and
hierarchical decomposition. In a component one can
generatively represent architecture, and the generation
"algorithm" can receive architectural parameters from the
current or higher levels of the hierarchy. These
parameters influence the architectural choices made (e.g.
how many components to use, how they are connected,
etc.), but they might also be propagated downward in the
hierarchy to components at lower levels. There this
process is repeated: architectural choices are made,
components are instantiated and connected, and possibly
newly calculated parameters are passed down further.
Thus, with very few generative constructs one can
represent a wide variety of architectures that would be
very hard, if not impossible, to pre-enumerate.

Our earlier work in self-adaptive systems
demonstrated the power of generative modeling in one
particular domain [5]. This paper describes the
generalization of the approach. In particular, we have
created a generative representation methodology that can
be easily added to any domain-specific modeling
language. The approach is based on metamodel
composition. Furthermore, we have developed a
combination of a code generator and a model interpreter
that executes the generator scripts according to the
current instantiation of the architectural parameters and
creates the corresponding pure declarative model. The
approach is detailed in the following sections.

2. Generative Modeling

Let us illustrate generative modeling through an

example. Data parallelism is often utilized in image
processing. Consider, for example, the signal flow of a
convolution running on four processors as shown in

Figure 1. The input image is split four ways, the
convolution is carried out in parallel on the subimages
and then the results are merged to form a single image. If
the number of available processors changes, the signal
flow model needs to be modified to match it. However,
the structure is quite regular, it is natural to express it in
an algorithmic manner as a function of the number of
processors.

Figure 1. Data Parallel Convolution

Consider Figure 2. It shows the same components as
Figure 1, but the actual signal flow is missing. Instead,
the components are connected to a generator block
called SplitAndMerge. There is an architectural
parameter connected to it also (called NumProcessors)
that have a numerical attribute (not shown). Generators
have a textual attribute containing the generator script
that describes the desired model structure utilizing the
architectural parameters, in this case NumProcessors.

Figure 2. Generative Model

Executing the generator creates the required signal
flow model. When the number of processors changes,
the value of NumProcessors is the only thing that needs
to change. This is certainly easier and less error-prone
than manually redrawing the models to reflect the
change. In the remainder of this section we describe how
this is actually accomplished emphasizing how generative
modeling can be easily added to any domain-specific
language using our technology.

Figure 3. Generative Metamodel

2.1. Generative metamodel

Model Integrated Computing employs metamodels to

define domain-specific modeling languages [1].
Metamodel composition is utilized to allow the
combination of existing languages to form more
complex ones. Metamodel composition simply means
taking two or more metamodels and specifying relations
among some of their modeling concepts [6]. These
relations define how models in the original languages can
be composed together in the new language.

Figure 3 shows the metamodel specifying generative
modeling. It is only a partial metamodel, i.e. it does not
define a meaningful modeling language in and of itself. It
was specifically created, so that it can be composed with
any other metamodel to add generative modeling
capability to the corresponding modeling language.

The key concept is the use of generic objects acting as
placeholders - objects that are not completely defined in
the generative metamodel. These objects will be fully
defined only after metamodel composition, i.e. after the
user decides how she wants to enable generative
modeling in the target domain-specific language. Even
though the placeholders are not fully defined, we can
specify all of their properties related to generative
modeling. Furthermore, there are several modeling
concepts that are completely specified in the generative
metamodel; these are specific to generative modeling
and do not need to be composed.

Consider Figure 3. The main object from the
generative point of view is the Generator model
containing GenStructuralPorts and GenParameterPorts.
These ports can be connected to objects from the user
defined metamodel (to be composed) and to architectural
parameters (GenParameter) respectively. The Generator

model has the GeneratorScript textual attribute that will
contain the algorithmic specification of the desired
model structure.

The abstract object OutsideObjectPlaceholder is
introduced to define the connectivity between generators
and objects from the user defined metamodel through
GenStructuralConnections. Containment is modeled
using the ContainerPlaceholder model. This is where
generative models can be contained in the final target
environment.

An important concept for the reusability of generators
is the GeneratorReference. As you can see in Figure 3,
Generators are not contained in any other models; they
are standalone. In fact, a generator script can only refer
to its own ports (structural and parameter) and has no
knowledge of the “outside world,” where and how it is
being used (for a more detailed description, see section
4). Generators capture structural information only, so a
SplitAndMerge generator model can be used without
modification in any domain-specific language from
signal flow through ADLs to state machines. Therefore,
it is not Generator models that are inserted into domain-
specific models, but references to Generators.
(References are just like pointers in programming
languages.) This enables using the same Generator model
in different models using different architectural
parameters.

For example, the SplitAndMerge object in Figure 2 is
a reference to a SplitAndMerge generator model. Many
such references can exist in the same model hierarchy.
Every such reference can be connected to different
objects and different parameters. Furthermore, copies of
the same SplitAndMerge generator model can exist in
different models in different languages.

Figure 4. Hierarchical Signal Flow Metamodel

3. Metamodel Composition

Let us illustrate the process of adding generative

modeling capability to an existing domain specific
language through the image processing example. The
metamodel of the hierarchical signal flow modeling
language used in the example is shown in Figure 4.

Figure 5. Metamodel Composition

Compounds are the composite models in this
language; they can contain signal flow graphs themselves.
Primitives are the leaf nodes in the hierarchy; they are
the elementary signal processing components whose
functionality is captured using a traditional programming
language in a textual attribute. Both Compounds and
Primitives have input and/or output ports called
InputSignals and OutputSignals, respectively. They can be
connected through DataflowConn connections.
Processing models and Signal atoms are abstract
components that help keeping the metamodel clear.

Figure 5 shows the metamodel that composes the
signal flow language with generative modeling. The most
frequently used technique in metamodel composition is
inheritance. Here Signal inherits from
OutsideObjectPlaceHolder, so that InputSignals and
OutputSignals can be connected to StructuralPorts of
Generator references. Compound inherits from

ContainerPlaceHolder, so that Compounds can contain
generative models.

In general, the user needs to decide which kind of
objects should be able to participate in generative
constructs and what models should contain these
constructs. Then inheritance can be used to derive the
generative capabilities from the placeholder objects. One
way is to use simple inheritance as shown in Figure 5.
Another option is to introduce a new concept, such as
GenerativeCompound, and use multiple inheritance, for
example to derive it from both ContainerPlaceHolder
and Compound.

4. Generator Execution

The final representation issue concerns the generator

script itself. There are many choices available for the
language. For practical reasons, as GME uses Microsoft
COM for component integration, we decided to use C++
with an API developed specifically for generative
modeling in our prototype implementation.

The most convenient feature of this API is that the
name of each structural port of the generator is
automatically resolved to the object that is connected to
the given port. Similarly, the name of each parameter
port denotes an integer variable whose value is set to the
value of the connected architectural parameter.

In fact, this generative API is just an extension of our
high-level interpreter API for GME called the Builder
Object Network (BON). While COM interfaces provide
the interpreter writer all the functionality needed to
access and manipulate the models, it entails using
repetitious COM-specific querying, error checking and
handling. To abstract these issues away from the
interpreter writer, GME provides a collection of C++
wrapper classes: the Builder Object classes. When the
user initiates model interpretation, the component
interface builds a graph mirroring the models: for each
model object an instance of the corresponding class is

created. We refer to this graph as the Builder Object
Network. The BON API provides all the necessary
functionality to traverse the models along the
containment hierarchy or any of the associations, to
create and delete models and to get and set attributes,
among others.

To simplify generator script writing, the generative
API adds two groups of functions: one for duplicating
model objects in a variety of ways and another for
creating connections more easily. We present a sample
script in Section 5.

Generative
Models

Declarative
Models

Stage 1

Stage 2

Generator code

Figure 6. Generator Execution

Resolving generative models is a two-stage process as
shown in Figure 6. First, code is generated for all
generators and all generator references. This code
becomes part of the second stage model interpreter that
executes the generators and creates a new model
hierarchy; one that has no generators, only pure
declarative models. These models then can be used as any
other domain model, i.e. all original model interpreters
that were developed for the domain before generative
capabilities were added are still fully supported.

In the first stage, a function is generated for every
generator. The function body is the generator script as
specified in the models. The argument list of the function
mirrors the ports of the corresponding generator model;
there is an argument for every structural port (of the
generic FCO type) and one integer argument for every
parameter port.

 There is also a function generated for every generator
reference, i.e. for every actual use of the generator.
These functions are responsible for traversing the
connections that are attached to the corresponding

generator reference and obtaining the values of the
architectural parameters. Then they simply call the
generator function with the appropriate argument list.

These two sets of functions are compiled and linked
together with the second stage model interpreter. This
component traverses the models from the top down,
creates the mirror image of all objects in a new blank
root model and executes all generators, which, in turn,
create new model objects. Note that generator execution
is carried out in a bottom up fashion in the model
containment hierarchy for efficiency reasons. This
ensures that models created by the generators do not
themselves contain generators that would need to be
executed possibly multiple times.

5. Illustrative Example

Consider the data parallel image processing

application introduced in Figure 1 and its generative
representation shown in Figure 2. The generator script of
SplitAndMergeGen is shown below:

#define MAXCHANNELS 32

if (Num < 1 || Num > MAXCHANNELS)
 return;

Atom dst[MAXCHANNELS];
Atom src[MAXCHANNELS];
Model proc[MAXCHANNELS];

std::string OutName= Out->getName();
std::string InName = In->getName();

dst[0] = Atom (Dst);
src[0] = Atom (Src);
proc[0]= Model (In->getParent());

for(int i = 1; i < Num; i++)
{
 src[i] =GAPI::portDup(Atom(Src),i);
 dst[i] =GAPI::portDup(Atom(Dst),i);
 proc[i]=GAPI::modelDup(owner,proc[0],i);
}

for(i = 0; i < Num; i++)
{
 GAPI::connect(owner,
 std::string("DFC"),
 src[i],
 proc[i], InName);

 GAPI::connect(owner,
 std::string("DFC"),
 proc[i], OutName,
 dst[i]);
}

Stage 1 of the interpreter creates the following
function header for the script:

void SplitAndMergeGen(
 Model owner,
 Object Dst,
 Object Src,
 Object Out,
 Object In,
 int Num
)

and the following wrapper function for the generator

reference SplitAndMerge shown in Figure 2:

void SplitAndMerge(Project pr)
{
 Object owner =

Component::FindPort(pr, 6500000046);

 Object Dst =
Component::FindPort(pr, 6600000093);

 Object Src =
Component::FindPort(pr, 6600000092);

 Object Out =
Component::FindPort(pr, 6600000095);

 Object In =
Component::FindPort(pr, 6600000097);

 int Num = GenParameter (
 Component::FindPort(pr, 6600000085)
) -> GetValue();

 SplitAndMergeGen(owner,
 Dst, Src, Out, In, Num);
}

These functions become part of the Stage 2

interpreter. As it traverses the models, it eventually calls
the SplitAndMerge function that finds all necessary
objects that are connected to the generator reference,
obtains the value for the Num parameter, and calls the
SplitAndMergeGen function with the appropriate
arguments.

The generator script above first verifies that Num falls
within the acceptable range. Then it creates arrays of
object pointers to refer to the output ports of
SimpleSplitter, the input ports of SimpleMerger and to
the Convolution models. Please refer to Figure 2. It
initializes the first item of each array with the object that
exists in the current model. Then it creates the necessary
Num-1 many objects for each category. Finally, it makes
the appropriate signal flow connections.

Conclusions

We presented an approach to generative modeling

where architectural parameters and generator scripts are
employed to specify model structure. The models are
then used to automatically generate a declarative
representation corresponding to a particular parameter
instantiation. Generative modeling is particularly well
suited to represent regular model structure and adaptive
systems.

The primary design goal of our technique was
reusability. This is accomplished by providing the
generative modeling capability in a domain-independent
fashion. The generative representation methodology is
captured in a metamodel that can be easily incorporated
into any domain-specific language through metamodel
composition. The interpretation of the generative models
is done through a two-stage domain-independent code
generator/model interpreter.

Furthermore, the generator models and their scripts
are also reusable within a model hierarchy or even across
different domain-specific modeling languages, because
the generators are self-contained modules that rely on
generic model structure only and have no knowledge of
and hence, dependence on any domain-specific concepts.

The ease of adding generative modeling capabilities to
any modeling language was clearly demonstrated by the
example. The only work that is needed is to specify
where in the modeling language the generative
capabilities are desired. This is a testimonial to the
strength of Model Integrated Computing (MIC) in
general, and the extensibility of the Generic Modeling
Environment (GME) in particular.

References

[1] Sprinkle J., et al.: “The New Metamodeling Generation,” IEEE
Engineering of Computer Based Systems, Proceedings,
Washington, D.C., USA, April, 2001.
[2] Ledeczi, A., et al.: “Composing Domain-Specific Design
Environments,” IEEE Computer, pp. 44–51, November 2001.
[3] UML Summary, ver. 1.0.1, Rational software corporation, et
al., Sept. 1997
[4] Object Constraint Language Specification, ver. 1.1, Rational
Software Corporation, et al., Sept. 1997.
[5] Ledeczi, A., et al.: “Model-Integrated Embedded Systems,” in
Robertson, Shrobe, Laddaga (eds) Self Adaptive Software,
Springer-Verlag Lecture Notes in CS, #1936, February, 2001
[6] Ledeczi, A., et al.: “On Metamodel Composition,” IEEE CCA
2001, CD-Rom, Mexico City, Mexico, September 5, 2001

